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by
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Abstract. Given two compact, metric spaces X and Y, X is said to be Y-like if for evexy ¢ > 0
there is an s-mapping f of X onto Y, where fis an s-mapping means that diam f~*( ») < & for every
3 ef(X). Using a class a defined in an earlier paper of the author, we prove the following theorem:
Each locally connected, 2-dimensional compactum which is M-like, where M is a surface (i.e. a closed
2-manifild), is homeomorphic with M. As a corollary we obtain: Each comp quasi-h -phic
with a surface M is homeomorphic with M, where X is quasi-homeomorphic with Y means that X is
Y-like and Y is X-like.

1. Introduction. We shall consider metrizable spaces only. The AR and ANR-
spaces will be assumed to be compact. A map f of a compactum X into a space Y is
said to be an g-mapping if diamf ~(¥)<e for every y € f(X). Given two compact
spaces X and ¥, X is said to be Y-like (cf. [12])if for every £>0 there is an g-mapping
of X onto ¥. The spaces X and ¥ are said to be quasi-homeomorphic if X is Y-like
and Y is X-like. A compactum X is said to be quasi-embeddable into a space Y if
for every £>0 there is an e-mapping of X into Y.

A compact, connected 2-manifold without boundary will be called a surface.
Compacta which aré M-like, where M s a surface, have already been investigated
by Ganea in [8] and by Marde§i¢ and Segal in [12]. Tt has been proved by Ganea
that any 2-dimensional ANR which is M-like is homeomorphic with M. Using
other methods, Mardegi¢ and Segal proved that any locally cyclic continuum which
is M-like, where M is an orientable surface, is homeomorphic with M. The main
purpose of this paper is to prove the following

TusoreM. Each locally connected 2-dimensional compactum which is M-like,
where M is & surface, is homeomorphic with M.

As an easy consequence we shall obtain the following

CoroOLLARY. Each compactum which is quasi-homeomorphic with a surface M is
homeomorphic with M.

The following class o, which has been introduced in [16], will be very useful
in the present paper.
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DeemaTion 1.1. A locally connected continuum X belongs to the cluss o if and
only if there is an £>0 such that no simple closed curve ScX with diamS<g s
a retract of X. L

The structure of this paper is as follows. Tn Section 2 we shall consider any
space Y which is semi-lc; (in the sense of homology) and we shall prove that any
locally connected continuum X which is Y-like belongs to the class o. In the Sec-
tion 3 we shall use that result to prove the theorem formulated above. Moreover,
we shall prove in that section that any locally connected compactum which is Y-like,
where ¥ is a plane ANR, is itself a plane ANR. In Section 4 we shall prove —
generalizing some Borsuk’s results [2]— that each locally plane space of that
class o is embeddable into a surface. As a corollary of this fact and by the results
of Section 3 we shall prove that each locally connected compactum which is Y-like,
where ¥ is an ANR cmbeddable into a surface, is itself an ANR embeddable into
a surface,

2. Locally conmected compacts which are Y-like, where Y is a (homologically)
semi-le; space. The following lemma, in which the last statement is obtained by
an easy modification of the original proof, has been shown by Fort (see [7]).

Lemma 2.1. Let S be a simple closed curve which is the union of four arcs Ly, L,,
Ls, L, having at most end-points in common and satisfying Ly "Ly = & = L, A L,.
4
If K is a metric space such that K = \) Ay, where each A, is closed in K, 4;>1L,
i=1 )
Sor each i, and A, N A3 = @ = A, 0 A4, then there is a retraction r of K onto S.
Moreover, the retraction r can be chosen so that r(4,) = L,.
The following consequence of this lemma will be useful for us:
COROLLARY 2.2. Let Y be a compactum and let X be a locally connected continuum.
If ScX is a simple closed curve which is a retract of X, then there is an ¢>0 such
that, given an arbitrary ¢-mapping f of X onto Y, there exist a simple closed curve
, c : .
S'cf(S) and a retraction v’ of Y onto S'. Moreover, given a (non-degenerate) arc
I, =8 and a retraction r of X onto S, the simple closed curve S' and the retraction r'
can be chosen so that r'(f(r~'(I,))) is a proper subset of §'.
Indeed, find arcs I,, I, I, such that I, I, I, I, satisfy the hypothesis of
Lemma 2.1. Let 4;=r"Y(J),i= 1,2, 3, 4and let ¢= min(@(/.ll, A3}, 0(4,, /L,,)),
where ¢(4, B) = min g(x,y). Now, let f be any e-mapping of X onto Y and

xeA,yeB
. t
let 4; = f(4), I} = f(I). Then Aj \dj =@ = A} dj. Since I is a locally
connected contmuun}, we can find an arc J;=J; joining the points J(wy) and (b)),
where (@) U () = I;. One can improve the arcs Ji so as to obtain the arcs L,
4
i=1,2,3,4, such that {J L] is a simple closed curve S’, where Liclicd], 8§
i=1

4 =
.I ’ ’ ’ I . .
nyfll =f(S) and L3, L,, L5, L, have at most end-points in common. Using

Fort’s lemma, we conclude the proof of the corollary.

©
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Tn the sequel we shall use the following definition of the semi-Ic, spaces:
DEFINITION 2.3. A compactum Y is said to be a semi-Ic; space if there is a 6>0

such that, given a compact set A= ¥ with diamA<§, we have 7, (H,(4)) =0,

where H;(4) is the first Cech homology group of 4 with integer coefficients and

i: A—Y is the inclusion map.

We shall give an elementary proof of the following natural lemma with
reference to [5] for the necessary algebraic topology notions.

Lemma 2.4. If Y is a locally connected compactum which is a semi-lc, space,
then H,(Y) is a finitely generated abelian group.

Proof. Since Y contains only finitely many components, it suffices to consider
the case where Y'is a continuum, Since Y is a semi-lc; space, there is a 6 >0 such that
(1) given a compaél set AcY with diamA<8, we have i (H,(4)) = 0, where
it A=Y is the inclusion map.

Let 9 be a finite covering of ¥ such that each element of 9 is a region (i.e., an
open and connected subset of ¥) and diam(U)<16 for every Ue 9. Let P denote
the nerve of 9. To establish the lemma it suffices to prove that:

(2) The group H((Y) is a direct factor of the group H; (P).

For this purpose, choose for each element Ue 9 a fixed point xye U Then
find a sequence 9%, 82, ... of finite coverings of ¥ such that:

1° 9 = 9.

20 97+l g a refinement of §* for n =1,2, ...

3% Bach element of 9" is a region in Y.

49 For any n>1 and for each U & 9 there is a fixed 0" € 9" such that xy € "< UL

" 501 UVed and UnV # @, then—for any n— there is a sequence
", .., Up of elements of 9" such that U} = U, Ul = 7" (as determined by 4°),
cach U is contained either in U or in ¥ and Urn Uy # Gfori=1,2,.., k-1

6° If Ve, V" is any element of 9" contained in ¥ and " is the element of 9
determined by 4°, then there is a sequence V7, .., VI of elements of 9" such that
V= P VP = D7, each V7 is contained in Vand Vi n Vi, # Gfori=1,2,..
vy k=1,

The existence of such a sequence of coverings of ¥ easily follows from the
arcwise connectedness of any region in Y. Moreover, we can carry out the con-
struction in such a way that if U, 7 e 9 and n<m then U">0™ and that the se-
quence constructed in 5° for 9™ is a refinement of the respective sequence con-
structed for 9" If V"= V™, the same can be done for the sequences constructed in 6°.

Now, let P, denote the nerve of 3" and let ny, be a projection of P, into F,,,
where #32m. For any n, consider the chain complex

dy 02
C(Pn) = {CO(“P") A Cl('Pn) « CZ(PH)} .

The projection =, induces the chain map of C(P,) into C(P,), which we shall also

denote by 7.
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For any n, we shall construct a chain map @, of the chain complex {Co(P)

a1

« Cy(P,)} into the chain complex {Co(P,) & Cy(P,)}. If vis a vertex of P, and
Cary(v) = V (ie., Vis the element of 9 corresponding to v), then ¢,(v) = ", where
Carg.(0") is the element V™ of 9" determined by 4°.

Now, let o be an oriented 1-simplex of P, such that 9,(¢) = v—u, where
Carg(w) = U, Cary(v) = V. Let U], ..., U} be a sequence of elements of 9" with
the‘properties described in 5°. Define ¢,(0) = ¢, + ... +0y_ {, Where ¢, is the oriented
1-SlmpleX of P, such that Cargo; = U n Uf, and the oricntation of ¢, agrees
with the succession of the elements of the sequence U%, vy Ugs Then ¢,(0, 0)
= 8;¢,(¢) and thus we obtain the desired chain map ¢,. ,

'Next, we shall construct a chain homotopy D: C(P,)—C(P,) between the
chain maps id and ¢, =}, where n>1. Let v" be a vertex of P,. Then idv" = o" and

P, mi(e") =0", where Cargv" = V", Cargt" = 7" and V", P" aie two clements
of 3" as in 6°. Let V3, ..., V7 be a sequence of the elements of 8" with the propertics
des.cnbed in' 6°. Then we define D(®") = 7+ ... +7;~y, Where t; is an oriented
1-.snnplex of P, such that Carg.t, = V'~ ¥}, and the orientation of T, agrees
with the succession of the elements of the sequence ¥71,..., V]. h

Now, let v be an oriented 1-simplex of P, and let 01v = v’ —v'. Let Carga’
= V:", Carg.v"” = V" and let V', ¥" denote the elements of 9 corresponding
to V " V""", respectively, under the projection 7 : P,—P,. Denote by ¢ the oriented
l-‘sunplex of Py such that Carge = V' A V" and the orientation of o agrecs
w1th”the sllllccession”of V, V" Let 9,(0)'= o4+ .. +04y, DO} =1, —|~...+7:,"
:]Dugu 35[1;0—!’-“... t-;;lt .5153(?;?9’)9': ﬁ:, (pa,,n:’{(v”) = ﬂ’:’, tllmn it is casy to see fron;
onent 1 v, 0.000) = "=, 0, D) = p"'—0v". It
’ C=T;+-..+t,'+t71+‘.‘+a,,_l-r];-—...—T{,'.——v
Is an element of Cy(P,) such that 3,¢ = 0.

The index n being fixed, we shall observe that the homology class [¢] is equal
to zero. Indeed, we can construct a compact set A<V’ U V" and an (;lemel‘it
aﬂi H, (A). sucl? that iy(a) is an element of H,(¥) = Lim{H,(P), (r9),} whose

?ndlfcoecc)irdblga‘:fl;siig?ii; .[C], where 7,1 H,(4)-H,(Y) denotes the homomorphism
r e To ﬁnccli A, one can 01109se a point from the carrier of each L-simplex which is

umman, of ¢ ar{d then, for any two successive summands of {, join the chosen
points b}f an arc lying in the element of §” corresponding to their’commm ve L C
The d.esxred e{alement ae H;(d) is easily constructed, ' b e
therei];: bI; (T) Vl (: ?,Owsv 1I;anve diam (V' U V') diam V' +diam V<6, and
et m [-h ;t ) =, ; i)v nec«z fﬁi flgz;'))) == Icmaz. Thus, there is an element

Then we have .

8, D)+ D(ov,) = {+D@")~DW) = o+ ot @ —0 = @,ni(v)—idv
and therefore D is the desired chain homotopy.
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1t follows that ¢,n} induces the identity homomorphism of Hj (P,) for any n.
1t is easy to see from the remarks below the definition of the sequence 9, 82, ..
that the chain maps @,: C,;(P;)~ C.(P,) induce the homomorphism of H,(Py)
= H,(P) into the inverse system {H(P,),(n})s}. Thus, they determine the ho-
momorphism ¢y of Hy(P) into H,(Y) = Lim {H(P,), (mn)«}. The homomorphisms
7, m=1,2,.. determine a homomorphism =, of H,(Y) into H;(P) and we sce
that @47y = idy,(y). This proves (2), and therefore the proof of the lemma is
complete.

Remark 2.5. One casily sees that the assumption of Lemma 2.4 that Y is

w
locally connected is essential. Indeed, it suffices to take ¥ = U S(p,, r,), where
0

ne
S(py. 1) is the circle on the plane E? with centre p, and radius r,, where p,
= (1/4+1/4",0), r, = 1/4+1/4" for n = 1,2, ..,po = (1/4,0), ro = 1/4.

THEOREM 2.6. Let Y be a semi-le; space. If X is a locally connected continuum
which is Y-like, then X € a. More generally, if X is a locally connected compactum
which is Y-like, then each component of X belongs to «.

Proof. First, consider the case where X is connected. Suppose, proceeding
to the contrary, that X ¢ o Then there exist a sequence of simple closed curves
S,=X with lim diamS, = 0 and a sequence of retractions r,: X—S,, where n

n-+oo

= 1,2, ... We can assume that there exists a point X, € X such that Lim S, = (x¢).

n-—row

Let I,,=S,, be an arc containing the point r,(x) as an interior point. Then,
for almost all n with n>n,, we have S,,cf,f‘,l(l,,u). Thus, choosing a subsequence
of the sequence Sy, Sy, .. if necessary, we can assume that for each ng the inclusion
S,,Cr,,"ui(l,m) holds for all n>,.

Since Y is a continuous image of X (as X is Y-like), we infer that Y is locally
connected, and therefore it follows from Lemma 2.4 that H, (¥) is a finitely generated
abelian group. Let k, be equal to the rank of H, (Y) plus one.

Consider the finite sequence Sy, ..., Si, By Corollary 2.2, there exists an £>0
such that, given an ¢-mapping f of X onto 'Y, there are simple closed curves S7
</(S)) and retractions ri: Y~ Sj such that r/ (#(7'(r))) is a proper subset of S;
fori=1,2, ..., k. Since X is Y-like, the ¢-mapping f of X onto Y exists. I j>i,
j<ko, then S;=ry {(I), whence S;=f(S)<f(r Y(1))), and therefore r{(S}) is a proper
subset of ;.

Now, let 4; be a generator of the group H (S} and let p; = (Jj)u(A), where
(st Hq(S])— Hy(Y) denotes the homomorphism induced by the inclusion
jit 8;— Y. Let us notice that py, .., e, a1 linearly independent elements of the
group H,(Y). Converscly, if nyp; + ... +muy, = 0, where ny,..,n, are non-zero
integers and iy <iy< .. <ij, then (i )w(my gy e Fmpy) =1y # 0 (beca11§e
r1(S;) is a proper subset of S, for i>1,), which is impossible. Thus, we obtain
a contradiction, because the rank of Hy(Y) is equal to ko—1, which completes
the proof in the case where X is connected.
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If X'is not connected, then X has a finite number of components, say Cy, ..., C,,
and —since X is Y-like —it is easy to see that Y has the same number of com-
ponents, say Ci, ..., C,. ¥ fis any e-mapping of X onto ¥, then there is a one-to-
one correspondence between C;’s and CJ'-’s such that f(C)) = C}. Of course, there
is a sequence f,, n = 1,2, ..., wheref, is an g,-mapping of X onto ¥ withlimg, = 0,

n—+m

for which this correspondence is the same. Thus, we can assume that for each ¢>0
there is an -mapping f of X onto ¥ such that f(C) = C| for i = 1,2, ..., p. Bvi-
dently, each C; is a semi-lc; space, and we infer from the first part of the proof
that each C; belongs to a. This completes the proof.

Remark 2.7. One could change Definition 1.1, assuming only that X is a com-

pactum instead of assuming that it is a continuum. It is evident that X satisfies the
changed definition if and only if X is a locally connected compactum each com-
ponent of which belongs to o.

Remark 2.8. It is easy to construct two spaces X, ¥, where X ea, Y ¢« and
X is Y-like. For instance, it suffices to take X equal to the interval {p, g> on the
o]

plane E2, where p = (—1,0), ¢ = (0,0), and ¥ = X u ) S(p;, r), where S(p;, r))
i=1
is the circle on the plane E? with centre p; = (1/i,0) and radius r, = 1/i.

However, the answer to the following question is not known to the
author:

ProBLEM. Is there a locally connected continuum X ¢ o which is Y-like,
where Yea? Is the property o a quasi-homeomorphism invariant?

3. Locally connected continua which are M-like, where M is either a plane ANR
or a surface. The following two graphs, K; and K,, are called the graphs
of Kuratowski: K, is the 1-skelton of a 3-simplex in which the mid-points of a pair
of non-adjacent edges are joined by a segment, K, is the 1-skelton of a 4-simplex.
By an n-umbrella we mean the one-point union of a (topological) n-ball Q and of
an arc I relative to a point pe @ and a point ge 1.

The following two theorems will be used or generalized later:

THEOREM A (see [16], p. 293). 4 comnected space X is homeomorphic with an
ANR-set Y= 82 if and only if X satisfies the following two conditions:

1" Xea.

2° X does not contain either a 2-umbrella or any homeomorphic images of the
graphs Ky and K,.
' THEOREM B (see [14], p. 313). 4 compactum X is quasi-homeomorphic with S*
if and only if it is homeomorphic with S2.

Now let us prove:

THEOREM 3.1. Each locally connected compactum X which is Y-like, where Y is
a plane ANR, is itself an ANR embeddable into E2.
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Proof. Evidently, ¥ is a semi-lc, space, and therefore we infer from The-
orem 2.6 that each component of X belongs to a. Let C be any component of X.
Tt suffices to prove that C is an ANR embeddable into EZ.

1t is well known (cf. [11], p. 634) that neither any of the sets K, K, nor the
2-umbrella is quasi-embeddable into E?, i.e., they cannot be e-mapped into E?
with arbitrarily small e>0. Since Y E? and Xis ¥-like, we infer that that C satisfies
also condition 2° of Theorem A. Thus, by Theorem A, C is an ANR embeddable
into S2. Since S is not quasi-embeddable into E> by Borsuk’s well-known antip-
odal point theorem, we infer that C is not homeomorphic with S%. Thus C is an
ANR embeddable into E2.

COROLLARY 3.2. Any compactum X quasi-homeomorphic with a plane ANR Y is
itself an ANR. embeddable into E*.

Indeed, since Y is X-like, X is locally connected, and therefore, by Theorem 3.1,
X is an ANR embeddable into E?

Remark 3.3. We cannot assert in Corollary 3.2 that X and Y (assumed to be
quasizhomeomorphic) are homeomorphic. This is not true even if X and Y are
dendrons (i.e., 1-dimensional AR’s), as shown by Segal in [17]. However, this is
true for graphs (i.e., 1-dimensional, compact polyhedra), as shown also in [17].
On the other hand, a student of mine, Mr L& Xuan Binh, has proved (of. [10]) that
all plane 2-dimensional AR’s are quasi-homeomorphic and that this class contains
any compactum quasi-homeomorphic with them.

Remark 3.4. It has been shown by Eilenberg (cf. [6]) that if X and Y are
quasi-homeomorphic ANR’s, then X' homotopically dominates ¥ and ¥ homotopic-
ally dominates X. Thus, the tollowing assertion seems to be true: If X and Y are
2-dimensional plane ANR’s, then X and ¥ are quasi-homeomorphic if and only
if X and Y have the same homotopy type.

Remark 3.5. The assumption of Corollary 3.2 that ¥ is an ANR is essential.
Indeed, it has been proved by another student of mine, Mr Tran Trong Canh (cf. [18]),
that there are two locally connected continua X and ¥ which are quasi-homeo-
morphic and such that X is embeddable into E? but Y is not. Namely, X< E? is
the Sierpiﬁski universal plane curve and Y is the one-point upion of X and of the
interyal I with respect to a point p e X which does not belong to the closure of any
component of E*\X and a point ¢ el

It has been proved by Bennet (cf. [1]) that the 2-umbrella is not quasi-embedd-
able either in E? or in 2 Using the theory of covering spaces, we shall prove the
following

TugorEM 3.6. The 2-umbrella ¥V is not quasi-embeddable in any 2-dimensional
manifold.

Proof. Of course, it suffices to prove that V is not quasi-embeddable in any
connected 2-manifold M without boundary (compact or not). Thus, suppose the
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contrary and let V = D U L, where D = {(x,, %, x3) € B} x}+x3<1, x5 = 0},
L= {(x(, %5, %3) €E> 2ty = 0, x, = 0, 0< x5 <1}

Let M’ denote the universal covering space for M and let p: M'—M denote
the covering projection. Since 7 ,(M") is trivial, it follows that M’ is either E? or §*
(cf. [13], p. 135). Let f be any 1/4-mapping of V into M. Since 7,(V is trivial, the
map f can be lifted to M, i.e., there is a map f': V—M' such that pf’ = f.

Then f* is a 1/4-mapping of V into M’ Indeed, if y € f'(V) and p(¥) = x, then
FHE) =" (p74x), whence [T ()<f"(x), and thercfore diam/’"'(y)
<diamf " Y(x) < 1/4. However, by Bennet’s theorem [1] mentioned above, there is
no 1/4-mapping of ¥ into E? or S

Remark 3.7. It has been proved by Marde¥i¢ and Segal in [11] that the #-um-
brella is not quasi-embeddable either in E” or in §". Thus, it is easy to see thal we
can prove in the same way as above that the n-umbrella is not quasi-embeddable
in any n-manifold M such that the universal covering space for M is either E"
or S" The following conjecture scems to be true:

ConyecTure. The n-umbrella is not quasi-embeddable in any n-dimensional
manifold.

The rest of this section is devoted to the proof of the theorem formulated in
Introduction. First, we shall prove some lemmas. '

A space X will be called cyclic if it is not separated by any point. The theory
of eyclic elements given in [9], § 47, will be useful for ws. We shall refer in general
to [15], where the definition and some properties of cyclic elements have been listed.
A subset, both open and connected, of a space X will be called a region. We shall
say that zklrpoint x€X locally separates X if it separates any region in X.

Lemma 3.8. Let X be a space which is locally compact and locally arcwise con-
nected and does not contains any point that locally separates X, Then for any set
A< X homeomorphic either with K, or with K, and for any point ae A there is a set
B X\(a) homeomorphic with A.

Proof. First, find a region UcX such that U is compact, ac U, U n 4 is
co;mected and_ does not contain any ramification point of 4 different from @ and
that the set. (U\U) n A4 contiins at most four points, We shall consider only the
case w]_:lere‘lt consists of four points py, p,, ps, pa. Consequently, the set U n A is
the union of four arcs joining these points with & and disjoint everywhere except
aF a. .Hence, to prove the lemma, it suffices to constryct four arcs L;, i = 1,2, 3 4
dlS_]OII-It everywhere except at one common point b and such that LN(p)e l}\ Ea)i

Since thére is no point which locally separates U, the set UN\(9) is an nrcWisc
connectt?d region and the points p; are accessible from it. Thus, one can sec that
there exist a point b e U\(z) and three arcs I, I, I disjoint everywhere except at
the common point b and such that [; = (p;) U @), INp)=U\@) for i =1,2,3.
Besides, there is an arc J, joining the point p, with a point ¢ g o I and such that

=1
IN@IEUN@), Ln (I U, L) = (o). It ¢ =b, then the proof is already

©
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finished, and so we can assume that c e I;\(b). We set Ly = I, L, = I, and we
shall change the arcs Iy and I, so as to obtain the arcs Ly and L, as desired.
Since UN(4) is separable (as U is compact), locally compact, connected and
locally connected, for any point x e UN\(a) there is a locally connected continuum
which is a neighborhood of x in UN(a) with an arbitrarily small diameter. This
follows from an analogous property of locally connected continua and from the
existence of the one-point compactification of U\(@), which is a locally connected
continuum, because of [9], p. 176, No. 1. Let I3 denote the subarc of I; such that
I = (b) U (¢). Thus, we can construct a sequence Cy, C;, ... of locally connected

continua contained in UN(@NL, U L;) and such that C;nly# &, UC; is
=1
a neighborhood of T{\(5), and any point of J;\(b) belongs only to a finite number
W
of the sets C; and lim diam(C;) = 0. Consequently, C = I;u UG is a locally
P on =1

connected continuum. Since the set I5\(b) is contained in Int(C), there is a com-
ponent S of Int(C) containing it. We infer from the assumptions of the lemma
that § is a region such that no point of S separates S. Consequently (cf. [15], p. 292,
(3.9)), there is a cyclic element Z of C containing S. Since Z = Z (cf. ibidem, (3.6)),
it follows that Z=1;.

Since ceInt(Z) and p; ¢Z (as ps ¢ U2 CZ), there is a point gz &3 N z
such that the subarc Jy of I3 joining gs with p; does not intersect Z at any point
different from gs. Analogously, there is a point g, € I, N Z such that the subarc
J, of I, joining g, with p, does not intersect Z at any point different from g,.

Now, we shall find an arc LcZ joining g5 with ¢4 and containing b as an
interior point. It follows from [9] (p. 244, No. 16) that there is a simple closed
curve S, =Z containing the points b and g5. If g4 € So, then S, contains the required
arc L. If this is not the case, observe that the connectedness of Z\(gs) (ct. {15}
. 292, (3.6)) implies the existence of an arc [ <Z\(gs) joining g, with Sy\(gs) and
containing no proper subarc with this property. Then S, w I contains the required
arc L. Tt is casy to see that J; W L U J, is an arc joining ps with p, and containing b
as an interior point. Denoting by Ly (resp. by Ly) the subarc of this arc joining ps
with b (resp. p, with b), we obtain the arcs L and L, as required. This completes
the proof of the lemma.

Tn {he next lemma, besides the theory of cyclic elements, we shall use the
theory of strongly cyclic elements, as developed for the spaces of the class o in [16].
We shall not recall the definition of strongly cyclic elements and their properties
here: we only recall some notions and notations which will be useful later. A con-
fected space X containing more than one point will be called sirongly cyclic if X is
not separated by any finite set FoX. The strongly cyclic elements of X which
contain more than one point will be called true strongly cyclic elements and ab-
breviated to ts.c.e’s. The set of the points which locally separate a connected
space X will be denoted by Ly. We shall also use the following
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DeriNITION 3.9. A locally comnected contimium X belongs to jhe class aq if

and only if no simple closed curve S=X is a retract of X. A space X belongs to
the class o' (to the class «p) if and only if X' ex (X' ea,) and X is a cyclic space.

LemMA 3.10. Suppose that X e a and that for every A>0 there is a subset A of X
homeomorphic either with K, or with K, and such that diam(4)<A. Then, for each
Dposiltive integer kg, there is a sequence By, ..., By of disjoint subsets of X each of
which is homeomorphic either with K, or with K.

Proof. It follows from the assumptions that there are a sequence Ay, 4,, ...

of subsets of X and a point @€ X such that diam(4,)<1/n, LimA, = («) and cach
ey OO
A, is homeomorphic either with K; or with K.

First, we shall consider the case where the space X is strongly cyclic, i.c., the
only t.s.ce. of X is equal to X. To use Lemma 3.8, we shall find a locally compact
and locally arcwise connected set Be X which is not locally separated by any point
and contains infinitely many of the sets 4,. By [16] (p. 281, (4.3)), the set Ly is
finite, and therefore, if @ ¢ Ly, there is a region U in X such that a e U and Ly n
N U= @. Thus, setting B = U, we obtain the required set B. Now, consider the
case where a € Ly. It follows from [16] (p. 276, (3.1)) that there is a region UcX
containing ¢ whose diameter is so small that Un Ly = (a), ¢ separates U and
the union of () and any component of U\(4) is not locally sepn\raled by a, and
therefore by any other point, either. Of course, the number of ihe components
of U\(a) is finite, because a does not separate X. Since almost all sets A, are con-
tained in U, it is easy to see that there is a component ¥ of U\(4) such that the
set B = VU (a) contains infinitely many of the sets 4,. Thus, B is the required set,
because it satisfies other requirements, too.

Now, to finish the proof of the lemma in the case under consideration, we shall
prove inductively that for each positive integer k there is a sequence By, ..., B, of
disjoint subsets of B\(a) such that each B; (i<k) is homeomorphic with some 4,’s.
Applying Lemma 3.8, we see at once that there is a set B, = B\(a) homeomorphic
to A, , where n, is the first index n such that 4,< B. Assume inductively that the

sets By, ..., By have been constructed. Then, there is a region W in B contain-
k=1

ing @ and such that W (J B; = @. We infer that W satisfies the assumptions
i=1

of Lemma 3.8 and contains 4, for a sufficiently great index ;. Thus, applying
Lemma 3.8, we obtain a set B,< W\(a) homeomorphic with 4,, This completes
the induction.

Now, we shall consider the more general case where the space X is cyclic (but
not strongly cyelic). Since each t.s.c.e. E of X satisfies the same assumptions as X
does and since E is a strongly cyclic space (cf. [16], (4.4) and (4.11)), we can assume
that no t.s.c.e. of X contains infinitely many sets 4,. Thus, because Ly = Ly and
because the t.s.c.e.’s of X coincide with the closures of the components of X\Lyx
(cf. ibidem (3.4) and (4.2)), we can assume that g € Ly. It follows from [16] ((4.2),
(4.6) and (4.9)) that there is a (closed) neighborhood U of & in X which is the union

icm
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of a finite number of arcs Iy, ..., I,, disjoint everywhere except at the common
point @, and of all the t.s.c.e.’s of X which intersect these arcs. Moreover, we infer
from [16], (4.9) that the neighborhood U can be constructed so that if E is a t.s.c.e.

P
of X intersecting U, then E n |J I; is a (non-degenerate) subarc J of one of the
i=1

arcs I; such that J<Int E. Assume that there is at least one t.s.c.e. E of X contain-
ing a. (If there is no such t.s.c.e., then the proof will be easier.) Thus, one can find
a q<p and order the arcs Iy, ..., I, in such a way that the arcs J; with j<gq are all
those for which there is a t.s.c.e. E; of X intersecting I; on a (non-degenerate) subarc
containing a. By [16] ((4.3) and (4.10)), if E is any t.s.c.e. of X, then BdE = En
n XNE is a finite subset of E non-separating E, which consists of exactly two points
when the diameter of E is sufficiently small. Consequently, one can reduce U to

P
obtain a connected neighborhood ¥ of a equal to (a) v U C;, where C; = IntE;
i=1

for i<g and C, is the union of a subarc I; of I, containing a and of all the t.s.c.e.’s
E;, Ep, ... of X such that E,, nI/ # @ Moreover, we can assume that the
boundary of E,, consists of exactly two points of I;. Since the interiors of different
t.s.c.e.’s of X are disjoint (cf. ibidem, (4.2)), we infer that the sets C;\(a) with i<p
are the components of V\(a).

Since Limd, = (¢) and diamd4,<1/n, it follows that almost all sets 4, are

nreo

contained in V. Since no A, is separated by a point, we infer that each- of them is
contained in the closure of one component of ¥\(a). Since we have assumed that
no t.s.c.e. of X contains infinitely many sets 4,, we conclude that there is an # with
g<i<p such that C; contains infinitely many 4,’s. As no 4, is separated by a point
and the sets E,, E,,, ... are the non-degenerate cyclic elements of C;, we infer
that for each n such that A,cC, there is an index j(n) such that A4, < Eyq,. We
can assume that n # n' implies j() # j(n"). Moreover, one can see [rom the
construction of C; that — choosing a subsequence of the sequence of those 4,’s
which are contained in C; if necessary — we can assume that n # n’ and 4,, 4, =C;
imply Ej;y N Ejjuy = &, This completes the proof of the lemma in the case
where X is a cyclic space.

Finally, we shall consider the general case. As before, one sees that each 4, is
contained in a non-degenerate cyclic element Z, of X. Since each Z,, being a retract
of X (cf. [15], p. 292, (3.6) and (3.4)), satisfies the same assumptions as X and since
Z, is a cyclic space, we can assume that n # n' implies Z, # Z,. Moreover, we
can assume that no subsequence of the sequence Zy, Z,, ... consists of disjoint
sets, because the proof of the lemma in that case is immediate. Then, it follows
from [15) ((3.6), (3.2)) and [9], (p. 238, Remarque) that the proof reduces to the
case where there is a point p € X such that Z; nZ; = (p) for i # j. Since X e a,
there is an >0 such that no simple closed curve S<.X with diam(S)<e is a ret'ract
of X, By [15], (3.8), there is only a finite number of Z,’s with diamZ, >, and smc;c
each Z, is a retract of X, we infer that almost all of them belong to the class aq
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(cf. Definition 3.9). It follows from [16] (p. 283, (4.8)) that there is an index N such
that for N no point of Z, locally separates Z,. Thus, Lemma 3.8 can be applied
to Z, (for n>N) and we can find a set B,=Z\(p) homeomorphic to A,. This
completes the proof of the lemma.

The next lemma concerns the subsets of E2,

LemMA 3.11. Let Fe E? be a cyclic, locally connected continuum and let xy € F
A E™NF = BAF. Then, Sor any neighborhood U of x, (in E?), there is a disk QU
such that x, € O and that F r Q is the union of a finite number of disjoint arcs, some
of which can degenerate to a point, F n Q being a locally connected continuum.

Proof. (cf. [14], p. 308, Lemma 1). Let £>0 be so small that the &-neighbor-
hood of x, in E? is contained in U. By [9] (p. 363), there is only a finite number
of components of E*\F, say C,, ..., C;, such that diamC,>¢/3 and x4 ¢ C,.

First, consider the case where there is no component C of' E*\F such that
xo € C. Choose a 6>0 such that 6<e/3 and that the §-neighborhood of x, in E?

14
does not intersect. the set |J C;. Since x, € BAF, there is a component C of E*\F
i=1

lying in the d-neighborhood of x, in E?. Since F is a cyclic, locally connected
continuum, C is a disk (cf. [9], p. 360) and, by the assumption of the case considered
now, xo ¢ C. Thus, it is easy to see that there is a disk Qo< £? such that x, e Oy,
diam Qo< and that 0y N Cisa non-degenerate arc I with [ =C. Let J = Q,\/.
Denote by A4 the union of Q, and the closures of all components C of E?\F such
that C n'J # @. Since, for every such component C, C is a disk and T ~ J contains
more than one point and because the diameters of these components converge to
zero provided their number is infinite, we infer that 4 is a cyclic, locally connected
continium. Moreover, diam Q< implies that diam 4 <, Let Q denote the union
of 4 and of all bounded components of E*\4. Then Q is a cyclic, locally con-
nected continuum which does not separate E?, and therefore it is a disk (cf. [9],
p. 380). Evidently x,e 0 and diamQ = diamA<e¢, whence Q< U. One can see
from the construction that §>7 and Q n F'= QNI is an arc, Q n F being a perfo-
rated disk, and therefore a locally connected continuum, which completes the proof
of the lemma in the case in question.

Now, consider the case where there is 2 component € of E*\F such 1]mt xpeC.

One can find a disk Qy<E? such that xge Qy, diam Qy<¢/3, Qp N U Ci=0

and that @, intersects at least one component C of E*\F such that x, & C‘ Thus,
there is a finite number, say Cy, ..., Cy, of components of E*\F such that 0o 0
N C{ #+ @ and x, € C]. Since each set C] is a disk, we can assume that Qg is 50
small that any two points belonging to 0, N BdC; can be connected by an arc
whose interior is contained in C; and which lies in the ¢/3-neighborhood ‘of xg.
Thus, by improving the sets 0y n C} for 1<i<k, one can construct a digk Qlcl“z
satisfying analogous conditions as Q, does and such that for each i1 ik, the
set I = 0, n C} is an arc whose interior is contained i in Cy. Using thie same method
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as in the preceding case, one obtains the required disk Q by improving each com-
k

ponent of @,\U i} which is a non-degenerate arc to get an arc lying entirely in F.
i=1

This completes the proof.

LemMA 3.12. Assume that X e o, X does not contain any 2-umbrella and that
there is a A>0 such that X does not contain any homeomorphic images of the graphs K,
and K, with diameter less than A. Then, for each point xy € X there is a neighborhood
of xo in X which is a (compact) AR embeddable into E*.

Proof. Let x5 e X. It follows from the assumptions that there is a locally
connected continuum Fc X such that x, €IntF, F does not cortain any homeo-
morphic images of the graphs K and K, and that no simple closed curve S<F is
a retract of X. It has been proved by Claytor (cf. [4], p. 632) that each cyclic, locally
connected continuum which does not contain homeomorphic images of the graphs
K, and K, is embeddable into S* Consequently:

()  Each cyclic element of F is embeddable into S>.

Evidently, we cannot assert that F e o,. However, in the next part of the proof
we shall find a smaller neighborhood H' of x, which is a retract of X and there-
fore belongs to a,. We shall assume that the sequence of the components of F\(x,)
is infinite, because the proof in the opposite case is similar but easier. Denote these
components by Hy, H,,.. We shall construct a subset H; of H;. If H,cIntF
(which holds for almost all /, because F is locally connected), then H; = H,. If
H, n X"F + @, then we shall distinguish two cases: where ord,, H; = 1 and where
ord, H;>1. In the first case there is a neighborhood U;, both open and connected,
of x, in H, such that U, < Int(F) and that U\U, consists of exactly one point a;.
We define H = U,. BEvidently, in this case H;\((xo) U (a;)) is an open subset of X

Now, consider the case where ord,, H;>1. Then there are two arcs Iy, I,=H;
such that I} 01, = (xg) = I, n1,. Since H; is a component of FN\(xg), we can
join the sets I;\(x,) and I,\(x,) by an arc lying in H;, which implies the existence
of a simple closed curve S<H, such that x, e S. Consequently (cf. [15], p. 292,
(3.9)), there is a cyclic element Z of H; such that Z= S, and therefore xo € Z. Evi~
dently, Z is also a cyclic element of F, zmd therefore, by (1), Z is embeddable into S2.
If there is a disk Q<=Z such that x, € O, then Q must be a neighborhood of x,
in X, because Y is locally arcwise connected and does not contain a 2-umbrella.
Since Q is an AR embeddable into E?, in this case the lemma is proved. So we
can assume that there is no disk Q<Z such that xy & Q. Thus, Lemma 3.11 can
be applied to the set Z and to the point x, & Z. Consequently, there are a locally
connected continuum A=Z  IntF and a finite num’ber of (perhaps degenerated)

©

arcs, say J, ..., Ji, contained in 4 and such that A\i 91']" is an open neighborhood

of x, in Z. From the theory of the cyclic elements it is known that any component
of HA\Z is bounded by one point (different from x,, because H; is a component
of F\(x)) and that the diameters of the components of H\Z converge to zero,
5*
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provided their number is infinite (cf. [15], (3.6), (3.2) and (3.3)). We define H to
be the union of 4 and the components C of HNZ such that CcIntF and that

k
C\Cc A\ J;.
=1

©

Let H' = J H{. Then H' is a locally connected continuum, H’'<IntF and
i=1

there is a finite number of (perhaps degenerated) arcs, say K|, ..., K;, contained
1

in H’ and such that H'\\{J K is an open neighborhood of x; in X. One can change
i=1

the ordering of these arcs in such a way that there is a sequence jy, ..., f, of indices
with 1 = j; <j,<...<j, = I+1 and such that j,<j, j' </, implies that K and K
1

are contained in the same component of (XNH") u J K, but j<j, and j'=j, imply
i=1

14
that K; and K. lie in different components of (X\H") uiyl K;.

If ji<J, J' <ji+1 and Cis a component of X\H' such that Cn K, # @ = C n
N K, then there is an arc L= C joining K; with Kj', and such that L.<C (cf. [9],
p. 194). Tl'ius, for each i = 1,2, ..., p—1, there is a sequence of arcs Ly, ..., Ly
such that L., cX\H', Ly, U {K;: ji<j<J;+1} and that the set

Ty = U{Lin: 1<m<n(@)} v U {K;: Ji<i<jied}

is connected. Moreover, one can change the arcs L;, in such a way that the set T

is a tree (i.e., a graph which is a dendron).
p=1
Now, consider the set M’ = H' u {J T;. We shall prove that
i=1

(2 M'is a retract of X.

Indeed, let C be a component of XN\H’. Then, there is at most one index i with
1<igp~1 such that Cn T, # . Since T;& AR, there is a retraction r; of the
union of T and all components C of X\H' whose closures intersect T, onto T;.
If Cis an other component of X\H' then, by the construction of H’, C'd:IntF
and C\C consists of one point belonging to H’. Thus, we can retract C onto CN\C.
It is easy to see from the construction that all these retractions together with the
identity on M’ determine a retraction r of X onto M’, which proves (2).

Next, notice that H” is a retract of M”. Indeed, H' — being a locally connected
continuum — is arcwise connected, and therefore it is casy to construct a map
of T; into H' which is the identity on H' n T;. These maps determine a retraction
of M’ onto H'. Tt follows from (2) that H' is a retract of .X. Thus, we have obtained
the required neighborhood H' of x, such that H'cF and H' is a retract of X, as
mentioned at the beginning of the proof. We infer from the properties of the set F
that H' € ay, H' does not contain either a 2-umbrella or any homeomorphic images
f’f the graphs K, and K,. Moreover, we see from the construction of A’ that H'
is not homeomorphic with S%. We conclude from [16], (p. 293, Corollary) that
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H’ is an AR-set embeddable into EZ?, which completes the proof of the
lemma.

THEOREM 3.13. Each locally connected 2-dimensional compactum X which is
M-like, where M is a surface, is homeomorphic with M.

Proof. Since M is connected and since for every £>0 there is an s-mapping
of X onto M, it follows that X is connected. Since M is a semi-lc, space,
Theorem 2.6 implies that X e« By Theorem 3.6, X does not contain
a 2-umbrella.

Suppose that for every 1>0 there is a set 4 <X homeomorphic either with K
or with K, and such that diam 4 <. It has been proved by Borsuk (cf. 21, p. 75)
that the surface M cannot contain the set which is the union of ko disjoint subsets,
each of them homeomorphic with Ky, where kq, = y(M)+1 and y(M) denotes
the genus of M. An casy modification of Borsuk’s proof permits us to speak about
the sets whose each component is homeomorphic either with K, or with Kj, instead
of the sets with all components homeomorphic to K. It follows from the suppo-
sition and from Lemma 3.10 that the space X contains k, disjoint subsets, say
By, oy Bygs cach of them homeomorphic either with K; or with K. Since X is
M-like, there is an g-mapping f of X onto M with ¢> 0 which is so small that f(B)) N
Nf(B) =@ fori##jand i, j<ko. Moreover, it is not difficult to see that if e>0
is sufficiently small then each set £(B;) contains a homeomorphic image either of K;
or of K,. Indeed, the arcwise connectedness of f(B)) implies that f(B;) contains
a graph which is also an g-image of B;. This graph cannot be embeddable into E?
if ¢ is sufficiently small, because K, and K, are not quasi-embeddable into E? (cf. for
instance [11]). Consequently, by the classical result of Kuratowski, this graph,
and therefore also f(B,), contains a graph homeomorphic either with K or with K.
Thus we obtain a contradiction of Borsuk’s result mentioned above, which proves
that there is a >0 such that X does not containany homeomorphic images of the
graphs K, and K, with diameter less than 4.

Thus we have proved that X satisfies all the assumptions of Lemma 3.12.
Consequently, for each point x, € X there is an AR-set which is a neighborhood
of x, in X. We infer from Hanner’s theorem (see for instance [3], p. 97) that
X e ANR. Finally, we conclude from Ganea’s theorem [8] mentioned in Section 1
that X is homcomorphic with M, which completes the proof of the theorem.

COROLLARY 3.14. Each compactum X quasi-homeomorphic with a surface M is
homeomorphic with M.

Proof. Since M is X-like, it follows that X is a locally connected continuum.
Since dimM = 2 and since the dimension is a quasi—homeomorphism invariant
(cf. [9], p. 64), we infer that dimX = 2. Since X is M-like, we conclude from The-
orem 3.13 that X is homeomorphic with M.

4. Embeddability of the locally plane spaces of class o into surfaces. Let M be

any surface. The following properties of M have been proved in [9] for the cas'e
where M = S, but it is almost evident that they also hold for the case where M is
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an arbitrary surface: Let X< M be a locally connecled continuum and let C be
a component of M\X. Then both C and Bd(C) are locally connected continua
(cf. [9], p. 360). Each point p e Bd(C) is accessible from C by an arc and, moreover,
by a disk (cf. [9], p. 365). If the sequence C;, C;, ... of the components of MNX is
infinite, then lim diamC; = 0 (cf. [9], p. 363). Moreover, if X is an ANR -set, then
i~ w

MNX has a finite number of components and if X is an AR-set, then M\X is con-
nected (cf. [3], p. 132). A point x, belonging to a space X will be called Euclidean
point of X if there is a disk @ =X which is a neighborhood of x; in X and is such
that xo€ Q.

First, we shall prove the following
LemMa 4.1, Let M be a surface and let X< M be a locally connected continuum.
k
Suppose that F = |J (y;) is a finite subset of X such that each point y € F belongs
: i=1

to the closure of a component C of MN\X and let < be any ordering of F. Then, there
are another surface N, an embedding h of X inio N, a disk Q<N and an orientation
of the simple closed curve Q such that O N h(X) = h(F)<=Q and that y,<y,<y,
implies that h(y,) e L, where L is the arc from k(y,) to h(y,) lying on O and coherent
with its orientation.

Proof. We shall proceed by induction with respect to k. If k& = 1, then the
assertion follows easily from the fact that the point y, € F is accessible by a disk
from the component C of M\X such that Co(y,).

Now, given a k>1, assume that the assertion is true for k—1. Thus, not to

complicate the notation, we can assume that there are a disk Q=M and an orien-
[

tation of Q such that Q n X = |J ()<= @ and that for p, ¢, r<k—1 the relation
i=1

Yp<Vy,<y, agrees with the ordering of these points on , as formulated before. Let €
denote the component of M\X such that C= Q and let C, denote the component
of M\X such that C>Q and let C, denote the component of M\X such that
¥ € Ci. We can assume that C = C,. Indeed, if this is not the case, then one im-
proves the situation by removing the interiors of some disks lying in C\Q and C;
and by identifying their boundaries by means of a homeomorphism. Let I denote
the arc lying on 0 whose end-points are y, and y,_, (or y, and another point of ¢
if k—1=1) and such that  n F= &. Using the same procedure as before if
necessary, we can assume that there is a component P of C\.Q such that Po(y,) v L
Now, one can find an arc J< P joining y, with [ and such that J =P. By using the
arc J one expands the disk Q so as to construct a disk Q'= M containing F in the
way as required. This completes the proof of the lemma.

Now, we shall prove the main result of this section, as mentioned in TIntro-
duction. In the proof, as in Section 3, we shall use both the theories of the cyclic
elements and of the strongly cyclic elements. Moreover, we shall make use of the
following definition (cf. [9], § 47 and [15], Section 3):
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DerNITION 4.2, A set A< X is said o be enfirely arcwise connected (in X')
if x,ye 4 and x # y imply that each arc (in X) joiningfx and y is contained in A.

TrEOREM 4.3. Each locally plane space X € o is embeddable into a surface.
Moreover, any space X € o containing no 2-umbrella and such that each point xoe X
has a neighborhood containing no homeomorphic images of the graphs K, and K, is
embeddable into a surface.

Proof. It Tollows from Lemma 3.12 that for each point x,e€ X there is
a neighborhood of "y in X which is an AR-set embeddable into E2. 1t follows
from Hanner's theorem (cf. [3], p. 97) that X' ANR, We can assume that X does
not contain a simple surface, because otherwise the assumption that X does not
contain a 2-umbrelia and the arcwise connectedness of X would imply that X itself
is a simple surfacc (i.c., that X is homeomorphic with S?).

First, we shall prove that:

(1)  Assume additionally that X is a strongly cyclic space and let F be any finite
subset of X such that no point of F is a Euclidean point.of X. Then there
are an embedding & of X into a surface M and a disk Q=M such that 0 n
A (XY = h(F)e §. Morcover, given an ordering < of the set F, we can
choose the manifold M, the disk Q and an orientation of the simple closed
cutve O so-that for all x, y, z e F the relation x<y<z implies that h(y) e L,
where L is the arc from f(x) to h(z)lying on 0 and coherent with its orientation.

Indeed, let x, e X and let 4 be an AR-set embeddable into E?* which is
a neighborhood of x, in X. Let B denote the union of the non-degenerate cyclic
clements of 4 confaining x,. The number of those cyclic elements must be finite,
because otherwise almost 211 of them have arbitrarily small diameters and therefore
are contained in Int A, which contradicts the fact that xo does not separate X. Each
of those cyclic elements, being a cyclic AR-set embeddable into E?, is a d.isk (cf. [9],
p. 380, No. 11). Since the boundary of each component of A\B consists of one
point and since almost all those components have arbitrarily small diameters (cf. [15],
(3.2) and (3.3)), it follows that the union of B and the components C of ANB su.ch
thaf "ONCcIntA is a neighborhood of x, in X. For such a component C the point
belonging to CN\C locally separates X, ie., belongs to Ly. Since X has been as-
sumed in (1) to be a strongly cyclic space, we infer from [16] (p. 28.1, (4.3)) t1-1at
the set Ly is finite, Thus, we conclude that B is a neighborhood of x; in X, B being
the union of a finite number of disks, disjoint everywhere except at x. Observe
that x, e X\Ly implics that B is a disk. ‘

Now, it is not difficult to see that there is a compact, connected 2-manifold
(perhaps with boundary), say My, such that M, contains X (t’?pologically)‘ it

Ly = @ then X itself is a 2-manifold, and so assume that Ly =1E)1 (py)- Let B, be

a neighborhood of p; in X which is the union of a finite number n(i) of disks Oy,
Jj=1,2,..,n(i), with the only common point p;. We can assume that B; N By = (%]
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for i # i’ and that the boundary of B;in X is the union of n(#) arcs L;;, j = 1, ..., n(i),

where L;;= 0;;\(p;) and there is a neighborhood of L;; in X which is a disk separ-

ated by L;; into two components. Take any disjoint disks Dy, ..., D and consider

k

the disjoint union ¥ = X' u |J D;. There is a homeomorphism 4, mapping B,
i=1

onto a subset k,(B;) of D; such that k(B n D, = h(BdB). Identifying B, with

h(B,) by means of 4;, one constructs from Y the required 2-manifold M.

It is well known that there is a surface M, > M;. We can assume that X'« M,
<M. Consider now the finite set F<X mentioned in (1). Since no point of F is
a Buclidean point of X and since M;\X has a finite number of components as
Xe ANR, it follows that for each point y € F there is a component C of M\X
such that y € C. Thus, applying Lemma 4.1, we complete the proof of (1).

Next, consider the more general case where the space X is cyclic (but not
strongly cyclic). Let E;, E,, ... denote the sequence of all strongly cyclic elements
of X. We shall consider only the case where this sequence is infinite, because the
opposite case is similar, but easier. It follows from [16] (p. 283, (4.9)) that there is
a connected graph GcX containing Ly and such that for each i = 1,2, ... the
intersection E; n G is a non-degenerate tree T}, the set of the end-points of T, being
equal to Bd E;. Moreover (cf. ibidem, (4.10)), for almost all i the tree T} is an arc.
Since any point x € X has a neighborhood in X which is an AR-set embeddable
into E?, since lim diam E; = 0 (cf. ibidem, (4.6)) and E; is a retract of X (ibidem,

i—+co
(4.4)), we infer that almost all E; are AR-sets embeddable into E2 Since no E, is
separated by a point, we conclude that almost all E; are disks (cf. [9], p. 380, No. 11).
Thus, we can assume that there is an i, such that i<, if and only if either E, is not
a disk or T is not an arc.

By Borsuk’s result (cf. [2], p. 78), there is a homeomorphism A mapping the
graph G into a surface M. It follows from [16], (4.2) that E, A E; = BdE; n BdE
for i # j, and therefore T n T; is contained in the set of the end-points both of T,
and of T;. Consequently, one easily constructs a sequence of disks QO 0y, ..
contained in M and such that Q, N A(G) = h(T), Q;n Q; = (T n h(T) for
i jand ilim diam Q; = 0. Let T} denote the set of the end-points of T;. Since

d]
T; = BdE, and since X does not contain a 2-umbrella, no point of T is Euclidean
point of E;. Since T} is equal to the boundary of Ty in G (by [16], (4.2) and (4.9)),
we infer from the construction of the disks @, that A(T)< (,. Making use of the
fact thatlim diam E; = 0 (cf. ibidem, (4.6)), one easily extends the homeomorphism /

10
to a homeomorphism %' mapping Gu U {E;: i>i,} onto h(G) u UA{@:: i>i,).
Since all t.s.c.e’s of X inherit all the properties of X assumed in the theorem
* and since.they are strongly cyclic (cf. ibidem, (4.4) and (4.11)), we can apply (1) to
each set E; with i<i,, replacing then the set # by the finite set Bd E;. Since h(Bd E;)
= h(T)<= Q,, there is a natural ordering of A(BAE,) defined by choosing a point
of this set and an orientation of the simple closed curve Q,. This ordering defines
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in turn an ordering < of Bd E,. Now, applying (1), we conclude that for each i<i,
there are a surface M;, a disk D,cM; and a homeomorphism k; of E; into M,
such that h(E) n D, = h(BdE;)< D,. Moreover, there is an orientation of D,
such that x,y,zeBdE; and x<y<z imply that h(y) lies between h(x) and h(2),
as formulated in (1).

Now, consider the disjoint union

(MU {0y i<igh v UMD, iigh.

It follows from the definition of the ordering < of Bd E; and from the property
of h, with respect to that ordering described in (1) that there is a homeomorphism f;
of 0, onto D, such that for each xe&BdE, we have fi(k(x)) = h(x), where i<ip.
Identifying Q, with D, by means of f; for all i<i,, one constructs a surface & from
the disjoint union mentioned above. If ¢ denotes the natural map of that disjoint
union onto N, then defining

xeGu U {E;: i>i),

x e E;, where i<ij

) = {{ph (x) 1'f

oh(x) if
one obtains an embedding h* of X into N. Indeed, since the t.s.c.e’s E; of X are
the closures of the components of X\Ly (cf. [16], (4.2)) and since G2 Ly, it follows
that #* is defined on the whole X. The construction of N and the properties of /', h;
and f; imply that A* is a homeomorphism. This proves the theorem for the case
where X is a cyclic space.

Finally, consider the general case with no addiiional assumptions on X. Sinc’e
each point x € X has a neighborhood in X which is an AR -set embeddable into E B
it follows from [15] ((3.8), (3.6) and (3.4)) that almost ail non-degenerate cyclic
elements of X are cyclic AR-sets embeddable into E?, and therefore — disks.
If all of them are disks, then it follows from [15], (p. 290, Theorem 2) that X is em-
beddable into S2. Thus, we shall assume that there are finitely many non-degenerate
cyclic elements of X, say Z, ..., Z, which are not disks.

Denote by 4;, where 1 </<k, the least closed and entirely arcwise connected

!

subset of X containing U Z; (cf. Definition 4.2). It follows from [15], (3.5) that
i=1

if 4 and B are closed and entirely arcwise connected subsets of X, then the least
closed and entirely arcwise connected subset of X containing 4 U B is equal to
the union of 4 U B and the least closed and entircly arcwise connected subset
of X containing (4) U (), where a is any point of 4 and b is any point of B: Thus,
we infer from [15], (3.13) that the numeration of Z, ..., Z, can be changed in such
a way that 4, does not contain any Z; with I<i<k.

Now, we shall prove by induction with respect to /, where 1<i<k, that:

(2)  the set A, is embeddable into a surface.
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If [ =1, then 4, = Z, is a cyclic space satisfying all the assumptions of the
theorem that X does, and therefore 4; is embeddable into a surface by the preceding
part of the proof. Now, given an /> 1, assume that (2) is true for /—1. Thus, there
is a surface M and an embedding 4, of 4,_, into M. Since 4,_,$ Z,, we infer
that 4; = 4, , v Bu Z,, where B is the least closed and entirely arcwise con-
nected subset of X containing () w (2) with ae4,_,, zeZ,. Considering the
structure of the set B (cf. [15], p. 293, (3.13)), one sees that the points ¢ and z can
be chosen so that Bn 4,y = (a) and B n Z; = (7). We can assume that a # z,
because the proof in that case is similar, but easier. Thus 4, N Z; = @. Notice
that the assumption that X does not contain a 2-umbrella implies that a is not
a Euclidean point either of B or of 4,_; and z is not a Euclidean point either of B
or of Z;. Since 4,_,, as a retract of X, is an ANR-set and since A, is an em-
bedding of A4,_, into the surface M, there is a component C of MNky. (4, ,)
whose closure contains #;-,(a). Consequently, there is'a disk Q, =M such that
Oy N hy_y(Ay-y) = h_y(@< Q. '

Now, observe that B, as a closed and entirely arcwise connected subset of X,
is also a retract of X, and therefore B is an ANR. Evidently, B does not contains
a 2-umbrella. Moreover, one sees from the structure of B (cf. ibidem, (3113)) that
the non-degenerate cyclic elements of B are those non-degenerate cyclic elements
of X which are contained in B. Since B<4; and B n 4,_; = (4), we infer that all
those cyclic elements are disks. Thus, we conclude from [15] (p. 290, Theorem 2),
that B is embeddable into a disk. Since a is not a Euclidean point ‘of B, it follows
that there is an embedding / of B into @, such that i(B) n 0, = (h_,(a@)) = (h(a)).
Since z is not a Euclidean point of B, we infer that there is a disk 0,<Q, such
that Q, N k(B) = (h(z)).

Next, consider the cyclic element Z,. Since Z, satisfies all the assumptions of
the theorem that X does and since Z, is a cyclic set, we infer by the preceding part
of the proof of the theorem concerning the case where X is a cyclic space that there
are a surface & and an embedding k, of Z; into N. Since Z,, as a retract of X, is an
ANR-set and since z is not a Euclidean point of Z,, it follows that there is a disk
DceN such that D n h(Z) = (h(z))=D. )

Finally, consider the disjoint union (M\Q,) U (N\D) and identify @, with D
by means of a homeomorphism mapping /(z) onto f,(2). It is easy to see that we
obtain a surface and that the homeomorphisms #,_,, A and hyinduce an embed-
ding of A= 4,_,UBUZ into this surface, which completes the inductive
proof of (2).

It follows from (2) that there are a surface P and a homeomorphism A,
mapping 4, into P. We can assume that X\4, # @. Since Ay is a closed and entirely
arcwise connected subset of X, the set X 4 has at most countably many compo-
ne{lts, the boundary of each being a point. Let €1, ¢y, ... denote the sequence of all
points of 4, bounding some components of X\4,. We can assume that this sequence
is infinite, because the opposite case is similar, but easier. Denote by C, the union
of the closures of all components C of X\A, such that CN\C = (¢,). Then
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lim diam C; = 0 (cf. [15], (3.3)). Notice that each set C; is a retract of X, and there-
i=r o0

fore it is a connected ANR. Morcover, the non-degencrate cyclic elements of C;
are the non-degenerate cyclic elements of X which are contained in C;. Since they
are different from Z; with i<k, it follows that all of them are disks. Since C;, as
a subset of X, does not contain a 2-umbrella, we-conclude from [15] (p. 290, The-
orem 2) that cach C;is embeddable into a disk. Since, for each i, C;n 4, = (c)
and since X does not contain a 2-umbrelld, it follows that ¢; is not a Euclidean,
point either of C; or of 4. ' : .
Since /1, is an embedding of A, into the surface P and since 4, & ANR, it
follows that for each i = 1,2,.. there is a disk Q,=P such that Q; n Iy(4,)
= (hle)), Qi Qp=0 for i#i and limdiam(Q) = 0. Consequently, for

1-ren

cach i =1,2,... there is an cmbedding f; of C; into Q; such that fi(c;) = Mlc).

W) = {hk(x) 1'f .

filx)y if i=1,2,.,
we obtain a homeomorphism /' mapping X into P, which completes the proof of
the theorem. :

Now, we shall prove a corollary to Theorem 4.3, mentioned in Inktroduclion
(Section 1), which is a generalization of Theorem 3.1. .

COROLLARY 4.4. Let X be a locally connected compactum which is Y-like; where
Y is an ANR-set, YoM and M is a surface. Then X is an ANR-set embeddable
into a surfuce, v

Proof. Since Y has a finite number of components and since X is Y-like,
we easily infer that X and Y have the same number of compor_lents. Moreover,
one easily sees (cf. the proof of Theorem 2.6 for the case where X is not c.onnlect.ed)
that for each component C of X there is a component C” of Y such that C is C'-like.
Consequently, we can assume in the sequel that both X and Y are connected.

The next part of the proof is similar to the proof of Theorem 3.13. Indeed,
since Y is a semi-lc, space, it follows from Theorem 2.6 that X e a. By ‘Theorem 3.6,
¥ does not contain a 2-umbrella. Suppose that for every A>0 there is a set AcX
homeomorphic either with K, or with K, and such that diamA<2. Let ky = 1+
+79(M), where (M) denotes the genus of M. It follow:< frc?m Lemma 3.1Q thftt X
contains k, digjoint subsets, say By, ..., Brgs each of which is homeomorphic elt'her
with K, or with K,. We infer in the sume way as in th.e proof of Theorem 3.13 the}t
if fis an g-mapping of X onto ¥ and if e>0 is suﬂ'lcxel}tly small, then f(B)), whel‘e
1<i<k,, are disjoint subsets of ¥ each of which contains a graph homeomorplflc
either with K, or with K. This contradicts Borsuk’s result (cf. [2], p. 75'), z‘md there-
fore there is a A>0 such that X does not contain any homeomorphic images of
the graphs K, and K, with diameters less than 1. Now, we cloncludc. from »The-
rem 4.3 that X is embeddable into a surface N. Since X € «, 1t 15 not d]ﬂicult. to see
that ¥ must be an ANR-set. Indeed, since X is a locally connected continuum,

xed,,
xeCy,
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assuming that X< N, it suffices to observe that N\X cannot posses infinitely many
components. But this is an easy consequence of the fact that X e .

COROLLARY 4.5. Any compactum X quasi-homeomorphic with an ANR-set
Yo M, where M is a surface, is itself an ANR-set embeddable into a surfuce.

Indeed, since Y is X-like, it follows that X is locally connected, and thercfore,
by Corollary 4.4, X is an ANR-set embeddable into a surface. .

The answer to the following question is not known to the author, but it seems
to be positive:

ProBLEM. Can we assert in Corollaries 4.4 and 4.5 that the space X is embed-
dable into the same surface M which contains Y?
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On models of arithmetic having non-modular substructure lattices

by

A. J. Wilkie * (Milton Keynes)

Abstract. A model of arithmetic having the pentagon lattice for its lattice of elementary sub-
structures is constructed, and some related results are proved. This answers a question raised by
7. B. Paris in his paper [3].

1. Tntroduction to the problem. Let T be a complete consistent extension of
the Peano axioms P, and M the minimal (i.e. pointwise definable) model of T. We
suppose that L, the language of T, contains the set S, of all n-place Skolem functions
for new, and identify M with So. Thus the notion of elementary substructure
coincides with that of substructure for models of T. Our aim in this paper is to study
the possible complexity of models of T. This we do by letting $(M*) be the set
of all substructures of M* partially ordered by the “is a substructure of” re~
lation, <. It is clear that $(M™) is a lattice; M, AM, (the infimum of M, and M,
in $(M*)) being M; 0 M, and M, v M, (the supremum of M, and M, in §(M*))
being that substructure of M* generated by M, U M, under all functions in U S,.

new

Our problem can now be stated as: “which laitices occur as $(M*) for some
M*ETY

A complete characterization of such lattices seems a long way off —even if we
restrict our atiention to finite lattices, as we do in this paper. For all known positive
results on the problem we refer the reader to [3]; in particular it is proved there
that every finite distributive lattice is an S(M*). If M is non-standard (ie. if T is
not true arithrietic) it is still possible that evéry finite lattice is an $(M*), whereas
it M is standard there is not even an obvious conjecture. For under this latter as-
sumption it is known (see Lemma 3.3 and [4]) that Cs (the simplest modular non-
distributive lattice — see Fig. (1)) is not an $(M*) and, as we prove here, neither
is K (which is non-modular). However, to confuse matters we also answer in the
sequel a question raised in [3] by showing that for any T, Ps (which is non-modular
but somewhat less symmetrical than H) is of the form $(M*) for some M*F T

* The results in this paper were obtained while the author was working for his Ph, D at
Bedford College, London, and many thanks are due to W. A. Hodges for the supervision given
during that period, and the Science Research Council for financial support.
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