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Some functions on hyperspaces of hereditarily unicoherent
continua *

by
Jack T. Goodykoontz, Jr. (Morgantown, W. Va.)

Abstract. Several natural functions defined on the hyperspaces of hereditarily unicoherent
continua are studied in this paper. The continuity of these functions is investigated and point-wise
continuity is related to the internal connectivity structure of the base space and the hyperspace.
Four results which characterize smooth dendroids within the class of dendroids are obtained and
some relevant examples are given.

1. Introduction. In this paper several natural functions defined on the hyper-
spaces of hereditarily unicoherent continua are studied. Let X be an hereditarily
unicoherent continuum and 4 e 2%, Define £, g: 2X—C(X) by f(4) = N{M e C(X)|
AcM} and g(d) = ({MeC(X)| A<IntM}. In Section 3 we investigate the
continuity of these functions and relationships between the two functions. In par-
ticular, we investigate how point-wise continuity is related to the internal com-
nectivity structure of X and 2. We determine the class of spaces for which f is
continuous and obtain two characterizations of the points of C(X) at which 2% is
connected im kleinen. Three relevant examples are given. In Section 4 we obtain
four results which characterize smooth dendroids within the class of dendroids in
terms of continuity of functions defined on (or to) their hyperspaces.

2. Preliminaries. A continuum X will be a compact connected metric space.
X is unicoherent if whenever 4 and B are proper subcontinua of X such that X
='A U B, then 4 n B is connected. If each subcontinuum of X has this property,
then X is hereditarily unicoherent. In this paper X will always denote an hereditarily
unicoherent continuum.

A dendroid is an hereditarily unicoherent continuum which is arcwise con-
nected. A dendrite is an hereditarily unicoherent continuum which is locally con~
nected. Tt follows from [11] (Theorem 5.2, page 38) that a dendrite is arcwise cdn-
nected. Hence a dendrite is a locally connected dendroid.

* Most of the results in this paper are part of the author’s doctoral dissertation written
under the direction of Professor Carl Eberhart at the University of Kentucky, 1971.
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2¥(C(X)) denotes the hyperspace of closed subsets (subcontinua) of X, each
with the finite (Vietoris) topology, and since X is a continuum, each of 2% and C(X)
is also a continuum (see [8]).

For notational purposes, small letters will denote elements of X;, capital letters
will denote subsets of X and elements of 2%, and script letters will denote subsets
of 2%, If AcX, then 4* (Int4) will denote the closure (interior) of 4 in X.

If 4,, ..., 4, are subsets of X, then

n, BN 4; # @, and Be (J 45} .

i=1

w
N4y, ..., 4,) = {Be2¥ foreach i=1, ..,

The collection of all sets of the form N(U, ..., U,), with Uy, ..., U, open in X,
is a base for the finite topology. It is easy to establish that N(Uy, ..., U)*
m

= N(U%, ..., U¥) and that N(Vy,.., V,)eN(U,..,U,) if and only if 191 Vi

n
= U U; and for each U; there exists a V; such that V;=U; (see [8]).
i=1

If =2, then | {4]| 4 e o} is open (closed) in X" whenever & is open (closed)
in 2% (see [8]). Furthermore, if & N C(X) # @ and & is connected, then
U{4] 4 e} is connected (Lemma 1.2 of [5]).

An order arc in 2X(C(X)) is an arc which is also a chain with respect to the
partial order on 2¥(C(X)) induced by set inclusion. If 4, B e 2%, then there exists
an order arc from 4 to B if and only if 4=B and each component of B meets 4
(Lemma 2.3 of [5]). It follows (Lemma 2.6 of [5]) that every order arc whose initial
point is an element of C(X) is entirely contained within C(X).

Let f: X—2" be a function. Then [ is upper (lower) semi-continuous if for each
xeX and each open set U in ¥ such that fix)cU (f(x) n U # @) there exists
an open set ¥ in X containing x such that if ze ¥, then f(2)= U (f(2) n U # ©).
Tt is easy to verify that fis continuous if and only if £ is both upper and lower semi-
continuous.

Let x e X. Then X is connected im kleinen at x if for each open set U contain-
ing x there exists an open set V containing x such that if ye ¥, then U contains
a connected subset containing x and y.

3. The functions f and g. X is hereditarily unicoherent if and only if for each
closed subset 4 of X there exists a unique continuum M, such that M, is irreducible
about 4 (see [1]). Obviously, M, = ) {Me C(X)| AcM}. This characterization
of heredllanly unicoherent continua induces a natural function f: 2¥X—C(X) dehncd
by f(4) =

LEMMA 1. The function f is lower semi-continuous.

Proof. Let 4 € 2* and V¥ be an open set which meets f(4). Suppose ¥ n 4 5 @,
Let W be an open set containing 4— V. Then 4 e N(V, W), and if Be N(V, W),
then f(B) N V # @, because B V ¢ & and B<f(B).

Suppose VnA = @. Let a;ed. Observe that A<=f(d)=(U {/{ay,a}l
a e A})*. Hence there exists a; € 4 such that f({a;, a;}) NV # @.
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We now claim that there exist open sets O; and O, containing ¢, and a, re-
spectively such that if x€ 0, and ye 0,, then f({x,y}) n V 5 @. For if not,
there exists a sequence {(x,, )}, such that x,—a, and y,—a, and such that
for each positive integer n, f({x,, ,)) 0 ¥ = @. Now C(X) is closed in 2%, so
the sequence { f({x,, y,})}7% has a limit point M in C(X). Observe that cz1 ,a,eM.

Furthermore, M AV = @, because each point of M is a limit point of U f({x,,, Pub)
and Uf({x,,, ypeX~V. Since f({a;,a,})=M, it follows that f({al, a}) n

n V QI, which is a contradiction. This establishes the existence of the sets O,
and O,.

Now let U be an open set containing 4—(0, U 0,) such that a,,a, ¢ U.
Then A e N(O;, 05, U). Let Be N(0Oy,0,,U), bye B 0,, and b,e B 0,.
Then f({b1, 5.)) "V # @, so f(B)n V # @.

In each case we have found an open set containing 4 with the property that
the image of each element in that open set meets V. Hence fis lower semi-continuous.

THEOREM 1. The function f is continuous if and only if X is a dendrite.

Proof. Suppose fis continuous. Let x € X and U be an open set containing x.
Then {x} € N(U). Since f({x}) = {x} and f is continuous at {x}, there exists an
open set N(V) containing {x} such that if Be N(F), then f(B) e N(U). Observe
that V<U. Let ye V. Then {x,y} e N(V), so f({x, y}) e N(U). So U contains
a continuum which contains x and y. Hence X is connected im kleinen at x. It follows
that X is connected im kleinen at each of its points. Hence X is locally connected.

Suppose that X is a dendrite. In view of Lemma 1, it will suffice to show that
Jis upper semi-continuous. Let 4 € 2¥ and U be an open set containing f(4). For
each x € 4 choose a connected open set ¥, such that F*cU. Since 4 is compact,
there exist x,, ..., x, € A such that

n n
Ac UV, UVicU.
i=1 i=1

Then Ae N(V,,, .., V). Let Be N(V,,, ..., V). Then f(4) v (U Vi) is a con-
i=1

tinuum containing B. So

FB)YFA) U ‘;C{ VH)<U.

Hence f is upper semi-continuous.

If X is a locally connected continuum, then C(X) is a retract of 2¥ (see [5], '
Theorem 4.4). Theorem 1 shows that f defines a retraction of 2% onto C(X) when
X is a dendrite.

THEOREM 2., Let M e C(X). Then f is continuous at M if and only if 2% is con-
nected im kleinen at M.
™
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Proof. Suppose that f is continuous at M. Let N(Uy, ..., U,) be an open set
containing M = f(M). Then there exists an open set N(Vy,.., V) such that
MeN(Vy, .., Vi)eN(Uy, ..., U,) and such that Be N(Vy, ..., V) implies f(B)
e N(Uy, ..., U). Let Be N(Vy, ..., V},). Then BU M e N(Vy, ..., V3,), so f(Bu M)
e N(Uy, ..., U). Now B, Mcf(Bu M) so there exist order arcs £y and %,
from B to f(B u M) and from M to f(Bu M). If Le ¥y, then BcLcf(Bu M),
so LeN(Uy, .., U,). Hence FgcN(Uy, ..., U,). Similarly, #y<N(U;, ..., U,).
So Ly U Ly is a continmum in N(Uj, ..., U,) containing B and M. It follows
that 2% is connected im kleinen at M.

Suppose that 2% is connected im kleinen at M. Let N(Uy, ..., U,) be an open
set containing f(M) = M. Then there exist an open set N(Vy, ..., ¥,) and a con-
tinuum & such that MeN(Vy,.., Vpoc#=N(U,, .., U,). Since Me.#,
U {4| 4 e 4} is a continuum in X. Moreover, since each clement of . is an cle-
ment of N(U,, ..., U,), U{d| de#}eNU,,..,U). ¥ Be N(Vy, ..., V), then
Bof(Bye | {4] de &}, so f(BYe N(U,, ..., U,). Hence f is continuous at M.

CORROLLARY 1. Let x € X. Then f is continuous at {x} if and only if X is con-
nected im kleinen at x.

Proof. This corollary follows from Corollary 1 of [4] and Theorem 2.

THEOREM 3. Let 4 € 2%. If f is continuous at f(A), then f is continuous at A,

Proof. By Lemma 1 it will suffice to show that f is upper semi-continuous
at 4. Let ¥ be an open set containing f(4). Since fis upper semi-continuous at f(4)
there exists an open set N(U,, ..., U,) containing f(4) such that Be N(U,, ..., U,)
implies f(B)=V. Since Acf(A) there exists a subset {Uj,, ..., U} of {U;,...,U,}
such that 4 e N(U,...,U;). Let CeN(U,, .., U;). For each i=1,..,n, let
x;€ U;. Then Cu {x,, .., %} e N(Uy, ..., U), so fICU {x;, .., x,})=V. Hence
S(CY= V. 1t follows that fis upper semi-continuous at A.

The following example shows that the converse of Theorem 3 is false.

ExamprLE 1. For each positive integer n let L, denote the line segment in the
plane joining the points (0,1) and (1/n,0). Let Y be the line segment joining
(—1,1) and (1, —1) and let

X=(UL)u Y.
n=1

Let A= {(—1,1),(1, —=1)}. Then f(A) = ¥. Applying Theorem ! to the sub-
space Y, we can show that fis continuous at 4, but 2% is not connected im kleinen
at f(4) (see Theorem 1 of [4]). Consequently, f is not continuous at Ja).

THEOREM 4. Let A €2, If 2% is connected im kleinen at A, then f is continu-
ous at A.-

Proof. By Lemma 1 it will suffice to show that f is upper semi-continuous
at 4. Let U be an open set containing f(4). Since 2% is connected im kleinen at A,
there exist an open set N(Vy, ..., ¥;) and a continuum .# such that 4 e N Vi V)
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cM<=N(U). Now {f(4) u B| Be #} is the continuous image of #, and since
Ae i, f(d)e{f(4) u Bl Be .#}. 1t follows that {J{f(4) v B| Be#}e C(X).
For each BeJ#, fld)uBeN(U), so U{f(dHuB|l Be#leNU). If C
e N(Vy, ..., V), then U {f(4) v Bl Be .4} is a continuum containing C. It follows
that f(C)e N(U), so f(C)cU. Hence f is upper semi-continuous at 4.

The next example shows that the converse of Theorem 4 is false.

ExaMpLE 2. For each positive integer n let L, denote the line segment in the
plane joining the points (—1, 1/n) and (1, 1/n). Let ¥ denote the unit interval on
the y-axis and let

«©0
X=(UL)*uvY.
n=1 .
Let p = (~1,0) and g = (1,0). Then 2¥ is not connected im kleinen at {p, g}
(see Theorems 1 and 3 of [4]), but it is easy to verify that fis continuous at {p, g}.

Define g: 2X—C(X) by g(4) = N{Me C(X)| AcIntM}.

LemMMA 2. The function g is upper semi-continuous.

Proof. Let 4 € 2% and U be an open set containing g (4). By [3] (Theorem 1.6,
page 225), U contains a continuum M such that 4=IntM. Then 4 e N(IntM).
Suppose B e N(IntM). Then M is a continuum containing B in its interior. Hence
g(B)YeMcU. So g is upper semi-continuous.

THEOREM 5. Let A €2X. Then f is continuous at 4 if and only if f(4) = g(4).

Proof. Suppose that f'is continuous at 4. Let U be an open set containing f(4).
Let N(Vy,...,V,) be an open set such that f(4)e N(Vy, ..., VY N(Vy, .., Vi)*
cN(U). Since f is continuous at 4, there exists an open set N(Wy, .., W,)
containing A such that Be N(W,, ..., W,) implies f(B) e N(V,, ..., V). Let

M= (U{f(4vB) Be N(Wy, ..., W,.)})*.

Then M € C(X), because M is the closure of a union of connected sets each con-
taining 4, and Me N(Vy, ..., V,)¥, because for each Be N(W,, ..., W,), f(4 u B)
m

e N(Vy, ..., ¥,). Furthermore, A<IntM, since A= | W;. It follows that g(4)
i=1

cMcU. So every open set containing f(4) also contains g (4). Hence f(4) = g(4).

Suppose that f(4) = g(4). By Lemma 1, it will suffice to show that f is upper
semi-continuous at 4. Let U be an open set containing f(4) = g (4). By Lemma 2,
¢ is upper semi-continuous at 4, so there exists an open set N(Vy, ..., ¥,) contain-
ing 4 such that Be N(Vy,...,V,) implies g(B)<=U. Since for each B e2%, f(B)
=g (B), it follows that f is upper semi-continuous at A.

COROLLARY 2. Let M € C(X). Then 2¥ is connected im kleinen at M if and only
if M = g(M).

THEOREM 6. Let A € 2%, If f is continuous at A, then g is continuous at A.

Proof. By Lemma 2, it will suffice to show that g is lower semi-continuous
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at 4. Let U be an open set such that g(4) n U # &. By Theorem 5, f(4) = g(4).
Since f is lower semi-continuous at A, there exists an open set N(Vy, ..., ¥,) con-
taining 4 such that Be N(Vy,...,V,) implies f(B) N U # @. Since f(B)cg(B),
it follows that g is lower semi-continuous.

COROLLARY 3. If 2% is connected im kleinen at f(A), then g is continuous at A.

COROLLARY 4. If 2¥ is connected im Ileinen at A, then g is continuous at A,

COROLLARY 5. If M e C(X) and g(M) = M, then g is continuous at M.

The converses of Theorem 6, Corollary 3, Corollary 4, and Corollary 5 are
all false. In Example 1 let Z denote the line segment joining (0, 0) and (0, 1). Observe
that f(Y) = Yand g(Y) = ¥ u Z. 1t is easy to verify that g is lower semi-continu-
ous at ¥ and hence continuous at ¥, but g(¥) # ¥, 2% is not connected im kleinen
at ¥ = f(Y) (see Theorem 1 of [4]), and f is not continuous at ¥.

THEOREM 7. If for each x € X, g is continuous at {x}, then g is continuous.

Proof. Let 4 e 2% It will suffice to show that g is lower semi-continuous at 4.
let ¥ be an open set such that V' n g(4) # @.

Suppose that V'~ (U {g({a})] ae4})* # @. Then for some aecd, Vn
N g({a}) # @. Since g is continuous at {a} there exists an open set U containing a
such that Be N(U) implies g(B) n ¥ # @. Let W be an open set containing 4 — U
such that ¢¢ W. Then 4e N(U, W) and if Ce N(U, W), g(C) A V # O, since
CnU#@.

Suppose that ¥'n (U {g({a})] aed})* = &. Let peg(d) n ¥ and let 0
and U be disjoint open sets such that p e 0= Vand (| {g({a})| a e A})*<U. Let W
be an open set such that (U {g({a})] a € 4}}*c W= W*<=U. For each ac 4 there
exists an open set W, containing a such that Be N( W,) implies g(B)< W. Since
A is compact there exist a,,..,a, such that Ade NW,,., .., W,). Let C
ENW,,, ... W,). Foreach i =1, ..,n let c;e W,. Let

Di = U {g({civ d})l de Wag} .

n
Then D < Wand D; is a union of continua, each of which meets g (C). So-J D¥fcU
i=1
and ( U D¥) u g(C) is a continuum containing A in its interior. Hence

(Uonug@)nozs.

It follows that g(C) N 0 5 &, so ¢(C) N V # @. Hence g is lower semi-continu~
ous at 4.

It follows from Theorems 1 and 5 that if X is a dendrite, then g is continuous.
The converse is not true. We give an example below of a smooth dendroid (see
Section 4) which is not locally connected and for which g is continuous.

ExameLE 3. Let I denote the unit interval on the x-axis in the plane and let C
denote the Cantor set embedded in 7 in the natural manner. For each (x,0)eC

.
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let L, denote the line segment joining the point§ (x, 0) and (x,1) and let X = T U
v (U {L (x,0)e C}). Then for each (x,y) € X, g-is continuous at {(x, »)}, so

.by Theorem 7, g is continuous. If y>0, g ({(x, )}) # {(x, »)}, so g is not a retraction

of 2% onto C(X).

We remark also that there exist smooth dendroids for which g is not continu-
ous and that the analogue of Theorem 3 for g does not hold. The continuum in
Example 2 is a smooth dendroid. Let Z denote the line segment joining (0, 0) and
g =(1,0). Then g({g}) = Z and 2¥ is connected im kleinen at g({g}) (see The-
orem 1 of [4]), but g is not continuous at {g}.

4. Some characterizations of smooth dendroids. If X is a2 dendroid and x, y € X
then there exists 2 unique arc [x, »] in X with endpoints x and y. Let p € X. Define
a relation <, on X by x<,y if and only if x & [p, y]. It is easy to verify that <, is
a partial order, called the weak cut point order with respect to p ([6]). X is smooth
if and only if there exists p € X such that <, is closed ({(x, y| X<} is a closed sub-
set of Xx X). If <, is closed, then p is said to be an initial point of X. If p is an
initial point, then p is a point of local connectivity ([6]).

Let X be a dendroid and p e X. Define f,: X—C(X) by fp(x) = [p, x] and
F,: 2X=C(X) by F,(d) = (U {lp,dll aeA}*. The function f, is the same as
the function 7, defined on page 112 of [7]. The equivalence of statements (1) and (3)
in Theorem 8 below was proved in Theorem 1 of [7](%).

" LeMMA 3. The function f, is lower semi-continuous.

Proof. Let F,(X, p) = {{p, x}| x€ X} and & be the natural homeomorphism
from X to F(X, p). Then fi(x) = Flp,cx, »(2(x)). Since the restriction of a lower
semi-continuous function is lower semi-continuous, it follows from Lemma 1
that f, is lower semi-continuous. N

LemMA 4. The function F, is lower semi-continuous.

Proof. Let A 2% and ¥ be an open set which meets F,(4), Then there exists
ae€Asuchthat V' n[p,al = Vnfya) # &. By Lemma 3, f, is lower semi-continu-
ous, so there exists an open set U containing @ such that ¢e U implies [p, £] 0
NV Let W be an open set containing 4—U such that a¢ W. Then
A e N(U,W). Furthermore, if Be N(U, W), then F,(B) n V # O, because Bn U
# @. Hence F, is lower semi-continuous at 4.

If X is a dendroid and p e X, then each subcontinuum of X has a zero with
respect to <, (see Ward [10]). Define g,: C(X)—X by g,(M) = zero of M (with
respect to < ). This is the function (with p chosen as an initial point) used by Nadler
and Ward [9] in proving that there exists a selection on C(X) when X is a smooth
dendroid.

THEOREM 8. Let X be a dendroid and p € X. Then the following statements are
equivalent:

(1) The point p is an initial point of X.

() The author wishes to thank the referee for this reference.
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(2) For each xe X, f is continuous at {p, x}.

(3) The function f, is continuous.

(4) The function F, is continuous.

(5) The function g, is continuous. )

Proof. (I)=-(2). Let p be an initial point of X and x € X. Since [p, x] is ir-
reducible between p and x and since [p, x] is unique, f({p, x}) = [p, x]. By
Lemma 1, it will suffice to show that fis upper semi-continuous at {p, x}. Let U be
an open set containing [p, x] and ¥ be an open set such that [p, x]leVeV*cU.
Let ye X—V. Then y¢[p, x], so y£x. Since <, is closed, for each ye X~V
there exist disjoint open sets W, and ¥, such that y e W, and x & V =V and such
that if se W, and re V,, then s&1. Since X'—V is compact, there exist Vs oves Vn

n n n
such that X—~V< (J W,,. Now xe) V=V, If teV, and se | W,,s then
i=1 i=1 =1
s&t, so
p.tlonN W, =@.
i=1
Hence
f({p: f}) = [17; Z]CV-

Now p is a point of local connectivity. Let Vp be a connected open set contain-
ing p such that ¥,=V. Then {p, X} e N(V,,V,). Let AeN(V,,V,). For each
aeANnVy, [p.aleV. So (U{lp,all ae 4 n V.)* is a continuum containing p
and A N V, which lies in V*. Also V » is a continuum containing p and 4 N V,
which lies in ¥*. 80 ¥* U (U {[p,a]l aed n V,.})* is a continuum containing A
which lies in ¥*. Since V*<U, it follows that J(4)=U. Hence f is upper semi-
continuous at {p, x}.

(2)=(3). Let pe X such that for each xe X, S is_continuous at {p, x}. Let
Fy(X,p) = {{p,x}| xeX} and h be the natural homeomorphism from X to
Fy)(X, p). Then f,(x) = flex, p)(h(x)). Since fp,x, » 1S a continuous function, it
follows that f, is continuous.

(3)=(4). Let pe X such that £, is continuous. By Lemma 4 it will suffice to
show that F, is upper semi-continuous. Let 4 &2¥ and ¥ be an open set contain-
ing F,(4). Let W be an open set such that Fld)e WeW*cV. Since Jp 1 upper
semi-continucus, for each a e 4 there exists an open set U, containing a such that
tel, implies f(a) = [p,a]cW. Since 4 is compact, there exist a, ..., a,

such that A= {J U,,. Then de N(U,, ..., U,). Let Be NWU,., ..,U). It be B,
i=1 . "

then for some /, be Us, 50 fo(b) = [p, b]lcW. Hence Fy(B)y = (U {[p, 01l
beB)*cW*< V. It follows that F, is upper semi-continuous.

. (4)=(1). Let pe X such that F, is continvous. Let Fy(X) = {{x}| xe X}
Then F|p, (x) is continuous. Let / be the natural homeomorphism from X to F,(X).
Then f(x) = Pyl (), so Jp is continuous. Let x, y € X such that x%y. Then
x¢[p,y]. Let Uand V be disjoint open sets such that x & U/ and Ip,y]=V. Since

e ©
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Jp is upper semi-continuous, there exists an open set W containing ¥y such that
Z e W implies [p,z]lcV. So if se U and te W, s¢t, because [p, fJ<V and U .
NV = @. It follows that <, is closed. Hence p is an initial point of X.

(1)=(5). Let p be an initial point of X. Let M € C(X) and g,(M) = m. Let U be:
an open set containi g m. If xe M~U, x£m, and since < p is closed, for each
X & M—U there exist disjoint open sets U, and V., such that me U,cU and x & Ve
and such that if se ¥, and re U,, then s€£¢. Since M—U is compact, there exist

Xy, ., X, such that M—Uc |J¥,,. Then me() U,, = W. Note that M
i=1 i=1

x1%

eNU,W,V,,, .., Vy,). Let Ke N(U, W, Vips s Ve )and ye K W. It se U V,,,.
n n i=1

s€y, so g (K)¢ U V,,. Since g (K)eK and KecUu Wu( V., it follows
i=1 i=1

that g, (K)e Uu W. But WcU. Hence g,(K)e U, so g, is continuous at M.

(5)==(1). Suppose p is not an initial point of X. Then <, is not closed, so-
there exists a sequence’ (x,,¥,) € X'x X converging to (x,y) such that for each.
positive integer n, x,<y,, but x£y. Since C(X) is closed in 2%, the sequence
{%s Pullizy in C(X) has a subsequence {[Xne Pm Iy which converges to some
point M € C(X). Then x, y € M. Let g,(M) = z. Then z # x, since x£y. Let U be
an open set containing z such that x ¢ U*, Then there exists a positive integer . 1
such that k>N, implies x,, & U. Let N(¥7, ..., ¥,,) be an open set containing M.
Then there exists a positive integer N, such that k>N, implies X Vel
eN(Vy, ..., V,). Let N = max{N;, N,}. Then for k>N, [ Y € N(Vyy ey Vi)

_but g,([%,,, ¥»D) = x,, ¢ U. Hence g » 18 not continuous at M.

Charatonik and Eberhart [2] have shown that if X is a dendrite, then each
point of X is an initial point. Let X be a dendrite. Then for each p € X we have the:
following diagram:

»Leoem 2y,

The composition g, o f = h,: 2*—X is continuous and has the property that hy(A)
is the least element with respect to p of the minimal continuum containing 4. So h,
is “close™ to being a selection. Furthermore, the restriction of h, to C(X) is a sem
lection. )
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Emploi des filtres sur N dans
Pétude descriptive des fonctions

par

Maryvonne Daguenet (Paris)

Résumé. Etude des premires propriétés du préordre entre les filtres défini par F < 8 si —
F étant un filtre sur 7 et G un filtre sur J — il existe une application &: J—=1 telle que F Ch(8), et
étude des positions relatives de certains filtres simples: N°%, AG. Ce préordre ci dessus est une extension
du préordre entre les ultrafiltres appelé préordre de Rudin-Keisler. Il a été introduit par M. Katétov
afin de-classifier les fonctions discontinues [7], [8].

Nous retrouvons, au moyen de comparaison avec ces filtres simples A6 et N°%, des classes
d’ultrafilires aux propriétés combinatoires intéressantes déja étudiées, voir M. Choquet [4]. Il
semble que l'extension aux filtres de qualités définies pour les ultrafiltres, obtenue de cette fagon
soit significative pour I'étude des fonctions, d’aprés la forme des résultats qu'elle permet d’obtenir,
et d’aprés les questions qu'elle permet de poser.

Le présent article est principalement destiné & répondre 2 trois questions de M. Katétov
posées en [8]; mais nous avons netlement séparé la partie combinatoire concernant Iétude du
préordre afin de.rendre sa lecture indépendante de I'application 3 Pétude des fonctions, objet
de [8], et ici des §§ 0 et 4.

Introduction. M. Katé:ov donne en [7] et [8] une classification des fonctions
et une caractérisation de certzines classes de fonctions au moyen des filtres sur
Iensemble des entiers. Nous répondons ici & trois des problémes combinatoires
posés par lui en [8], problémes approchant la question centrale: “De quelle fagon
cette classification & P’aide des filtres, simplifie, étend et précise la classification
partielle en les classes de Baire d’ordre o”.

Pour simplifier le travail du lecteur, nous donnons d’abord un résumé de la
partie du travail de Kat8tov utilisée ici, et ce faisant, nous introduisons les notations
et définitions dont nous avons besoin. Ceci sera I'objet du § 0 de cet article.

La suite traite des filtres. Ce travail permet de répondre 2 des questions posées
en [8], mais présente aussi un intérét en lui-méme: le préordre combinatoire entre
les filtres — que nous appelons préordre de Katétov -—qui y est étudié, est une
extension de I'ordre combinatoire entre les ultrafiltres connu sous le nom de pré-
ordre de Rudin-Keisler. Nous démontrons (i) que L’ordre associé au préordre de
Kat&tov n’est pas linéaire, ce indépendamment de 1'axiome du choix et de I'hypo-

“thése du continu; (i) que les filtres 4™ — que nous définirons plus loin; ils sont
essentiels dans I’étude de la classe des fonctions de Baire d’ordre o — possédent
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