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Metrization, paracompactness, and real-valued functions
by

J. A. Guthrie (El Paso, Tex.) and M. Henry (Morgantown, W. Va.)

Abstract. A T, space X is metrizable if and only if it has the weak topology induced by count-
ably many collections &, = {f,,| « € Ap} of real-valued functions on X, each having the property
that for By C Ay, inf{fy @ € By} and sup {fual « € By} are continuous. A similar result yields
a characlerization of paracompactness.

The main results of this paper were announced in 11

In 1925, P. Urysohn proved the following theorem which now bears his name.
A separable space X is metrizable iff X is Ty and second counzable. Of course the
Urysohn Metrization Theorem characterizes only those spaces which are separable
metrizable, leaving unanswered the question of how to characterize arbitrary
metrizable spaces. As is well-known, this question was answered in 1950 and 1951
by Nagata, Smirnov, and Bing who obtained miore general results which do not
assume separability. .

The vsual direct proof of the Urysohn Metrization Theorem utilizes the follow-
ing well-known result.

THEOREM 1. A T, space X is separable metrizable if and only if X has the weak
topology induced by countably many real-valued functions. :

By definition, the weak fopology induced by a collection {fe: we 4} of real-
valued functions is the topology for which { £ }(U): aed, U open in R} is
a subbase.

There are also other forms that Theorem 1 may assume. In some versions
the functions may separate points (replacing the T, condition), while in others
the functions may separate points from closed sets (a stromger assumption than
requiring the weak topology condition). But in any event, separability must be
assumed.

Just as the Urysohn Metrization Theotem is a corollary to the Nagata-Smirnov
Theorem, it is the purpose of this paper to show that Theorem 1 is, itself, a special
case of a more general result (Theorem 2) that does not rely on separability.
Furthermore, it will be shown that this result can be applied to prove the Nagata—
Smirnov Theorem in virtually the same manner that Theorem 1 is used in proving
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Urysohn’s Metrization Theorem, thus indicating that Theorem 2 is. indec.:d‘ the
desired generalization. Finally, in proving Theorem 2, a.characterlzatlon of para-
.compact spaces (Theorem 9) will be established which improves the characteriz-
ation involving locally finite partitions of unity. .

Let us say that a collection {f,: a4} of real-valued fu.nctlo.ns defined on
a topological space is relatively complete if the functions inf{f,: fi e B} L%]'ld
sup{ fz: B eB} are continuous for each Bcd, and let us‘say that ZE collec-tlon
F = |) #, of real-valued functions is o-relatively complere if each &, is relatively

B

complete. We now prove the main theorem.
THEOREM 2. A T, space X is metrizable if and only if X has the weak topology
induced by a o-relatively complete collection.
Proof. Necessity follows from Theorem 5, which is due to Nagata. To prove
the sufficiency, let & = |J &, be a o-relatively complete collection where F,
n

= {f,: € 4,}. We may assume that F,c %, ,,. Since X is T, and has the .weak
topology, X must be Hausdorff. By Theorem 9, X is paracompact, and we will be
done if we can show that X is also developable.

For rationals a, b, s, ¢, let

A(n, s, t,x) = {0 d,: [ (x)<i(s+0},
B(n,a,b,x) = {ve 4, f(x)>4(a+b)}
and whenever a<b<s<t, let

Um,a,b,8,t,x) =KnLnMnN,
where |
= {3 supf())<t, acd(n,s, 1, X},
o

K

L= {y: inff,,(3)>s, add(n,s,t,x)},

= {y: i;ff,,m(y)>a, «€B(n,a,b,x},

N={y: s:pf,,,z(y)<b,ocd;B(n,a,b,x)} .
«

|

EBach U(n, a, b, s, 1, x) is a nbd of x and there are countably many collections

U, a,b,s,0={Un,a,b,s,t,x): xeX}, each obviously being a cover of X.

For each finite set F of quintuples (m;,a;, by, s,, #;) of rationals, choose the

largest n among the n;’s, and let % be the set of all finite intersections of members

of U(n, a;, b, 5;, 1;}) where an intersection consists of one member from each 7.

Then the collection of all such %,’s is countable, and we will show that { ) forms
a development for X.

To this end, let p € ¥ where ¥ is any nbd. There exist integers z, k and rationals

a4, 1 (i =1, ..., k) for which pe) f,,;,l((ai, 1)< V. If we choose rationals b, s

i

such that a;<b;<f,,(p)<s;<t;, then the corresponding collection %, defined in

©
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the preceding paragraph will satisfy the condition St(p, %p)<=V. To verify this,

consider an arbitrary set We %y. We know that W = N Un, a;, by, 51, 85, X)),
i

and we observe that if a & An, sy, t;, x,) for some i = 1,..,k, then p & W. The
reason for this is that U(n, a,, by, s, 1;, x) I, and p ¢ L; since f,,(p)<s;. Simi-
larly, if «; ¢ B(n, a;, b;, x;) then P&W. Thus, if pe W, then o,€ 4(n, s,, t;, X3),
B(n,a;, by, x)) for each i = 1,...,k, and this implies that

Wec O [Kin M)
S0 Ut (=0, 1) n /! (@, 00))]
= ) fo (@, 1)
ev.

Hence, St(p, %)<V, and the proof is complete.

THEOREM 3 (Nagata~Smirnov). A Ty space X is metrizable
a o-locally finite base.

Proof. Let |J 4, be a o-locally finite base. For each Ue 4, let
V=U{Wea, WcU}.

Then VeU and hence there is a continuous Jov: X—[0, 1] such that fi, (V) =1
and fyy(X—U) = 0. 1f we let &#,,, = { fy: Vo U }» then each &, will be relatively
complete because of the local finiteness of #,, and it is easy to show that X has
the weak tapology induced by () #,,.

1t should be pointed out that the collection of functions U &, constructed
in the proof of the Nagata-Smirnov Theorem is indeed a special case of the ones
to which Theorem 2 applies. By definition, the support of a function f: X—R is

the closed set {y' ffﬁ;—a} Thus, each collection &, was trivially seen to be
relatively complete because the supports of the members of F oy formed a locally
finite collection. The following example shows that a collection & of real-valued
functions need not have locally finite supports in order to be relatively complete.

ExampLE 4. Let R be the real line with the usual topology, and define for
each ye R '

if and only if X has

[1 it x<yp-1,
Jx) = sy—x if  y—l<x<y+1,
1-1 i y+I<x.

Clearly each f, is continuous and # = {f,: y € R} induces the usual topology on R,

Now for A< R, let Fy(x) = i.nf{f‘(x): ye A} and let G,(x) = sup{f(x): ye 4}.
Iinf{y: y e A} does not exist, then Fy(x) = —1 for each x e X, while if inf{y:ye 4}
= m exists, then F,(x) = f,,(x) for each x € X. Thus F,(x) is continuous for each
A<R. Similarly, Gyx) =1 or G,(x) = fj(x) where M = sup{y: ye 4}. This
shows that & is relatively complete. :

4%
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Finally, note that & cannot be decomposed into countably many collections
each having point-finite support, because the support of each f,e # is R.

We remark at this point that Theorem 2 is not the first characterization of
metrizability in terms of the existence of real-valued functions, nor is the concept
of a collection of real-valued functions having continuous infs and sups a new one.
In 1957, J. Nagata proved the following [4, Theorem 5]:

THEOREM 5. A T, space X is metrizable if and only If there exisis a family
{ fx: w€ A} of real-valued functions on X such that

(1) int{f,: fe B} and sup{fs: Be B} are continuous for each B<A.

(2) For any nbd U(x) of any point x € X there exists a.€ A and a real number ¢
such that f(x)<e, f(X—U(x))=e.

The relationship between Theorem 5 and Theorem 2 is easily seen upon ob-
serving that condition (2) of Theorem 3 is equivalent to the following condition (2).

(2') The collection {f,"'((—c0,¢)): x€ 4, & a real number} forms a base
for X.

Thus, Theorem 2 is an improvement of Theorem 3.

The next example shows that one cannot improve Theorem 2 by requiring
only infs or only sups to be continuous.

EXAMPLE 6. Let S be the Sorgenfrey line; that is, the real numbers with the
topology having as a base all intervals of the form [a, b). Define for each ye §

x—y if yg<x<y+1,
5 = {1 otherwise .
Clearly f, is continnous and & = {f,: ye§} not only induces the topology
of S, but has property (2) of Theorem 5. .
Now for A=S let D(d) be the Euclidean diameter of 4, and let F,(x)
= sup{f,(x): yed}. If D(A>1, Fy(x) =1 for every xe S. If D(AD<I, let m
=inf{y: ye 4} and let M = sup{y: y € A}. Then

1 if
oy = {fm(x) it

Thus # has continuous sups. Tt is well-known, however, that § is not metrizable,
Similarly, we may let g,(x) = —/y(x). Then % = {g,: ye S} has continuous infs
and induces the topology of S. '

Finally, let us shift our attention to the characterization of paracompactness
(Theorem 9) used in the proof of Theorem 2. We recall first the following definitions
and theorems.

By a partition of unity on a space X, we mean a collection & of continuous
functions from X into [0, 1] such that Y{fx):feF} = Lioreach xe X. A par-
tition of unity & is locally finite if the supports of the members of % form a locally
finite closed cover of X, and & is subordinared to a cover 4 of X if the supports
refine %.

x<M,
x=M.

icm
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TreoreM 7 (Michael [2, Proposition 2). The Sfollowing properties of a Ty space
X are equivalent:

(1) X is paracompact,

(2) Every open cover of X has a locally finite partition of unity subordinated to it.

A cover ¥ is cushioned in a cover % if one can assigntoeach Ve ¥ a Uy, e U
such that for every ¥ =¥, U{V: Ve¥'}c | {Uy: Ve¥"}. ¥ is a o-cushioned
refinement of 4 if ¥ = \J {¥";: i = 1,2, ..} with each 7", cushioned in % and %"
refines %.

Trgorem 8 (Michael [3, Theorem 1.2]). 4 T space X is paracompact if and
only if every open cover of X has an open o-cushioned refinement.

THEOREM 9. 4 T'-space X is paracompact if and only if for each open cover ",
there is a o-relatively complete collection ) {f,,: « € A4,} and a refinement of W

m n
consisting of sets of the form () f,(U)) where U, is open in R.
i=1

Proof. Necessity. By Theorem 7, X has a locally finite partition of tnity &
subordinated to %", and it is easy to verify that & is relatively complete and has
the desired refinement property.

Sufficiency. Let & = U {f,,: 2 4,} be a g-relatively complete collection

having the given refinement property. We may assume that %, %,.,. We will
show that X is paracompact by constructing an open ¢ -cushioned refinement of #%".

For cach positive integer n, and each pair of rationals b,s with b<s, let
Uln, o, b, 8) = f, (b, 5)) and let (n, b,s) = {U(n, «,b,8): aed,)

Each %, b, s) is cushioned in %(n, a, {) whenever a<b<s<t. The corre-
spondence is U(n, «, b, §)—U(n, o, a, ) for each « € 4,. For suppose that there
is an infinite subcollection A=A, for which x e Wn, o, b,8)— JUn,a,a, o).

o

Let A" = {aeAd: f(x)>1} and let 4" = {xe4: f(x)<a}. By hypothesis,
f=int{f,: «e A’} is continuous, and therefore f(x)>7. This means that
f‘l((v;-(s-i-r), oc)} is a nbd of x that misses U(n, o, b, §) for each e A’". Similarly,
F = sup{f,,: a€A"} is continuous, F(x)<a, and F~'{(~oo, §(a+b))) misses
U(n, o, b, s) for cach e 4", Thus, the intersection of the two inverse image nbds
is a nbd of x that misses |JU(n, «, b, ), which is a contradiction.

o

We now proceed to construct countably many open cushioned families that
refine %, For rationals ¢, <b;<s;<t;, i =1, ...,k we have that % = Y% (n;, b;, 5,
i

is coshioned in %" = (J %(m;, a;, 1)) voder the correspondence U(ny, a, by, ;)
i

-—+U(n;, a, a;, 1;) and there will be countably many such cushioned collections
(in fact, each % is cushioned in infinitely many other %°s). Similarly, whenever % is
cushioned in ¥, the collection #* of all finite intersections of members of % will
be cushioned in the collection ¥°* of all finite intersections of members of %" under
the correspondence ) U(ny, a;, by, s)— () Ulny, 0y, a5, ). Now for each such
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cushioned pair with %* cushioned in ¥, let %% = {Ue%*: U—V where
Vey™ and Ve W for some We #}. Then %¥  is cushioned in % under the
correspondence U— W, there are countably many such collections, and we will be
done if we can show that |J %% refines # . This is easy to do, for given x e X,
there is a We # for which x e (| U(n, a4, a;, t;y= W. Choose rationals b;, 5; with

1
a;<b;<fo, (%) <s5;<t; and note that the set | U(n, ;, b;, 5;) contains x and is

T
a member of some #%%". Thus, #" does indeed have an open ¢-cushioned refine-
ment, and the proof is complete.
Thus, Theorem 9 is more general than Theorem 7. Furthermore, Example 4
shows that there are relatively complete collections satisfying the hypotheses of
Theorem 9 that are not locally finite partitions of unity.
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Locally well-behaved paracompacta in shape theory
by

G. Kozlowski and J. Segal * (Seattle, Wash.)

Abstract. We generalize the classical notion of ANR to paracompacta in shape theory to
obtain the notion of absolute neighborhood shape extensor (ANSE). Although the corresponding
classical statement is false for compacta we have the theorem: Any LC" paracompactum of di-
mension < n is an ANSE. We also generalize the various notions of movability to arbitrary
topological spaces.

TueOREM. Every LC"™* paracompactum of dimension < n is uniformly movable.
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1. Introduction. In Section 3 we give a categorical description of shape theory
for arbitrary topological spaces based on the concept of matural transformations
of homotopy classes of maps into polyhedra. We show precisely in what sense
this theory agrees with the Mardesié-Segal ANR-systems approach to shape
theory on compacta.

K. Borsuk [2] introduced the notion of movability for metric compacta as
a generalization of ANR’s, and S. Mardesié and J. Segal [16] extended this property
to compacta by means of ANR-systems: Movability appears to be the most inter-
esting shape invariant discovered so far. It occurs as the hypothesis under which
many classical theorems of algebraic topology generalize to shape theory, for ex-
ample, [9] and [19]. In Section 4 we present a definition of movability for arbitrary

* The second named author was partially supported by NSF grant GP-34058.
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