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In particular, we have now established
THEOREM 3.1. Suppose M is (P*)*-generic. Then M has Scott height at most o (P’*)'

An absoluteness argument shows that it is not really necessary to assume
that 4 is countable.
. The example of the previous section shows that a (P*)*-generic structure
need not be P*-*generic, nor even of height <o(P*). If we assume that our orlgmal
theory T is complete, it is then clear that all (P*)*-generic structures have the
same Scott height.
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Homogeneity, universality and saturatedness
of limit reduced powers III

by

Leszek Pacholski (Wroclaw)

Abstract. Let & be an ultrafilter on I and & a filter over I'x I. The paper gives a character-
ization of those pairs (&, %) which have the property that for every relational stracture % the Iimit

ultrapower | is »*-saturated. The notion used to obtain this characterization is 2 natural
extension of Keisler’s notion of a x-good filter.

A property P of a relational structure 2 is a compactness type property if
there is a definition of P which is of the form: for every set X of formulae (of some
language connected with ), ¥ can be satisfied in 2 if and only if every finite sub-
set of ¥ can be satisfied in . The saturatedness, universality and homogeneity of
relational structures can be considered as properties of the compactness type.
Various other properties of the compactness type have been investigated by several
authors (e.g. atomic compactness [6], [11], positive compactness [11]). Here we
restrict ourselves to saturatedness, homogeneity and universality.

By the classical results of Keisler ([3], [4]) ultraproducts can be used to obtain
structures with a given compactness type property. For example, if a filter & is
(w, )-regular, then for every relational structure 9 with |L ()< the ultrapower
A is st -universal. If F is x-good, then for every family {2;: eI} of similar
relational structures with |L(U)|<x the ultraproduct []%,/# is »*-saturated.

iel

The results of Keisler have been extended by Shelah and the present author to
the case of products which are not necessarily maximal (see [7] and [10]). Another
application of reduced products to compactness can be found in [8]. For the
generalization of Keisler’s results to Boolean ultrapowers see [S].

The problem of homogeneity of reduced products had not been extensively
investigated. By a recent result of Wierzejewski [13] if the ultrapower % is
x*-homogeneous for every structure U, then for every U the ultrapower AL is
x*-saturated.

In the present paper we investigate the problem of compactness of limit ultra-
powers. We give a characterization of pairs (%, %) which have the property that
for every relational structure 20 such that |L(){< s the limit ultrapower UL|F is
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% ¥ -saturated (& is an vltrafilter on  and & is a filter over I xI). We also deal with
limit ultrapowers which are »*-universal.

This paper is a by product of an attempt to answer the question of J. Wierze-
jewski (see the introduction in [13]) whether it is possible to give for homogeneity
a characterization similar to that given in [7] (cf. also [10]) for saturatedness.

I would like to mention that the results below would not have been obtained
without the encouragement of all the members of the seminar on model theory
in Wroclaw, especially by B. Weglorz.

An extension of the results below to the case of filters which are not nécessarily
maximal will be published in [9].

0. Our terminology is standard and coincides with the terminology of [l].
Let I be a non-empty set. Then by E(I) we denote the set of all equivalence re-
lations on I. Let f: I—A4 be a function. Then eq(f) = {(i,/): f() = f())}. Of
course eq(f) e E(I). Let ¢ be a filter in E(J) (i.e., ¥<E(); if 01,0, € %, then
01 Ng€%; if 0,0, €E(), 0,€%, then g, e9). If A 50, then by A'|% we
denote {fe A*: eq(f) € %}. In particular, 2!|% is the algebra of subsets of I which
can be composed of the equivalence classes of a relation in #. If ¢ € E(I), then 2’|
denotes the algebra of subsets which are unions of equivalence classes off . Let ¢
and 4 be as above and let & be a filter over I. If fe 4'|%, then

AF ={ged: {iel: fi)) = gl)} e #} .

We put 4%|% = {f|#: fe A'|9}. 1t Uis a relational structure, then W |¥ is a sub-
structure of U with the universe 4%|% (see [2]).1f Iis a set, i e I and o € E(I), then
ifo={jel: (i,jlee} and Ijo= {ijo: iel}.

Let X be a set; then S(X) denotes the set of all subsets of X and S,(X) is
the set of all finite subsets of X. Let f: S, (X)—S(I). We say that f is monotonic
if s=¢ implies f(s)2/(?). A function fis additive if f(s U 1) = f(s5) N f(7) for every
5, 1€ S,(X). Let g: S(X)—S(I). We write f<g to denote that f(s)Sg(s) for
every s € S,(X). The image of X by fis denoted by f*X. If 4 is a set, then |4] is
the cardinality of 4, and % is always an infinite cardinal. By L() we denote the
language of UA. For other definitions consult [1].

1. Recall that a filter & is (w, »)-regular if and only if there is an F,cF
such that |#o| = % and () &, = 0 for every infinite &,=F,. &F is x-good if
and only if & is (@, w)-regular and for every monotonic function f: S, (x)—%F,
there is an additive function g: S,(x)—#% such that g<f. If & is a x-good filter,
then & is (w, x)-regular (see [4]). It is possible to give a definition of %-goodness
in which (w, x)-regularity is explicitly stated.

DermaTioN 1.1.

L. Let h: S,()—S(I). We say that h is a partition function if s # t implies
h(s) 0 h(f) = 0 and moreover |} h(s) = L

seSw(x)

©

icm

g
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2. Let h: S, (x)—S(I). Then g is a union function of h if g(s) = U h(f). The
125

union function of % is denoted by w,.

3. # is (o, x)-regular* if there is a partition function h: S,()—S(I) such
that for 5e.S,(x), u,(s) e . )

4. F is x-good* if for every monotonic function f: S,(%)—& there is a par-
tition function h: S,(%)— S(I) such that u(s) € F for se S,(») and w,<f.

It is obvious that if & is x-good*, then it is also (w, x%)-regular®.

PROPOSITION 1.2.

1. F is (w, x)-regular if and only if F is (w, x)-regular*.

2. #F is »-good if and only if F is n—goéd*.

Proof. 1. Assume that & is (0, %)-regular. Then there is a family {I,: a<x}

of distinct elements of # such that for every infinite subset X of » we have N I, = 0.
aeX

We put h(s) = {i: ie L+>aes}. It is obvious that A is a partition function. More-
over u,(s) = () I,, whence u(s) e #.

aes

Now assume that & is (o, x)-regular*. Since u(s) € F for every s e S,(x),
it remains to prove that if X is an infinite subset of S,(x), then () #(s) = 0. In
seX

fact, assume that ie () w,(s); then there is a e S,(%) such that i€ h(z) and 2
seX
for all se X. But |Js is infinite, whence ¢ is infinite, which is impossible since
seX
t e S,(%).

2. Assume that & is x-good..Then by a theorem of Keisler [3] & is (o, %)-

regular. Let {I;: se S,(x)} be a family of distinct elements of & such that ] I
seX

is empty for every infinite X, X<S,(x). Let f: S,(})—F and let g: S,(})—F be
such that g< . We put u(s) = g(s) n I, and i(s) = {i: i e u(s)«> a € 5}. It is a matter
of simple computation to check that # = u, and consequently #,<f and 1,(s) € &
for s e.S,(%).

DermrTioN 1.3. Let # <S(I) and 9<E(I) be arbitrary filters.

1. We say that the pair (#,9%) is (@, x)-regular if there is a g€ ¥ and
a function h: S,(3)—I/o such that A is a partition function and u,(s) € & for every
s € S,(%). '

2. Let ki 8,(x)—S(I) be a partition function and let F: S,(x)— E([). Then
h* F is an equivalence relation on I such that (i,7) e A+ F if and only if ieh(s)
—jeh(s) holds for every se S,(x) and moreover if i€ h(f) for some te S,(x),
then (i,7) e F(o).

3. The pair (#,%) is x-good* if and only if for every additive function
F: S,(%)—% and every monotonic function f: S,(3)—% such that

(2.0) F*S, (0 2|9
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there is a partition function h: S, ()—S(I) such that -

(*.1 wu<f,

(*.2) w(s)e F for every se Sm(x)'-
and ‘

(*.3) hxFe%.

It follows from the definition that if a pair (#, %) is x-good*, then it is (w, %)-
regular. To check this take F(s) = Ix I and f(s) = L.

It is possible to give a definition of »-goodness of a pair of filters which is
more similar to the original definition of %-goodness of a filter.

DermviTioN 1.4, The pair (#, %) is x-good if and only if it is (@, w)-regular
and for every monotonic function f: S,())—% and every additive function
F: S, ()—>% such that f*S,(x)<2'|% there is a ¢ € ¥ and an additive function
g: S,()—F such that

(gD 9<f

(8.2) g*Su(0) =20

and

(g3) for every xelfo and every i,jex if x=g(s), then (i,je F(s) (ie., re-

lation ¢ is on g(s) finer than F(s)).

Lemma* 1.5, If (F,9) is x-good, then (F,9) is x-good*.

Proof. Let hy: S,(w)—S(I) be a function whose existence follows from the
(@, w)-regularity of (%, %). Let g, € % be such that 1}(S,(®)) = I/g,. Let F and f
be functions as in the definition of x-goodness*. For se S (%) we put Fo(s)
=F()ngo and fo(s) = f(s) N u,(8), where §=1{0,1,2,.., |s|—1}. Since ff
and F, satisfy the hypotheses of Definition 1.4, there are o€ & and g: S,(0)—F,
such that (g.1)-(g.3) hold (with £, F replaced by f,, F,). Let

h(s) = {iel: ieg({ah)eoaes).

Of course 4 is a partition function. Now let i € g(s). We claim that there is a t2s

such that ie g(s) and iég(¢') for every ¢ Suppose not; then there is an in-

finite sequence {7,},<,, such that ie g(z,) and t,St,, 1 for every n<w. Since g(s)

Sfo(s), we have ie() fy(r,), whence ie) ,(t,), which is impossible. We have
n<w n<ow

Jjust proved that for every ieg(s) there is a f2s such that ie g{a}) « aet,
whence ieh(f). This proves that g(s) = h(t) = w(s). But g e, and
28

consequently w,(s) € #. Moreover, since g(s) = u,(s), we have u,(8) S £o(8) =1(s).
It remains to prove that k* Fe %. To do this we shall check that A * Fz2o.
In fact, let (7, ) € ¢; then for every s e S,(x) we have i e h (5) >/ & h(s), whence for

arbitrary se& S,(%) every equivalence class of ¢ is disjoint with A(s) or included’

in A(s). Now let 7, je x and x e Jjg. Then there is an s e S,(%) such that xSh(s),
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in particular x=g(s). Consequently by the definition of x- goodness we have (i, j)
€ F(s), which finishes the proof that (&, ) is 3¢-good*,

TaEOREM 1.6. (F, %) is x-good if and only if (F, %) is %-good*.

Proof. If (#,9) is x-good, then it is %-good* by Lemma 1.5. If (#, %) is
%-good*, then puting ¢ = A+ F and g(s) = u,(s) we obtain an equivalence re-
lation and a function which satisfy properties (g.1)-(g.3).

2. Now we are ready to state and prove the main results of the paper. The
niccessity of the assumptions of x-goodness in the theorem below will be proved
i the next section.

TaeoreM 2.1. If F<S() is an ultrafilter and % S E() is a filter such that
(F,9) is n-good, then for every relational structure N with |[L(W)| < the limit
ultrapower We|% is w*-saturated,

Proof. Let o be a relational structure with L) <. Let {a;: E<x} be
a sequence of elements of 47|% and finally let X denote a set (of power <) of
elements of L(x) with one free variable v. We assume that X is finitely satisfiable
in 8 = (AL, 4¢/F )< For seS,(Z) and iel we put F(s) = N {eq(ay): a;/F
appears in As}, U, = (U, a,(i))<,, and f(s) = {iel: W,k AvAs). 1t is obvious
that F is an additive function and f is a monotonic function. Moreover, for every
s€8,(Z) we have BEJv/As; consequently f(s) e 7. Finally (g.0) follows from
the fact that if a,/# appears in /\$, then a; is constant on every equivalence class
of F(s). Now, by Theorem 1.6 (&, 9) is %x-good¥, whence there is a function h
which satisfies (x.1)-(+.3). Let ieA(s). Then, since h (O su(<f(s), we have
i€ f(s). Hence by the definition of £ we get A, F Fv/\s. Let x be an equivalence
class of & * F such that i € x. Then every function a, is constant on x provided as|F
appears in /\ 5. Consequently, there is an a, € 4 such that for every i  x, A = Asla,]
holds (if x = #(0) then a, is an arbitrary element of A). We put a(i) = a, where
z is an element of I/(h = F) such that i ez By definition a is constant on every
equivalence class of / = F, whence a € 4'|%. We claim that (B, a/F)E 2. In fact,
let 0eX, and E, = {i: A,k ola(@)]}. Then

E,= U {2 Ak NAila(@)] and ieh(d)}.

geteSw(E)
But it follows from the definition of « that if ieh (), then 2k A t[a())], whence

E,=2 U

gete Sy (L)

h(ty = w(HeF .

THEOREM 2.2. If #<=S(I) is an ultrafilter and $<E() is a filter such that
(F.,9) is (v, %)-regular, then for every structure 9 with |L(W| <3 the limit ultra-
power NL|G is st -universal,

Proof. We proceed almost exactly as in the proof of Theorem 1.5 in [4]. The
only difference is that for se S,(x) we Jkeep defined functions constant on 4 (s).

2 — Fundamenta Mathematicae XCV
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Theorem. 2.2 was obtain independently by B. Weglorz as a corollary to his
embedding theorem (see [12]). '

Now we shall give an application of Theorem 2.2 to the problem of homo-
geneity of limit ultrapowers.

THEOREM 2.3. If for every relational structure U with |L(W)| <co the limit re-
duced power WL|% is x*-homogeneous, then the pair (F, %) is (0, x)-regular.

Proof. Let B, = S,(3¢+x) U S°(¢+%), C, = S(x+x)x {0} and 4, = B, U C,
(here + denotes the addition of ordinals). For a<x we put a, = {a}, b, = %+x—
—{x+a}, ¢, = ({o},0) and d, = (x+x—{x+a},0). Moreover, ¢, = (x,0). Now
assume that for every relational structure 9 the limit reduced power L% is
»*-homogeneous. Hence in particular %* = AL|¥ is x*-homogeneous, where
A = {4,, =>. If ae 4,, then by @ we denote the element of (4,)/|# such that
a(i) = afor i e I. Since every infinite atomic Boolean algebras are elementary equiv-
alent, we have ’

W, 87 B F o= (U, ) F D] F e
Now since 2A* is »*-homogeneous, there is an a € (4,)!|# such that
m (WX, 8/ F , b/ F , o] F)=(U¥, ¢,/ F , LJF, T F) .
Let

hi(s) = {iel: a()=a,0es} and bhy(s) = {iel: a)sh,ues}.

Finally A(s) = h(s) U hy(s). Of course h is a partition function and wu,(s)
= {iel: a,ca()<b,}, whence by (1) u(s) € #. Moreover, since a & (4,)%|% and
all a’s and b,’s are constant, the equivalence relation o defined by Ifp
= {h(s): s€S,(%)} is an element of %.

As a corollary to Theorems 2.2 and 2.3 we get the following theorem of
J. Wierzejewski [13].

THEOREM 2.4. If for any relational structure U with |L(W)|<w the limit ultra-
power LY is x*-homogeneous, then for every N such that |L)| <% the limit
ultrapower We|% is u*-saturated.

Proof. By Theorem 2.3 (#,9) is (w, »)-regular, whence by Theorem 2.1
“UL|Y is " -universal; whence x*-saturated.

THEOREM 2.5. If for every U with |L(W)|<w, U%|F is w-homogeneous, then
(#,9) is (0w, w)-regular. ‘ .

Proof. Let n denote the set of rationals. We consider the structure 92U
=<, 1nppcy,. Let a()) =0 and b(i)) = —1 for iel Then (AL|¥,a/F)
= (AL|%, b/F) and since ALY is w-homogeneous, there is a ce A'|% such that

(ULY, ol F, c|F) = (W59, b F, o|F).

We put A(s) = {iel: ¢;<l/nones} and then proceed as in the proof of
Theorem 2.4.
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3. Now we shall prove that the assumption in Theorems 2.1 and 2.2 are
necessary.

TeeorEM 3.1. If for every U with |L(W)|<x the limit ultrapower AL is
%¥-universal, then the pair (F,9) is (v, %) -regular.

Proof. Let U = {S,(), <, {a}D,<y and let T = {{e} =v}e<s. Since I is
finitely satisfiable in %% and since AL\ is » ¥ -universal, there is an element
ae A% such that o/F satisfies X in AL(%./ We put h(s) = {iel: a(i) = s}.

The proof above is a slight modification of a proof given by Keisler in [4].
Also the proof of the theorem below is based on an idea of Keisler’s (see [3]).

THEOREM 3.2. If for every U such that |L()] <2 the limit reduced power W5|%
is %*-saturated, then (%, %) is x-good.

Proof. The proof we are going to present is divided into several steps. From
now on we assume that for every % with |L(21)| < the limit reduced power UL|¥ is
%" -saturated. Let f and F be arbitrary but fixed functions which satisfy the hy-
potheses of the definition of %-goodness.

3.2.1. There is a 9, € 9 and a function d: x—F such that
(1.2) d)e2|%
(I.b) i yello, and i,jed(@) ny then (i,]) e F{o}).
Proof. Let B = (S(I), =, #>. For a<x we define
b(i) = {jeI: (,j) e F({a})}

and we put 2 = {vSb,/F},c, U {v # O}. Since F(s)e ¥ for every se S,(%) and
since F is additive, ¥ is finitely satisfiable in BL|¥. By the hypotheses BL|% is
%*-saturated, whence there is an element b of BY|% such that b/F satisfies ¥ in
BLIG. We put ¢y = eq(b) and d(«) ={iel: 0 b(i)sb,(D)}. Of course d(x) e F
and g, € 4. Now let g(x) = g; F({a}). Since b is constant on every equivalence
class of ¢, and b, is constant on every equivalence class of F ({a}), the logical value
of 0+ b(i)=h,(i) is constant on every equivalence class of g(¢). But g()e &,
whence (1.2) holds. Now assume that y e Ijo, and i, je y r d(«). Then, since i, jey,
we have b(i) = b(}); moreover, since i, e d(x), we have 0 # b(i), b()<=b,(i) and
b(J)<b,(j)- This proves that b,(i) and b,(j) are equivalence classes of F({o}) and
have non-empty intersection. Hence b,(i) = by(j) and consequently (1.b) holds,

3.2.2. Assume that fy: S,()—F is a monotonic function suck that fo(e2l|@
Jor every s e S,(x). Then there is a g, € % and Si: Su(2)— S(I) such that, for every
5 €8,(x%), , '

(2.2) Sis)e2'e,,

and moreover
2.b) I{s € S,(0): iefy()}l<w

2%

[OSHE, fieF

Jor every iel.
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Proof. Let & = (5,(S,()) U {Su(¥)}, =, ). For s € 5,(x) and i e I weo put
, {s} it iefy(),
&) = {Sa,(u) if .

i ¢ fo(s)
e (i) = S,(x) .

Let X = {v2¢/F} v {v # ¢,/F} . We claim that I is finitely satisfiable in L%,
In fact, if %, is a finite subset of X and ¢ = () {s: ¢, appears in 2o}, then putting
c'(i) = S(f) we obtain an element of S%|% which satisfies 2.

Now, since S5|% is »*-saturated, there is an element ¢ of &% such that ¢/F
satisfies 2. Let g, = eq(c). Of course ¢, € . Since ¢/F satisfies Z, we have

and

(2.0) E, = {iel: ¢li)se(i) # S,(0)} e 7.
But
@.4) E = U{liel: c() = 1}, {5} St e Su(Su0d)} .

Moreover, if i€ E;, then in particular (i) # S,(x), whence ie fols), ie.,

2.0) ESfols) .
Let f1(s) = E;, then by (2.c), (2.d) and (2.e) Ji satisfies (2.2) and (2.b).

32.3. There exists a monotonic function f,: S,(x)— and equivalence relations
01,02 €9 such that

(Ga) L<f,
(3.b) L) ey for  seS,(0),
(B) fyello, and i,jey nfy(s) then (i,))e F(s).

Proof. Recall that f; S,(%)—% is monotonic and F: Sp()—% is additive.
Moreover f(s) € 2"|F(s). By 3.2.1 there is a ¢:€9% and d: x—% such that (l.a)
and (L.b) hold. For seS,(x) we put fy(s) = N d(@) N f(s). Of course f, is

a monotonic function and f3S,(0=#. Let se S,(x); then f(s) 2% and d(w)

€ 2/|% for every o 5, whence Jo(s) € 2|%. We proved that Jo satisfies the hypotheses

of 3.2.2. Consequently, there is 2 g, € & and f,: So()—F such that (2.a) and (2.b)

hold. We put f,(s) = ( f,(¢). Clearly f,< f1 and fo(s) e F for every se S,(0), but
N tSs

by the definition of f; we also have f, <f, whence f2<f. Of course f, is monotonic.
Since. f,(s) € 2¥]e,, (3.b) follows from the definition of f,. To prove (3.c) let us
notice that f,<f1</f,. But fy(s)s () d(o), whence for every s&S,(x), fis)

aes

€ ) d(%). Consequently, if y e /o, and I,jeynfols), then i,jey m d(o) for

1§
every ¢ €s. This by (1.b) implies that (i, ) e F({a}) for every wes. But F is an
additive function, whence (7, j) € F(s).
3.2.4. There is an additive function g: S,()—F and 03¢ such that g<f,
and g(s) e 2'os for every se S, ().

icm

©
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Proof. Let U = $Su(Se()), =, %> and let, for a<s and iel,
a,(@) = {te S,): iefy(d),ae .

Since f5<f,, it follows from (2.b) that for every iel and every a<; a,i)
€ 8,(S,()). Moreover, by (3.b) 4, is constant on every equivalence class of g,,
whence a, € A'|%. Lets e Su(%); then it is a matter of simple calculation to check that

(4.2) {iel: () a() # 0} = £,(9) .

Now, let ' = {v=4,/F},c, U {v # 0}. By (4.2) X is finitely satisfiable in AL|@,
By x*-saturatedness of AL|Y there exists an ae A% such that alF satisfies X,
We put
(4.b) 9(6) = {iel: 0 # a() =a ()} .

®2ES
Clearly g(s) is an additive function; moreover, o/ satisfies Z, whence, for every
5€8,(%), g(s)e F. From (4.b) we get g@={iel: N a,G) # 0}. Consequently,

by (4.2) g<f,. Now let g3 = 22 N eg(@). Of course g, € ¥. Since a is constant on
every equivalence class of eg(a) and a's are constant on every equivalence class
of g,, we have g(s) e 2%|g, for every seS,(x).

Now to complete the proof of Theorem 3.2 we put g3 N 94 = g. Of course
g(s) €2%o. Assume that x €lfe and i,jex n g(s); then there is a yelfp, such
that x=y. But g<f,, whence by (3-0) we have (i, j) & F(s). Finally notice that it
follows from (2.b) that if H = {g(s): 5 € S,()} then [H| = % and for every in-
finite Hy < H the intersection (" Hy is empty. This proves that & is (w, x%)-regular
and completes the proof.

From Theorems 2.1 and 3.2 we get the following corollary:

THEOREM 3.3. Let F be an ultrafilter on I and % a Silter in E(I). Then (F, %) is
%-good if and only if for every relational structure 9 with |L(W|<x the limit ultra-
power LG is u*-saturated.
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Abstract. In this note we investigate, in the class of metrizable spaces, the property of being
o-locally of weight <t, introduced by A. H. Stone in his theory of non-separable absolutely Borel
spaces [8], and we prove some facts related to the questions raised in [8].

In this note we investigate, in the class of metrizable spaces, the property of
being ¢-locally of weight <t, introduced by A. H. Stone in his theory of non- separ-
able absolutely Borel spaces [8], and we prove some facts related to the questions
raised in [8].

Our topological terminology and notation is from [2] and. [5]; our set—
theoretical terminology will follow [4]. All of our spaces are assumed to be
metrizable. For a given space X we say that ¢ is a metric on X if ¢ is any metric
compatible with the topology of X. For a metric 9, a set 4=X and £>0, we
write B(4, &) = {xe X: o(x, 4)<e}. The symbol w(X) denotes the weight of
a space X and |S] the cardinality of a set S. The set of all ordinals less than a given
ordinal 2 is denoted by W(A). For an initial ordinal A of a regular cardinality t we
call a set I'cW(A) stationary if and only if for every function ®: I'—-W(2) with
D(£)<, there exists a<l such that [ '(«)| = t. The successor of a cardinal
number t is denoted by t*.

We say that a space X is h-locally of weight <t (in symbols, X € ) —Lw(<1);
see [8], 2.1) provided X = {J {X,: ae .4}, where [4]<h and each X is locally of
weight <t. It is easy to verify (cf. [8], 2.1) that for a metric ¢ on X this is equivalent
to the following condition: there are families & of subsets of X of weight <t
and >0 for se .S, where |S|<D, such that
o X=U{U#F,:seS} and

o(F', F"yz¢, for different F', F"' e &,.

For h = no we write X € o Lw(<1); if X e h—Lw(<8,) we say that X is h-discrete.

Prorostrion (cf. [8], Theorem 3). Suppose that t is a regular or sequential
cardinal and Y<t. If Xeh—Lw(<ft), then XeoLw(<t).
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