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Relatively constructible transitive models
by

Marian Srebrny (Warszawa)

Abstract. In this paper we consider standard transitive models of set theory and its fragments
and investigate whether a given model is a minimal one containing a fixed set of natural numbers.
The answet is particularly elegant in the case of B-models of second-order number theory. We give
a necessary and sufficient condition for a p-model of second-order arithmetic plus the axiom of
constructibility to consist exactly of relatively ramified analytical sets. We apply this result to an
investigation of arithmetically regular ordinals in the sense of generalized recursion theory, and
prove that a countable arithmetically regular ordinal e has the form a = ﬁnX for some X e (w) N Ly
fF it is not arithmetically inaccessible and each f <« is a~projectable into w. We consider also similar
«questions in the uncountable case.
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1. Preliminaries. Throughout the paper we work in the Zermelo—Fraenkel set:
theory, informally using classes, e.g. On and L. We use the standard set theoretic
notation. We use & for the real world membership relation. A set a is fransitive
if x ey e a implies x e & for all x, . For any x there is a smallest transitive set @
such that xca, called the fransitive closure of X, TC(x). The hereditary cardinality
of a set x is the cardinality of TC(x). We use H, to denote the collection of sets of
hereditary cardinality less than s, % being a cardinal. Thus, Hy, is just the collection
of the hereditarily countable sets, HC. By ZF~ we denote the ZF set theory minus
the power set axiom. We use V = HC to denote the set-theoretical statement “every
set is countable”.

We begin by recalling the notion of relative constructibility. This notion was
introduced by A. Lévy in [13] as a generalization of Godel’s definition of construct-
ibility from [9]. However, we consider a generalization of Godel’s-original definition
from [8]. See J. Silver [17]. Given a set X, define
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Lolx] = TC({x}) ,

Lews 3] = Def (L[], ),
Lx] = U {L[x]: ae i}
Lx] = U {L[x]: a € On},

where Def(3/) stands for the collection of subsets first-order definable in the mo-

del M with parameters allowed. All basic facts concerning the notion of construct-

ibility can be reproved in the relativized version. A reader unfamiliar with these proofs.

might want to read Section 3 of Silver [17].

Let us also recall some basic facts concerning second-order arithmetic 4,. 4, is
formalized in a two-sorted language: small letters x, p, ... are intended to vary over
natural numbers and capital letters X, ¥, Z, ... — over sets of natural numbers.
The axioms of 4, consist of the following statements: the Peano axioms for natural
numbers; the axiom of extensionality; the comprehension schema and the following
schema of choice (AC,, in Kreisel’s [11] notation): .

@WEY)E(x, )~>(EY) ) S(x, ¥*)
for every @ in the language of A, where
Y9 = {z: J(z, x)e ¥}

and J'is a standard pairing function on natural numbers. A f-model is a model
for which the notion of a well-ordering is absolute. B~-models of second-o1der number
theory correspond to transitive models of set theory. It is well-known that A, is
mutually interpretable with ZF~+V = HC. This is usually proved by the method
of hereditarily countable well-founded trees on w. A reader unfamiliar with that
subject might consult Kreisel [11] or' Zbierski [19]. This result remains true when one
adds the axiom of constructibility to both theories. In the arithmetical case this axiom
was formulated by Addison [1]; we denote this sentence by CONSTR. We need the
following model counterpart of these important results.

1.1. Lemma (Zbierski). M is a f-model of A, +CONSTR if M =L, @ (o)
Sor a unique ordinal o such that L,k ZF~+V = HC. ‘

The ordinal « in this lemma is just equal to A(D¥) (the height of M), i.e. the

l_east ordinal not representable in M. We use L, to denote the set of sets construct-
ible before o.

for limit 4,

2. Second-order arithmetic case. We begin by recalling some fundamental results:
on.t}?e ramified analytical hierarchy. This hierarchy was introduced by S. C. Kleene..
‘It is instructive to regard it as the analytic counterpart of the constructible hierarchy
in set theory. Le.t M- be a collection of reals. Then D(WY) denotes the set of subsets
of w definable in (M, @, 0, +, -, &), possibly. with parameters. Given a real X,
define i

- RA,.[X] = D(RA,[X]),
RA,[X] = U {RA[X]: ael},
RAIXT= U{RA,[X]: «eOn}.

icm°®

Relatively constructible transitive models 163

By an easy cardinality argument one sees that there is an ordinal o such that
RA[X] = RA,[X] = RA,,[X]. Define B% to be the least such ordinal. For X' = @,
we omit writing X in all the above definitions and for ¥ e RA we say that Yis ramified
analytical. For Y € RA[X] we say that Y is ramified analytical from X The funda-
mental result, due to R. O. Gandy and H. Putnam, states that the collection RA[X]
forms the minimal f-model of 4, containing X as an element: see Boyd, Hensel,
Putnam [3]. Moreover, for every XS, S is countable and A(RA[X]) = f5. The
level by level comparison of the ramified analytical hierarchy and the constructible
hierarchy was made by G.Boolos in [2] and R. B. Jensen in his Habilitationschrift:
If a<<py, then RA,[X) = L,[X1n p(w). Let us also recall that RA E CONSTR,
i.e. the axiom of constructibility holds in RA.

The following is the main question of the present section: Let 3 be a f-model
of 4. Does M have the form M = RA[X] for some XS ? In other words, we ask
whether there is an X< o such that 9t is the minimal S-model of 4, containing X as
an element.

In the language of 4, we can formalize the statement that a collection of reals
is countable by saying that it can be encoded by a single real. This means that there
is a real Y such that our collection is just equal to

(YO, YO, y®, ).

2.1. THEOREM. Suppose that 9t is a B-model of A,+CONSTR. I = RA[X]
for some Xcwo iff ME “there exist at most countably many [i‘Qmodels of
A4,+CONSTR”. : ‘ ‘

Proof. First assume that M is a f-model of 4,+CONSTR such that
9 F “there are at most countably many f-models of 4, +CONSTR”, By Zbierski’s
lemma 1.1, M = L, n p(w). Consider

y = sup{f<a: Ly n p(w) is a f-model of 4,}.

Then y is the supremum of the heights of all B-models of A, +CONSTR which are
encoded within 9. By our assumptions this subset is countable in . Therefore |
y <a, since the operation of supremum is well-defined in 4,. Let X' be a well—ordering.
of o of type y belonging to L,. Such a well-ordering does exist because L, k “every
set is countable™. '

Cuam 1. L [X]E ZE™. o

Proof of Claim 1. In fact, L,[X] = L, and L, F ZF~. To prove this equality,
note first that L, &L, [X], by the definition of relative constructibility, and secondly
that L,[X]<L,, because of the following, slightly more genera]l well-known fact:

(*) If M is a transitive model of a reasonable fragment of set theory and x € M,
then Ly [X]S M.

The proof of (x) follows by a simple application of the principle of transfinite induc-
tion. Also, the absoluteness of the formula x € L, plays an importantrole, By a “reason-
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able fragment” we mean a fragment which allows us to prove (). Clearly, the Kripke~
Platek- set theory is a reasonable fragment and ZF~ does contain KP.
CLAM 2. If f<a then Ly[X] not k ZF~.

.Pr.oof of Claim 2. Assume that the above does not hold and work for a con-
tradiction. Assume that there is a § <o such that Ly[X1F ZF~. Then f>9, since X'is
a real wo.rld well-ordering of type y and one can prove that every We]l~:)1'cleri11g is
1somqphxc to an ordinal in ZF~. Moreover, L, F ZF~ because it is just the con-
structible part of model L,[X]. Hence f>«, by the choice of y. A contradiction
Thus L, [X" ] is the smallest transitive model of ZF~ containing X as an e‘lement‘
Therefore its analytic part L,[X] N @ (w) is the smallest f-model of A, containiné){"
as an element. But L, = L,[X] and M = L, @ (w). Applying the Gandy-Putnam,
result on relative ramified analysis, we conclude that 9 = RA[X]. This ¢ l‘ [es
the proof of one direction of the theorem. . opes

Suppose now that M is a f-model of A, and M = RALX] for some Xco
Assume that ME 71 “there exist at most countably maﬁy B -mc;dels of:
A, +CONSTR™. Again, M = L, N #(w) by Zbierski’s lemma 1.1, Clearly

Lo =sup{f<a: Ly np(w) is a f-model of Ay}
This means

‘ M= U{Ln ©(@): Ly n p(w) is a f-model of A3} .

.Consider an arbitrary X e 9. ?Fhere isa f<asuchthat X e Ly 0 p(w)and Ly n p(w)
is a f-model of 4, plus the axiom of constructibility. The latter f-model 'is egsentially

smaller than M. Therefore, we have RA[X] 1 i
al ! X X1£M by appl -
result once again. This completes the proof% ’ PP yine the Ganqy putam

2.2. COROLLARY. There is a countable
n -model M 1
does not have the form M = RA[X 1 for anyﬁX =N o at CONSTR. which

Proof. It is.sufficient to find an ordinal « such, that I, k ZF~ +V = HC and
o= sup{f<a: Lyk ZF"+V = HC} .

Then Iet M = L, n p(w). It is fairl
X airly easy to prove that such ordinals do exist
tefer the reader to Marek and Srebrny [15], where such ordinals o e

! ¢ ! are called ga
inaccessible). For example, take an a< o} such that Ly< L. .

2.3. COROLLARY. There are Y i ;
Y. 1 constructibly countable B-models 9 ‘
A,+CONSTR. which do not have the Sform M = RA[X] for anyl}X coaf o

Let us consider also f-model i i
der 2 - s of 4, in which the axiom of constructibility i
false. The following result is an introductory one. ottty s

2.4. THEOREM. There is a constructible real X such  that

Conerm RA[XT] notk

P .
i r;zlczﬁ.tﬁxpply a Cohfen forcing argument within the universe L. A Cohen, ge-
iyt Lelg constn;chble, because we have made it inside L. (This real is marked
I N .L”.) For instance, consider such an extension of Ly, Ly, [G]. By the
El o N
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well-known forcing lemmas, Ly, [G] is the smallest transitive model of ZF~+V = HC
containing Ly, and containing G as an element. Therefore, Ly, [G] is the smallest
transitive model of ZE~ containing G as an element. Hence, Ly, [G] n p(w) = RA[G],
by the Gandy-Putnam result. Moreover, RA[G] not F CONSTR, by Zbierski’s lemma
1.1. Q.E.D.

A similar result was proved by Enderton in [5]. Namely, he proved that there
is a f-model M of A4, such that ML but M not E CONSTR, essentially by the
same method.

It is much more difficult to answer our main question in the case of 8 -models
not satisfying the axiom of comstructibility. By the same reasoning as above one can
prove the lemma below.

2.5. LEMMA. Let M be a f-model of A,. M = RA[X], for some Xecw iff M is
not a union of B-models properly included in M.

However, there are §-models M which are not of the form RA[X] and are not
unions of any family of f-models each encoded in 9. For instance, one can extend
the minimal -model to a f-model which is the union of a family of S-models of
the same height.

3. Aritbmetically regalar ordinals. In the previous section we studied f-models
of A, and asked whether they have the form RA[X]. In the present section we con-
sider ordinals which are the heights of f-models of 4, and ask whether they have
the form B . First, we reformulate some notions concerning f-models into the lan-
guage of generalized recursion theory, in the sense of Kripke and Platek. The reader
is referred to R. Platek [16] for recursion-theoretic intuitions and the development
of this theory.

The main notion of generalized recursion is that of a recursively regular ordinal,
called also admissible: An ordinal is recursively regular iff L, is an admissible set,
i.e., L, models Kripke-Platek set theory, which consists of the following axioms:
extensionality, regularity, pairing, union and the schemas of Ag-separation and
Ag-collection. The name “recursively regulac” is justified by the condition that
no a-recursive function maps an a-bounded subset of & cofinally into &, where a func-
tion mapping « into o is said to be a-recursive iff its graph is 4,-definable in (L, &>
a subset of o is said to be o-bounded iff there is a f<a greater than each member
of that subset. Rouglﬂy,‘ {his means that e cannot be reached from below by any
g-recursive function with an o-bounded domain. Following Platek [16], define
a function mapping « into « to be a-arithmetical iff its graph is Z,-definable in
(L, €y for some ne . This is natural, because arithmeticalness corresponds to
first-order quantification followed by a primitive recursive predicate and A4q-ness
is an analogue of primitive recursiveness. As is well known, functions X;-definable
in (L,, € are just a~recursively enumerable. Define o to be arithmetically regular
iff it cannot be reached from below by any o-arithmetical function. It is easy to see
that « is arithmetically regular just in case L, models ZF™. Define o to be locally
countable iff L,k V = HC. This property can also be expressed in the a-recursion=
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theoretic way. In fact, « is locally countable iff each f<« is a-projectable into e,
i.e., projectable by an o-finite function. '
‘We would like to point out that these notions provide a link between, «-recursion
and f-models of analysis. This link is formed by Lemma 1.1, which — in this termin-
ology — says that o is arithmetically regular and locally countable iff it is the height
o.f a f-model of analysis plus the axiom of constructibility. Such ordinals were inves-
tigated in W. Marek and M. Srebrny [15]. They showed that these ordinals are just
the ordinals starting the so called gaps in the constructible universe. This is Jjustified
py the following result of [15]: « is arithmetically regular and locally counte.tble
iff there is no new real in L, ., and for each f<a there are reals in L, —L,. A reader
nf)t_ familiar with [15] might adopt one of these equivalent conditio;s aﬂs the defi-
n{tlon of the notion of ordinal starting a gap. Also, let us note that by some cbnsideﬁ
ations of A. Zarach [18], an ordinal e <o, is arithmetically regular ifTit is the height
of a f-model of 4,. The idea is to collapse « to @ by an argument of forcing with
proper classes. If o is arithmetically regular, then such a generic extension of L, forms
;11 :it;?tdzr.d transitive model of ZF~+V = HC. Its analytic partisa f-model of 4, of
The ab-ove-mentioned link between arithmetically regular ordinals and f-mo-
dels 9f 4, is much the same in nature as the link between admissible ordinals and
relative hyperarithmeticalness. The most important feature of the latter is the well-
;c\llww.n theorem of G, E. Sacks concerning the form of countable admissible ordil1a1§.
1-5 ;uix;e::;fnzj?e results tending in the same direction for the case of arithmetically
3.1. TeeOoREM. B, is the least arithmerically regular ordinal,
Proof. Ly, is the smallest transitive model of ZF~.

The ordi X ar i
o Xo; wlnallf.«;f thelform By are natura} analogues of the ordinals of the form
: 1t, e ¢ , Which are just the least o recursively regularin X, i.e. L, [X]models KP
ut L, oes not model KP for any f<a. Compare the f i i
5 a " oll 1 L
results on w}, due to Kripke [12]. ? i vith analogous
3.2. THEOREM. For every X<w, BY is arithmetically regular.

. c]:::}c:f. Conmdel; RA[X]. By the considerations of Section 2 of this paper it
o clear at RA[X] = Lyx[X] A p(w) and Lyx[X] models ZF~. Thus L;x = ZF~
or it is the constructible part of Lix[X]. Q.E.D. " ,

a l(j)lz; Zaili'zlatlylze .tc1]1e. notion of'an ar'ithm‘etically regular ordinal. A function
L De e e o is sai to‘ b‘e c-arithmetical in X iff its graph is Z,-definable in
n;etical s .n € clol The 'o1dm§ls not reache.d from below by any function o -arith-
o in & 1-1: :12\ efi clrz{hmetzcally regularin X. Again, it is easy to see thatois
e ey Onxer cai ar in iX‘ iff L, [X] 'models ZF~. .It is worth mentioning that in the
At Ige?l?a ize the notion of an «-arithmetical function to an arbitrary
o dev.elg tl]i way one comes to the tn?nsitive models of ZF ~ as convenient
e 1 ) ! e.theory o.f abstract arithmetical functions. They play the
ole here as admllssxble sets in the theory of generalized recursive functions
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3.3, THEOREM. Let X< . BY is the least ordinal arithmetically regular in X.

Proof. We have to prove that Lyx[X] models ZE~ and L,[X]] does not model
ZF~ for any y<B5. Lyr[X] n p(e) = RA[X] and the theorem follows immediately
by the Gandy-Putnam result.

The converse theorem. to 3.3 is the main question of this section. Given a count-
able arithmetically regular ordinal , does o have the form « = X, for some X< w?
Once again we are faced with an analogy to the case of recursively regular ordinals.
The theorem of Sacks says that every countable recursively regular o has the form
o = o). The reader might consult H. Friedman and R. Jensen [7]. Unfortunately
the same proof does not work. The proof, due to Grilliot and Simpsen, by the
Omitting Types Theorem does not work in this case either. Both these proofs use the
lemma that w-models of ZF ™~ are closed under relative recursiveness. While trying to
apply these prgofs to our case, one is faced with the question of closure under relative
ramified -analyticalness, which is easy to be answered negatively ™.

Let us introduce the notion of arithmetical inaccessibility and gap inaccessibility.

3.4 DEFINITION. Let f; be the monotonic enumeration of the ordinals which
start gaps and let y, be the monotonic enumeration of the arithmetically regular ordi-
nals. f, is gap inaccessible iff & = B.v,is arithmetically inaccessibleif &€ = y,. Thusis
.gap inaccessible iff it starts a gap and is a limit of ordinals starting gaps. Similarly,
an arithmetically regular o is arithmetically inaccessible iff itis a limit of arithmetically
regular ordinals.

3.5. TueoREM. If o is countable and arithmetically regular but not arithmetically

inaccessible, then o has the form o = BE for some X< ow.

Proof. Consider
y = sup{f<a: B is arithmetically regular} .

y<a, by our assumption. Let X be a Cohen generic real collapsing y into w. Then
L,[X']k ZF~. We have to show that there is no B <o such that Ly[X] k ZF~. Then
by the results of previous sections L, [X] n p (@) = RA[X] and L,[X]EV = HC.
Therefore, o = hA(RA[X]) = B%. So, assume that f <« and Ly [X]1E ZF~ and work
for a contradiction. By this assumption, Ly models ZE~, for it is the constructible
part of Ly [X]. But X is a characteristic function of a well-ordering of w of type .
Hence, 7, because every well-ordering is isomorphic to an ordinal in ZF~.
Thus fa, by the choice of y. A contradiction. Q.E.D.

One can strenghten the conclusion of 3.5 by choosing X constructible. In fact,
we did the above proof in the Zsrmslo-Fraenkel set theory, and so one can
do the same within the constructible universe. All the notions used in the above
proof are absolute for L. The following result is a complementary one to 3.5.

() After completing the paper the author was informed by Professor G. E. Sacks that, actually,
every countable arithmetically regular ordinal has the form 65( for some X C o, This result is proved
in G. E. Sacks “F-recursiveness”, in the Logic Colloguium 69 (1971).
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3.6. 7 ic £
6. THEOREM. Lef o be arithmetically regular. o has the form o = BY for some

Xep(@) n L, iff a is locally countable and not arithmetically inaccessible.
Proof. This is an immediate consequence of 2.1.

3.7. i
7. COROLLARY. Let o be a gap ordinal, Then « has the Jorm o = B for some

Xep(w) L, iff o is not gap inaccessible,
Let us also mention two facts following from 2.1.

3.8. CoroLLARY. Let M be a B-model of 4
. P 2+CONSTR. Then I =
Jor some Xcw, iff h(OM) is not gap inaccessible. l

3.9. CoroLLArY. Let X, If RA [X]k CONSTR, then p

RA[X]

e % is not gap inaccess-
- Re}nark. The converse implication does not hold, For instance
Inaccessible, while the proof of Theorem 2.4 gives us ’
and RA[G] not ¥ CONSTR.
; We close this section with some considerations on rel
;Z:Sm%c,lels of ZF These considerations are actually similar in nature to the previous
o d.l e consider the following question of G. E. Sacks: Let L, be a cbuntable
p Z oceL,oi ,\g]l;]; ZC;II;. ;1116 always find a real X such that L,[X1E ZF but -for no
" ¢ 'The word “always” is important here, b
: . , because there are some
ﬁfic;i:r;;;es \:thch were, 1most probably, known to Sacks. This paper has arrisen
or's unsuccessful attempts to answer this i is” secti
o . : ‘ question. This" section has
° n?; be;.n cli:evoted to considerations of a slightly easier version of this qucstio;].
y, for L, a model of ZF~. However the ZF case is very different.
Our result in the ZF case is the following version of Theorem 2.1.

.3.10, LeMMA. Let L, be a countable model
required by Sacks iff Lk«

fo is not gap
a real G such that f§ = g,

/ of ZF. Then there is a real X e L,
there exist at most countably many transitive models of

ZF+V = 1.7,
The following three result i i
cation) g esults are due to A. R. D. Mathias (private communi-

3.11. ‘
vanss n’me:Ee([)REM.ZSuppose tha‘t «<w; and L,k ZF. If L,k “the collection of all
. Is of ZF+V =L ig bounded?, then there is a real required by Sucks.
roof. Take a Cohen generic real collapsing the ordinal

v =sup{f<a: Ly F ZF} <u. Q.E.D.

3.12. THEOREM. Jj L,k ZF and o =
added by a forcing extension of L,.

Pr i
_ 1t ](; ;i. issuzpc:e Ehat there is sucl} an X added by a forcing extension of L.
L = I b €L, §uch that B is a complete Boolean algebra in L, antl
t}:atL N ZaF » Where F is so;ne L,-complete filter on B. Now let <o b; sucl
" > Be Ly and P(B)l €Ly. Then Ly/F = L,[X], so L,[X1k ZF. Q.E ]31

sup{f<a: L, k ZF}, then no such X can be

atively constructible transi- -
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3.13. Remark. On the other hand, let «<w; be the least ordinal such that
L,[0*]F ZF. Then
sup{f<o: Ly ZF} = a.

Finally let us point out that the proof of Theorem 3.12 makes essential use of the-
power set axiom.

4, Uncountable case. In this section we consider the forty sixth problem of
H. Friedman [6]. He conjectures that. If o, <a<w, is admissible, then o is the first
ordinal admissible in some x =w;. We do not prove this conjecture in full generality.
We only have a partial answer to this question in some simple cases. We use once
again the same reasoning as in the previous sections of this paper.

We say that o is admissible in x iff L,[x] models the Kripke-Platek set theory.
By A< B we mean that {4, €) is a I;-elementary submodel of (B, &), ie, A= B
and for every Z,-formula & and a,,..,a,6 4

AEBlay, o, a] e BEDlay, .., a] -

Define a to be locally of power §, iff L, F “every set is of cardinality <,”, where &, is
defined, as usual, to be the pth infinite cardinal. « is said to be projectable into B iff”
there is a total a-recursive one-one function into B.

4.1. LEMMA. Suppose that « is admissible but not recursively inaccessible. Let
N,’;”‘ be the 8, in the sense of {L,, €). Then o is locally of power s, iff o is projectable
into s,’;‘.

4.2. THEOREM. Assume V = L.Suppose v, <«. Then o is the first ordinal admiss--
ible in some x&p(w,) N L, iff

(a) o is not recursively inaccessible,

(b) o is locally of power 8.

Proof. First, we prove the implication from the left to the right. Suppose that «
is the first ordinal admissible in x & p(wy) N L,. To prove (a) assume that « is re-
cursively inaccessible. Then there is an admissible ordinal y<a such that xeL,.
But L, = L,[x], by () in Section 2. Then o cannot be the first ordinal admissible
in x, contrary to our assumption.

Now we prove that « is locally of power ;. Suppose that it is not, i.e. that
L, &V # Hy,. Consider (Hy,)™, the collection of sets of hereditary cardinality <8y
within L,, i.e. ‘

onto

(e Ly Lk (Bf)[Func(f) &f: sis - TCEL} -

Cramt 1. (Hy)™, € < <Ly €D

This is just the well-known lemma of Lévy [13], but proved in KP instead of ZF.
A proof is essentially the same as Lévy’s original proof with the exception that in our
case (Hy,)" is not proved to be a set of L, yet. However, we are in a slightly better
situation here, because we can additionally use the axiom of constructibility. The:
proof below follows some ideas of D. Guaspari.
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Proof of Claim 1. Let &(x,, ..., %,) be a X;-formula and Vi s Yy € (Hig )
W.1.0.g. we can assume that & has the form (Ex) ¥ (¢, %45 ..v, %) for a do-formula .
Buppose <L,, € k (Bx) ¥(x, ) and let y be a witness for ¥. There is a d<a such
that y e L; and TC({y,, ..., »,}) € Ls. Ther, by the absoluteness of Ay-formulas for
transitive models, we get (L, €) k (Bx) ¥ (x, Y1 P). Now consider the hull of
TC({y1 ., 1, for the skolem functions of formula & and extensionality in
<L;, €. Since the number of these functions is finite and all of them are definable,
the hull belongs to L,. Collapse the hull. It is easy to see that the collapse is of cardi-
mality <, in L,. Again by the absoluteness we can pick up another witness 3 for ¥
belonging to the collapse. Thus we have a witness of cardinality <&, in L, and the
proof is complete.

CramM 2. (Hy )™ is transitive.

Proof of Claim 2. Take an arbitrary ae(Hy,)™ We have to show that

a=(Hy,)™. But there is a function fr 8= in L,. This is a ¥, -statement with

* Parameters 8= and 4, both belonging to (Hy,)™, Then it holds in (Hy,)™ by Claim 1.

Let fe (Hy,)™ be such a function. The same S works in L, as well. If & (Hy )™,
then f would not be “onto” in L,. This completes the proof of the claim.

Now, (Hy)** = L, for some y<«, by the condensation lemma. Simply y plays

the role of 8, within {L,, €. Moreover, x & L, since x is of L,-cardinality x,. Also,

L, is admissible, as a transitive Zy-elementary submodel of an admissible set, Then

L, [x] is admissible, because it is equal to L,, by (») in Ssction 2. This contradicts the

assumption that ¢ is the first ordinal admissible in x. This completes the proof of
this direction.

We now proceed from the right to the left. Assume (a) and (b). Consider
7 = sup{f<u: Ly F KP}. y<a, since o is not recursively inaccessible. Then there
is a well-ordeting xcw, of type y in L,. We identify x with the relation
i, v>: T, v) e x), where J is a standard pairing function on countable ordinals.
‘The existence of such a well-ordering follows easily by (b). This x does work. In fact,
L, [x] k KP, because L, [x] L,. It remains to show that if B <athen Ly [x]not k KP.
Assume that S<« and L, [x] E KP, Then L, F KP, because it is the constructible
part of Ly [x]. Therefore y> B, because v is an upper bound of ordinals with these
properties in L,. But x is a real well-ordering and therefore it is isomorphic to an
ordinal in L;. Hence f>y. A contradiction. Q.E.D. :

4.3. CoROLLARY (Pethaps V + L). Suppose that >k is admissible. Then o is
the first ordinal admissible in some x e go(co'f) N L, iff

(2) o is not recursively inaccessible,

(b) o is locally of power Ny,

The rest of this section is devoted to the listing of several results of the same kind
-as 4.2 and 4.3. The reader can meodify the proof of 4.2 to obtain these results. By x* we
mean the least cardinal, i.e, the least initial ordinal, gre

ater thanx, and by %*% we
mean the least L-cardinal greater than s.
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4.4, THEOREM. Assume V = L. Suppose that x is a cardinal and a>x is admissible.
Then o is the first ordinal admissible in somé x € (%) N Ly iff

(a) o is not recursively inaccessible,

(b) a is locally of power x. . -

4.5. CoroLLARY (Perhaps V # L). Suppose that x is an L-cardinal cfnd o>
is admissible. Then o is the first ordinal admissible in some x € (%) N Ly iff

(a) « is not recursively inaccessible,

(b) « is locally power . ‘ .

The remaining cases of the forty sixth question of H. Friedman are left otzixlz
They seem to be really difficult at the present state of knowledg;:. abt(.)ut u?coMu:rtin’s

i i Devlin [4] generalization o

models. However, it seems possible to use : : "
axiom to solve these problems. In fact, that form of Martin’s axiom enablis;v :i‘ etg
carry over the Cohen generic extension construction to an uncouutabl:a case. e
that this can be the way leading to the uncountable analogue of Sz(fks thE:(})lrelm. s
would be complete positive answer to Friedman’s question but with the help o

iti i i ture research.
additional axiom. We put this off to ful ) )
One can re-prove the above results for the case of uncountable arithmetically

regulargordinals, and also for Z,-admissible ordinals. Note also tl.16 flollowmg results
01; uncountable models of ZF and on uncountable stable ordinals. ”

4.6. THEOREM. Suppose that x is an L-cardinal and zx'>sc. If L,E Zth;lkat £ Er:i:
exist at most x transitive models of ZF+V = L”., then there is [an xct% suc "
is the smallest transitive model of ZF containing x as an element. y

47, THEOREM. Suppose x<o<x*" and let o' denote the first sta_ble[ or ,;mke
grearelr than o. Then o' is the first ordinal stable in some x <. In particular, ta
s h is not limit in
4.8. LevMa. If o is the first ordinal stable in some X &€ L, then o 1
the monotonic enumeration of stable ordinals.

i in x. is stable.

49. LemMa. If o is stable in x, then o is 8 o .

4.10. COROLLARY. If % is an L-cardinal and every stable o of L-cardinality x is
the first stable ordinal in some xcx, then P EL. o

Proof. Consider a stable ordinal ¢ = U {o;: é<)y‘} where oy are z;fsz s con;
Suppose that there is an x < such that & is the first ordinal fs’cabletln J;bﬂi;y oo

i L[x tisfies the axiom of construc .
structible, then L[x] = L and so L,[x] sa , o e
itisa tra;lsitive model of height o, we have L,[x] = .L,,. . Th.us,x -EL“ fo;l s]c;m &
Moreover, L,,[x]<,L[x], which contradicts the minimality of o. Q.E.D.
s Log |2

The converse to 4.10 remains an open question.
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A geometric filtration of %%*
by

Michael C Bix (Madison, Wisc.)

Abstract. If a is the cobordism class of a manifold with in\{o]u?ion, e(a) isd%ef‘iin&?d ;:n ;t):e tf}:;
smallest integer # such that a representative of a can be Zy-equivariantly embe d.e 1rlxassesc: o
ome s, where Z, acts on K*** by multiplying the first ncoordinates by —1. Zy-cobor 11smc asse er,;, ]\k
2 ] ) . y

:.re ex;ﬂbited such that e(g,) = e(B,) but e(a,+) = e(a)—k, for arbitrarily large integ .
. . pn
Let 92 be the cobordism ring of manifolds with involutions. Let z, denote .RP]

K i A ! : .
with the Z,-action given in homogeneous coordinates by [Xg, Xy, s Xy
) 7
—[—Xg, Xq, «ue, X,). Define I': RENZ by
MxSt

T = | — ———
T = G =@, —2)
Lz 120,k=1, n1>121>...2nk>1} is a set of ger}eratc?m
A where I'° denotes the identity

, [m, z]—=[m, Z]] .

Then {1} v {("z,) 2, -
for M% as an m*-rlnogule (Alexander [1], Stong [7]),
a ). P - -
m 1T0 define a geometric filtration of NZ j» let F(i, j) be the s.et ?f Zl,_ cob{s;j:js;'g‘
classes having representatives which, for some s, can be Z,-equivar lar}t y em o
in R**, furnished with the Z,-action (%1, ..., Kypg) (= X15 eees —Fis Xiv1s :_’n ;_:s .
Tt is known that (I'z,)z,, .- Zn € F+ny+n2+ . 1, 0? and. ¢F(z;l—7?1 O:Sib.l;
+n,—1,1) (Bix [2]). But even if a, b e F(i,j) and ¢F(z—1,.]+1), 1t. is p :
-ti.lat r’;+b’e F(i—k, j+k) for some k>0. The main result of this paper is that such
in di for i arbitrarily large.
drops in dimension occur with k ar
THEOREM. 22 +7,4 12y + 1" 120y + 1" 20 € F(n+1,n—1) and ¢ l;(n,jiz,);
* “n n "~
while z%42,41%,—1 and iz, o+ Itz € F(20,0) and ¢ FQ2r—1,1), fo
all n>3. ’ | . .
P/ro of. The classifying map of the normal bundle to the fixed-point set of

E ]
ism i W Ny (BO (K
a manifold with involution defines a monomorphism 7: N —>kE:Do o ())

s x, i di f the canonical line bundle over RP”
= Mulxg, Xy, -], Where x, is the bordism class OI. ‘ I ndle iy
a%ii;c[{ﬁan 1[3] ][4] Conn,:ar and Floyd [5]). We identify a manifold w:th 1m(7101ut10n

o H 9 . _ )
with. the image under i of its Z,-cobordism class. S0 z, = X,-4+x5. An

- 1=2 i—1 .
Fiz = Xy 1x%)+x'(l)+‘i+[Zn]inO"'[an]fo') 1+[rzzr|]2x0 ++[F zn]ZJ“O >
n -
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