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Abstract. Only separable metric spaces X are considered here, so that the space M(X) of
probability measures on X (endowed with the weak-* topology) is separable metric. Let TC, PC,
and BC be abbreviations for “topologically complete”, “pseudo-complete” (i.e. contains a dense
TC subspace), and “Baire complete”, respectively. It is well known that (X is TC)=-(X is PC)
=(X is BC) and that the implications are irreversible. Prohorov [7] proved that (X is TC)
= (M(X)is TC). It is the purpose of this note to show that (X is PC)=(M(X) is PC)=(M(X) is BC)
=»(X is BC) and that the implications are irreversible. The Continuum Hypothesis is assumed where
needed.

The notation, definitions and theorems in Parthasarathy’s book [6] will be
assumed here. Only metric spaces X will be considered. If 4 is a metric for X, X will
denote the d-completion of X. B(X) denotes the Borel o-field generated by the open
subsets of X. Let X be a subspace of ¥. For each u € M(X), let u¥ denote the element
of M(¥) such that u*(E) = u(E n X) for each E e B(Y). Then, if ve M(Y), then v
will be said to have restriction to X if there is a p e M(X) (necessarily unique) such
that v = u* (this will happen if and only if v*(X) = 1). M(X) may be considered
to be topologically imbedded in M(Y) as the set M; = {u'| pe M(X)}. Proper-
ties TC, PC [5], and BC have been extensively investigated in [1].

THEOREM 1. Let X be separable metric. If X is PC, then M(X) is PC.

Proof. Let X, be a dense G subset of X such that X; is a G subset of X%
Let e be the restriction of d to Xy x Xy.X? and X" are isometric. Let E< X bea count-
able dense subset of X. Let M, = {pe M(X)| p(X,) = 1}. M, is dense in M(X)
because the set of measures with finite support from ¥ is dense in M (X)([6], p. 44).
M, is also topologicelly equivalent to {ue M(XT)| u(X;) = 1}, which is a G; in
the complete space M(X7) (see the proof of Theorem 6.5, [6], p. 46). Therefore M is
topologically complete, and M(X) is PC. .

THEOREM 2. There exists a subspace X of the reals such that M(X) is PC but X is
not PC.

* The author thanks Prof. H, G. Tucker of The University of California at Irvine for in-
troducing him to this topic.
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Proof. Let X be a subset of ¥ = [0, 1] such that X and ¥ —X both intersect
every Cantor subset of ¥ ([3], p. 514). Assume the metric is the relative Euclidean
metric so that Y is isometric to X?. X is not PC because ¥ —X is second category
in Y. Let M, ={pe M(X)| u is non-atomic} and M, = {ue M(¥Y)| p is non-
atomic}. Since X intersects every Cantor set-in Y, it follows that p*(X) =1 for
every pe M,. So associating each element of M, with its unique restriction to X°
will show that A, and M, are homeomorphic. But M, is a dense G; in the complete
space M(Y). Theorefore M, is a dense subset of M(X) which is TC, so M(X)
is PC.

Levma 1. Let X be separable metric. If Ne B(X) is nowhere dense in X' and
£>0, then L = {pe M(X)| p(N)>¢} is nowhere dense in M(X).

Proof. Let Q be open in M(X) and E be a countable subset of X-cl(N) which
is dense in X. There exists y; € Q with support a finite subset (x4, x5, ..., x,) of E.
Foreach g = 1,2,...,m, let O, be a neighborhood of x, which does not intersect N.
Then the open set @ {ue M(X)| p(X~0, U 0, U ...u 0,)<e}, which con-
tains p,, does not intersect L.

THEOREM 3. Let X be separable metric. If M(X) is BC, then X is BC.

Proof. Let {G,} be a sequence of open, dense in X subsets of X. For each x,

set M, = {pe M(X)| u(G)>1—(3)""'}. Bach M, is open in M(X) and (from
Lemma 1) dense in M(X). Since M(X) is BC; ﬁ M, is dense in M(X). For every
xeX and open neighborhood N of x, there te:jés’cs a Zsequence {u;} from F\ M;
converging to p;. For some 7, u,(N)>1%. Since o

(GinGyn.)>Y, NaGnGn..#0,
so X is BC.

THEOREM 4. The Contimum Hypothesis implies the existence of a subspace X of
the reals such thar X is BC but M(X) is not BC.

Proof. N. Lusin showed that the Continnum Hypothesis implies the existence

of an uncountable subset L of [0, 1] each nowhere dense in [0, 1] subset of which is ‘

countf:tble ([31, p. 525). It follows that L is second category in the reals, so there is
some interval ¥ in which L is uncountably dense. Assume ¥ = [0, 1], and let X = L.
-EVCIY nowhere dense in X subset of X is countable, and X is uncountably dense in
itself, so X is BC. Every element of M (X) has an atom ([3], p. 532), so every element of
M(X) istotally atomic. Thus, M (X) is homeomorphic to M= {peM(|ulC) =1
for some counta}:le CeX}. Let M, = {ue M(Y)| p is non-atomic}. Since X is
dense in ¥, M, is dense in M(Y) ([6], p. 44). M, is a dense G, subset of M(Y),
and M, S M(Y)—M,. It follows that M. 1 is not BC when considered as space (in
fact, every open in M, set is first category in M, 1). Thus, M (X is not BC.
Remark 1. Theorem 4 was proved by utilizing a space X which is dense in itself
apd BC (pherefore uncountably dense in itself) and also a so-called B space (8]
(i.e. every element of M(X) is totally atomic). It is natural to ask if the existence of
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such a space can be established without the aid of the Continuum Hypothesis.
The existence of an uncountable f-space has been so established [2, 8], but it can be
shown that the technique used could not possibly yield a space which is also BC.

Theorems 1, 2, and 3 still leave open the possibility that, within the context
of spaces M(X) of probability measures on metric spaces X, properties PC and BC
are equivalent. It is known that compactness and local compactness are equivalent
within this setting. Indeed, Luther [4] showed that “... if X is any topological space,
then P,(X) is locally compact if and only if it is compact”, where P,(X) is the appro-
priate generalization to the topological setting of the notion of the “space of prob-
ability measures”, The following lemma and Theorem 5 supply evidence that the
analogous situation does not hold for properties PC and BC.

LeMMA 2. Let ¥ = [0, 1], C be F, first category in ¥, Q be open in M(Y), and L
be F, first category in M(Y). Then there exists a dense F, first category subset D of
Y—C such that {ue M(Y)| u(D) = 1} intersects Q—L.

0
Proof. Let C.= | N,, where each N; is closed mowhere dense. The set
i=1

(he M 1(©>0) = U (ued(D] @11},

and each set in the union on the right is closed nowhere dense in M(Y) (see argu-
ment for Theorem 3). Therefore, L’ = L U {ue M(Y)| u(C)>0} is fust category
in M(Y). The set of all non-atomic u € M(Y) is residual in M(Y), so there is a non~
atomic measure v in @—ZL’. Then, v(C) = 0, so since v is regular, there exists a se-
quence {D,} of closed subsets of Y— C such that for each n, 0(D,)>1- 1/n and D, is
nowhere dense. Let E be a countable dense subset of Y—C. D=Eu D; U Dy U ...
is the desired set.

THEOREM 5. The Continuum Hypothesis implies the existence of a subspace X of
Y = [0, 1] such that M(X) is BC but not PC. .

Proof. X will be constructed as the union of the sets in a transfinite sequence
{4,} of disjoint dense F, first category subsets of Y. Assume the Continuum Hypoth-
esis is true and let {C,}, {Q,), and {L,} be well ordered sequences consisting of the
dense F, first category subsets of Y, the open subsets of M(Y), and the F, first
category subsets of M(Y), respectively, each transfinite sequence indexed by the
countable ordinals. For convenience, set 4o = By = Cy = L, = the empty set,
and proceed inductively as follows. Assume a is a countable ordinal such that 4z
and B, have been defined for every f<o. (1) Set C, = the union of all C, which
precede (in the sequence {Cy}) or equal By for some f<a. Using Lemma 2 with

C=Cy, @= Q,and L = UL, let 4, be the first set .D (in the sequence {Cs})y
p<a

satisfying the conclusion of tIle Lemma. (2) Set Cp = the umion of all C, which
precede or equal A,. Using Lemma 2 with C = Cg, @ = Q,, and L = {J L,

p<a
.
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let B, be the first set D satisfying the conclusion of the lemma. This process can be

completed for each countable ordinal, because the union of countably many F, first

category sets. (e.g. Cy, Cp, U Ly) is still F, first category. Now, let X' = (J 4,,
<o a

and X’ = | B,, both with the relative Euclidean topology.
o
M(X) can be considered to be imbedded in M (Y) as the set

My = {i| pe M(XD},

so it will be shown that M, considered as space, is BC but not PC.

M, is dense in M(Y), and M(Y) is TC, so there is a metrization of M(Y)
(and M, relatively) such that M(Y) is the completion of M. Now, suppose there is
an open set Q.in M(Y) such that M, n Q is first category in M(Y). Then, My n Q
is a subset of some L. There is an o> B such that Q,< Q. Now, 4, was chosen so
that there is some pe Q,— U L, such that p(4,) = 1. Since 4, & B(X)and 4,e B(Y),

y<a

pisin M, n Q, and this is a contradiction. Therefore, M, is dense and second cat-
egory in every open subset of M(¥). It follows that M as space (therefore M (X))
is BC. ,

M(X") can be considered to be imbedded in M(Y) as the set

M, = (| pe M(XN},

and it can similarly be shown that M, is dense and second category in every open
subset of M(¥). But M, and M, are disjoint, for suppose there exist ye M(X)
and ve M(X") such that u¥ = v¥. There will exist some countable ordinal oz such
that ¢#¥(C,) = v"(C,) = 1. Note that for every §>u, C, intersects neither 4, nor By,
50

#(U4g)=v(UBy)=1.
B<a B<a

But U4, and U B; are in B(Y) and disjoint, so

p<a pA<u
W(U dg)=v"(UBy)=1;
psa p<a
and

uytﬁg (40 Bl =2,

which is a contradiction. It follows that M. 1 and M(Y)~M, are both second cat-
egory in M(Y), so that M, (therefore M (X)) cannot be PC.

Remark 2. There should exist completeness conditions C; and C, for X such
that M(X) is PC if and only if X' is C; and M(X) is BC if and only if X is C,. The

author is at present unable to supply intrinsic topological characterizations of C,
and C,.

*
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