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Theory of equidistance and betweenness relations
in regular metric spaces *

by

M. Moszynska (Warszawa)

Abstract. The paper contains some partial results concerning theory of metric equidistance
and betweenness relations.

The purpose of this note is, roughly speaking, to describe metric spaces in terms
of two relations: equidistance relation D and betweenness relation B. From this
point of view, the class of all the metric spaces over ordered groups seems to be too
large on the one hand, and too small on the other; too large — as regards geometric
properties, and too small — as regards algebraic ones. For this reason, the objects
under consideration are some special metric spaces over rather general algebraic
structures.

To the author’s best knowledge, this is the first paper on this subject. Since many
questions remain open, the author believes this is not the last one.

To avoid any confusion, we give definitions of all the algebraic notions used
in the paper, even those which can be found in the literature.

Algebraic preliminaries. Let us consider a system % = (G, G,, 0, +) with
Go=G—{0}. We shall use a, 8,7, ... to denote elements of G, and 2,1, 4, ... to
denote arbitrary elements of G.

The system & is said to be a commutative semi-group generated by G, whenever

0 is a neutral element with respect to -+,

+ is associative and commutative,
and ‘

A= oy Aoy .

AFEQ agyen, i

% is a commutative semi-group with cancellation if additionally

Atp=A+p=2A=1 forevery ,A, 1.

* This paper was prepared at the Semir}arzva\Foundations ‘of Geometry conducted by
Professor W. Szmielew in 1973-74.
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Let N be the set of natural numbers and let N = N u {0}. Put

0-4A=0 and n-}.;——f(n—l)-}ﬁﬂ for neN, leG.
df

¥ is freely gemerated by G, whenever

A N oyt dmo = nga oA mog s my=mn, i=1,..,k).
F (01 weny Kic) ml,...,mke{f
ney €N

Exameie 1, The semi-group A4 = (N, {1}, 0, +) is freely generated by {1}. m

ExampLgE 2. Given an arbitrary set X, let us consider the following set of
functions:

c= {4 e N*: A(e) = 0 for almost all xe X,}.
R d.

Let

A+ ) (e) = Ay +u(e) for every ae X, ;
of course, setting

A= Oil(a) = 0 for every xe X,
we get a neutral element of +. Take the subset C, of C consisting of the non-zero
characteristic functions for all the elements of X,. The system
‘g(Xo) = (C= Co, 0, +)

is a commutative semi-group freely generated by Cj. This semi-group will be referred
to as the semi-group of chains in X, (over the semi-group 47)(%).

According to the traditional notation we shall not distinguish between an ele-
ment o« of X, and its characteristic function, and thus we shall write

2=

R

myo; whenever A(e) =m; for i=1,..,k and A(@) =0 otherwise. @
1

1

i

A commutative semi-group is said to be free whenever it is freely generated by
some Gy; it is said to be acyclic whenever
nAi=0=n=0vi=0.
Let us notice that
ProrosiTION 1. Every free commutative semi-group is acyclic. @
A system (G, =) is a partially pseudo-ordered set provided > is reflexive and
weakly antysymmetric, i.e.

AzA and  AZA ANZA=A=21 for every A, .

(M It is a natural modification of the well knowu notion of a group of chains over the group
of integers.
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A system %% = (9, =) is a partially pseudo-ordered semi-group whenever
I. ¢ is a commutative semi-group,
II. (G, =) is a partially pseudo-ordered set,
III. 1. 2>0 for every AeG,
2. AzX = A+x=A+x, i.e. + is monotone with respect to >.
By III.1, 2 together with the weak antysymmetry of >, it follows that
Au=0=A=0Ap=0 for every 4,u;

thus

PrOPOSITION 2. Every partially pseudo-ordered semi-group is acyclic. @

Equidistance and betweenness relations in arbitrary metric spaces. Let us consider
the class

G, = {9® = (4. 2): 97 is a partially pseudo-ordered semi-group with cancellation}
and a system
= (X’ gZ, Q)
consisting of a set X, a semi-group 4> e G, and a function ¢: X'x X—G satisfying
the well known metric axioms (?):
Ml1. g(ab) =0<a =b,
M.2. g(ab) = ¢(ba),
M3, o(ab)+e(be)zo(ac).

The system # will be referred to as a metric space over %7.
Let us define the following two relations in &':

Dglabed) < o(ab) = o(cd),
By(abc) < ¢(ab)+o{bc) = g(ac) .
These two relations will be referred to as metric equidistance and metric befweenness

relation.
Let G=G,. Given an arbitrary class M of metric spaces over G (i.e. over semi-

. groups from G), one can consider the following three classes of relational structures:

={(X, Dy): ZeM}, By={X, By ZecM},
DBy = {(X, Dy, By): £ M)
The problem arises, for which M the classes Dy, By and DBy are elementary classes.

We give a solution for DBm, and Dw;, the classes My and M; being defined as
follows.

(* Throughout the paper we omit the universal quantifiers which should be placed in front
of a formula to bound all the free variables occurring in it.
2t
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Consider two additional metric axioms M4, (ne N) and M.5 (the first one is
an elementary schema (3)):

M.4,. AV \{1 (e(@0gi-)+0(i-1q) = 0(g091) A

Q140ln 40 illn -
Lewbn Sl i} o {1,00n}

A @Gr14) = o(apgbsa) .
M35, g(ab)+o(be) = g(ac) A glac) = o(a'c')
= y (e(ab) = @(@b') A g(be) = o(b'c")).
(The first sentence describes a kind of rectifiability, the second one ~— a kind of hom-
ogenity.)

% € M, whenever 9% e G, and all the axioms M.I-M.5 are mtxsﬁed Such
a space % will be referred to as a regular metric space.

Let G; = {%¥” e Gy: %% is a partially ordered free commtt ive semt
% e M, whenever 4% & G, and the axmms M.1-M.3 are satisfied.

Regular DB- structures. A DB-structure is understood as. a model (X, D, B)
of the following axiom system (A.1-A.14,) (4):

Al. - D(abab),

A2, D(abcd) A D(a'b'cd) = D(aba'b"),

A3, D(aabb),

Ad. D(abec) = a = b,

AS. D(abba), /

A6, B(aab),

Al B(abc) = B(cha),

A8. B(abc) AB(ach) = b = ¢,

A9, B(abd) A B(bed) = B(abc) A B(acd),

A.10. B(abd) A B(bed) A D(adbc) = a = bac = d,

Alll. D(aba’t’) A D(beb’c’) A D(aca’c’) A B(abc) = B(a'd'e),
A12, D(aba'd’) A D(aca'c’) AB(abc) AB(@'b'¢') = D (bed'c'),

n
Al3,. B ; .
l_/=/\1[ (Pop;—wi)/\B(‘Joql—l%)]’\ \{_1 D(pl-—lpqu(i)~1‘.U(i))
S Lot o {1,001}
= D(popado ) (°),
(*) The symbol Y dcﬂotes an alternative of n! formulae.

1-1
Ii{Lnn} = {1,u,n0)
(*) See footnote (%),

n
(*) We omit “ ii\l " if it does not cause any misunderstanding.

»
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m n
Al4,. /\ /\I[B(pupi-lpi)AB(qnq,-_lqj)]A(po,pm, 905 4) = (Po» Prs 90> dm) A
=1 j=

A \1/1 [D(pi- 121450~ 195a) A D(G5-191Paty - 1Pgi)]
Fi{t,e.,m} —-p {1,...;m}
11
g {leom} o {100}
=D(p0pmq0 qu) .
A DB-structure is said to be regular provided it satisfies additionally the follow-
ing two axioms A.15, and A.16:
A.l5,. AV \/1 . [B(gog:-19:) A D(g:- Iqlaf(l)bf(z))] >
Bt 2 e e} D (et}
A.16.  B(abe) A D(aca'c)) = \/ [D(aba'b’) A D(bch'c)].
M

As direct consequences of the above axioms one obtains

01. B(abd)=>a=Db (by A6, AS),

0.2,. B(abpy+)A i/_\115’(1717;1’:“) =>_Z\l B(apipivy)  (by AT, A9),

0.3,. (Popi 117;)$ /\ B(PoPtPj) (by A7, A9),

J<n

0.4,. B(Polh 12) A D(Popudodn)

> Il>=

= \/ [B(909:i-19) A D(popi-1909i-1) A D(Pi- 121911 91)]
qiyrensdn—1
(by A.11, A.16).

Theory of equidistance and betweenness relations in regular metric spaces.
We are going to prove the following

REPRESENTATION THEOREM 1. The class DBy, coincides with the class of models
of (A.1-A.16), i.e.

DBy, = M(A.1-A.16) .

This theorem is a corollary of Theorems L1 and L2 below.

THEOREM L.1. Every structure (X, Dy, By), with & € Mo, is a model of (A.1-A.16).

Proof. Let % = (X, 97, 0) € Mo ; then, by Proposition 2, %? is acyclic. The
structure (X, Dy, By) satisfies A.1-A.16; indeed, A.1, A.2, A.11 and A.13, follow
by the definitions of Dg and By; A.3-A.5 by M.1 and M.2; A.6 — by 0+14 = 4;
M.2 and commutativity of + imply A.7; the condition M.2 together with acyclicity
and cancellation imply A.8; in turn A.9 follows by M.3 together with cancellation,
monotony of + and weak antysymmetry of >; A.10 — by M.1, acyclicity and
cancellation; A.12 — by cancellation; A.14, — by M.3, commutativity of + and
weak antysymmetry of >; A.15, — by M4,, and finally A.16 — by M.5. @
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Theorem I.1 enables us to define the following function
By My—>M(A.1-A.16),

Bo(%) = (X, Dg, By) for every & eM,.

THEOREM L.2. For every regular DB-structure (X, D, B) there is a regular metric
space & such that Dy = D and By = B.

. In other words, there is a function
Po: M(A.1-A.16)~M,

such that @, ¥,(X, D, B) = (X, D, B) for every (X, D, B) e M(A.1-A.16).
The construction of the function ¥, will be referred to as a metrization of regular
DB-structures.

Metrization of regular DB-structures. Let us consider an arbitrary regular
DB-structure, i.e. any model (X, D, B) of the axiom system (A.1-A. 16). We are
gomg to define a partially pseudo-ordered semi-group with cancellation,
’J(x D,B) = (>€4(x p,m» Z) and a function ¢: X x X—G p, py such that the system

= (X, 9%,p,5) 0)is 2 regular metric space, and the relations Dy and By coincide
w1th D and B.

1. The quaternary relation D in X induces the following binary relation = in X 2;
1.0. ab = cd = D(abcd) .
By A.1-A.5 we get
1.1, =is an equivalence relation, .
12. aa = bb,

13, ab=cc=a=b,

14. ab = ba.

Let X, = X?|.. Copsider the semi-group of chains C(X,) (see Example 2)
and let = be the smallest congruence in C(X,) which contains {([aa], 0)}. Let
Yam 5 CXo)l: .

Notice that

15, %i,p is a commutative semi-group freely generated by X,|- .

2. We are going now to define (by means of B) a binary relation ~ in Gx,p)»
B

satisfying the following five conditions:

@) v is a congruence with respect to +,
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(i) lf;O <1 =0,
(iii) tx';ﬂ <o =f,
@iv) [ab]+Ibc] i~ [ac] < B(abc),

W) A+ﬁ~£u+ﬁ = A;'oc.

" Let us consider the following function S: G(X,D)aZG""D).
@) = {[popsl+ -+ [Pr-spal: & = [Poral A B(Popi-1p): T = 1,..,n neN},
20 S(élmloci) = {;:;‘mizi: JeS@), i=1,.., k.
The relation ~ is defined by the formula

~M eSS .
ABA ?;\/l, € S()

In the sequel, we write simply ~ whenever there is no danger of a confusion.
The proof of ()-(v) is based on the following statements concerning S.

2.1.  S(0) = {0},

22. 0eSA)=Ai=0 |(by L5),

23. AeS() (by A6),

24. AeS@<eV V (= [popil+tPa—spal A = [poPa] AB(PoPi-1P)
N neN#* (po...pn) (by N 1)

25, xeSU+i) = \/ (% =% +u;Ax; € S(A)),

26. S@NnSP#B=>a=4 (by 2.4, 1.5 and A.13,),

27. aeSG)=x=a (by 22,23, 2.5, 2.6),

28. %eSU) AieSk =xeS (by 2.4, 2.5, 1.5, 0.4, and 0.2,).

1 m
Proof. Let A =3 a; and p = ), §;. Induction on m.
’ =1 i=1

1° Let m = 1, then

1
reSW = Y «eSB;
=1
by 2.5, 1
xeSM=> \V (=13 % AneS).
Hiyeres X1 i=1
By 2.4,

H

m AV Ca

=1 gl k)

= [Phpil+ e+ (Db 1Ph] A @ = [PhPh] A B(BoD)- 1p;))
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and

" @ Vo( Xllai = [g°0" 1+ ..+ [g"q"] A By = 14%"] A B(g°¢ ' ¢D).

#(q0, vunyq?) 1=1

Thus, by 1'.5, one gets

(3 I=mn and there is a bijection f:{l,..,n}—{l,..,n} such that
[phpt] = gD 4" D for i =1, ..,n.

By (1), 3) and 0.4,, (k =1, ..,n), there exist g%, ..., ¥, such that

@  B@odj-14)  di-1di=pi-aph for j=1,.,m=m, k=[0), and
2% =07 gu=qfrk=1,.,n.

By (2)-(4), applying 0.2,, one gets

) B(g°d5-1q) for

By (-(5), %e S(B)), i.e. xe S(u) for m = 1.

J=liwam, k=1,..,n..

mo
2° Assume that the assertion holds for m<m,—1 and let m = my,ie.p =Y B;.
i=1

mg—1

Let p' = Y B;; then p = p'+B,,. Since Ae S(), by 2.5 it follows that
i=1
© \ A= 22 AN eSW) AN €SB ;
P/
in turn, since » € S('+1"), hpnce

(¥)) \Vou=w+u" An'eSA)Ax"e S@).

P

By the inductive assumption, (6) and (7) imply »'eS(u) and »” e S(B,), thus
xeS(). @

As a direct consequence of A.15,, one obtains

29. A VxeS@.
>#¥0 o

The statements 2.1-2.9 imply the following assertions concerning the relation ~.

210, A~N < /A, VeSS (by 2.8, 2.9),
P

211, A~B=AeS(H (by 2.9, 2.3 and 2.6).
By 2.10 and 1.5 together with A.12, it follows easily that
212, o' f~atf=o =

Now, the condition (i) follows by 2.0, 2.3, 2.5, 2.6, 2.10; condition (if) — by 2.1,
2.2; the condition (iii) — by 2.7.

icm
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Proof of (iv): (by 2.11, 24, A.5-A7, All, 20, 2.3). Let [eb]+[bc]~[ac].

If either @ = b or b = ¢, then by A.6 and A.7 one gets B(abc). If a = c, then, by (ii),
a = b and thus B(abc). If # (abc), then, by 2.11, [ab]+[bc] € S([ac]). By 2.4, there
exist # (a'b’¢’) such that [ab]+[be] = [a'D']+[b'c’], [ac] = [a'c'] and B(a'b'c").
There are two possibilities: either ab = a'd’ and be = b'c’ or ab = b’¢’ and be = a'b’.
In the first case A.11 implies B(abc), in the second one, A.5 and A.11 imply B(abc).
The converse implication B(abc)=[ab]+ [bc]~ [ac] follows directly by 2.0 and 2.3. &
. Proof of (v): (by 2.8, 2.10, 2.3, 2.6, and 2.12). Let 1+ f~a+f. By 2.10, there

is a y such that 14§ € S(y) and a+f e S(y). Thus, there are py, ..., p, such that

B(pop;—1pp) for i=1,..,n, A+f= [Pop1l+... + [Py 1 24
Then, by 1.5, there is a je {1, ..,n} such that § = [p;_,p,]. Let

and y = [pep,].

% = [pop;—11+[p;p;) -

Obviously

o deS().

By 2.5, there exist ¢’ and 9’ suéh that

@ xeS@)

and (

©) o' +BeSy).

By (1), (2) and 2.3, one gets

4 A+feSx+p) and x+BeS+p).
By 2.8, the condition (4) implies

® A+BeSe+h),

and (5) together with (3) imply 1+8e S(y). By 2.6, A+BeSH) A S(y") implies
y" = y. Thus, by (3), &'+ B € S(y) and a+fe S(), i.e. o'+ f~a+p. Then by 2.12,
o = o and thus, by (1), (2) and 2.8, A S(%). Therefore A~u. B

3. We are going now to define a binary relation % in G, ), satisfying the follow-

ing six conditions:
@ A%O for every 1,

G)] > is reflexive,

i 3 is a congruence with respect to =,

(Gw)

W) Az Ax2d = x~d,
B B B

W)  [abl+ [be] > [ac].

+ is monotone with respect to >,
B
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Let us consider the following function T G(x,n)aZG""”’
T(0) = Gx,m>
30, T(w = {[popil+ -+ [Pu-spul: @ = [popl neN},
Tgk:lmioc,.) = {iimiii: AeT(w), i=1,..,k} for meN, i=1,..,k
The relation % is defined by means of the auxiliary relation >:

IS x < V(eT@W AxeSm),

!~ '2%) .
A%x e \4/'(A EA/\X/%)

Obviously
3.1 S(HcTw),
32. AeT®,
and
33 xeT(®) AAeT() = xeT(p).

As a consequence of A.14, and 0.4, one gets

34, S@OnTP#B =T NSP) = a=84.
By 2.9, 2.8, 3.1 and ?;.3 it follows that
3.5. Aiu@\/leT(a) A %€ S(a).

The condition (j) follows by 3. 0 and 2.1 together with the reﬂexmty of oL

the condition (jj) — by 3.2 and 2.3; the condition (jjj) — by 2.10, 3.5 and 2.6; the
additivity of S and T implies (jw); the statements 2.6, 2.10 and 3.4 imply (w), the
condition (wj) follows immediately by 2.0.

4. The condition (i) enables us to define the semi-group % x,p, 5y 88 the quotient
algebra:

g(X,D,B) 3—; g(x.p)l'; .
By (ii), the class [0] is the neutral element of % x,p,- The condition (v) together with
2.9 imply the cancellation law. Thus

4.1. Yy 5 is a commutative semi-group with cancellation.

The condition (jjj) enables us to define the relation > in 9 x,p, 5 by the formula

[/'L]~> [#]. < A>x.
df B
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Let

Yoo, = Fxom =)
By (§), (ij) and (w), > is a partial pseudo-order in Gy, p 5. By(jw), + is monotone
with respect to >. Thus

42. %% p p is a partially pseudo-ordered semi-group with cancellation.

Let us define the function ¢: X% X—Gx, p, 5 by the formula
e(ab) = [[ab]].
and let 3&” (X %% p,pys 0)- It is easy to show (applying (i), 1.4 and (wj)) that &
satisfies M. 1 -M.3; thus
4.3.

4 . . >
Z is a metric space over 9y p p)-

Let us consider now the metric equidistance relation Dy and metric betweenness
relation Bg. The conditions (iii) and (iv) imply

44. Dy =D and By = B.

By 4.4, the axioms A.15, and A.16 are equivalent respectively to M.4, and M.5.
Hence

4.5.  The metric space & is regular.

Proof of Theorem 1.2. Define the function ¥,: im(A 1-A.16)—»M, by the
formula

¥,X, D, B) (X 9%, 0,5 Q) =

This function ¥, satisfies the required condition; indeed,
Do(X, g(x D, B)> Q) = (X, Dy, By),

thus, by 44, &,¥y(X, D,B)= (X, D,B). &

4.6. Remark. Let us notice that, for the metrization of a DB-structure, not the
statements 2.0-2.11 and 3.0-3.5 themselves, but only the conditions (i)-(v) and
(3)-(wj) are essential. More precisely, given two relations ~ and % in G, p, satisfying

S, ¥o(X, D, By =

the above conditions, one can define (95[ p,py and g asit was done in §4, and then,
setting & = (X, 9o, > @), one can prove & to be a metric space over Go, with
Dy =D and By = B. B

4.7. Remark. The axioms A.7-A.16 are needed only in the proofs of 2.4-2.11,
3.4, 3.5 and in the proof of the regularity of Z. Since (j), (jj) and (jw) follow by
2.0-2.3 and 3.0-3.2, these three conditions require no axioms on D, B but A.1-A.6. HE.
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Theory of metric equidistance relation. Consider now the class M, of all the metric
spaces over partially ordered free semi-groups. Applying the previous resulls, we are
going to prove

REPRESENTATION THEOREM. I1. The class Dy, coincides with the class of models
of (A.1-AL5), ie.

Dy = M(A.1-A.5) .
Since every partially ordered semi-group with cancellation (thus morcover

* every free semi-group) can be extended to an ordered group, this theorem can be
formulated as follows:

The theory of equidistance relation in metric spaces over ordered groups coincides
with the theory based on (A.1-A.5).

We have first the following obvious
Tueorem I1.1. Every structure (X, D), with & e My, is a model of (A.1-A.5) (5).
This theorem enables us to define’the following function

B Mi»M(A.1-A5),

(5&”) (X' Dy) for every ZFeM,.

Now, it remains to prove

TuEOREM IL.2. For every model (X, D) of (A.1-A.5) there is a metric space % € M,
such that Dy = D.

In other words, there is a function ¥;: M(A.1-A.5)—M, such that

Y. (X,D)=(X,D) for every (X, D)e M(A.I-A5).

Proof. Let (X, D) be a model of (A.1-A.5). We are ’going to define the required
metric space & = (X, 47, g). Take %x,p) as constructed in § 1. By 1.5, %y 5 is
a free semi-group. Let us extend the structure (X, D) to a DB-structure (X, D, B,)
setting

‘Bo(abc)iazbv'b=c.

Evidently, (X, D, B,) satisfies A.1-A.6 (moreover, it satisfies all the axioms except

A.15,).
Look at the relations s and > in G, py. First of them is the identity =, thus

it satisfies the conditions (i)-(v) (§ 2) and (jjj) (§3). The second one is of the form.

o Azx e 1eT(),
o

() Here M; can be replaced by any class of metric spaces over arbitrary semi-groups, even
without any ordering relation. ’
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thus it satisfies the condition (wj). Since ¥, p, is free, (w) follows by 3.0. By Remark
4.7, conditions (j), (jj) and (jw) are also satisfied; moreover 3.3 implies the transi-
tivity of >

By Rernark 4.6, setting

= > Az Z=(% = b) =
@ 9=Guply, WMeize 97 =>) ad oW =[],
one obtains the required metric space & over ¥”. By (2), ¢ = Yy, py and > co-

incides with ?, thus ¢ is a partially ordered free semi-group. This completes the
0
proof. @

‘Remarks and problems. Consider the class M, of all the metric spaces over Gy.
Every structure (X, Dg, By), with & € M,, is a model of (A.1-A.14,), i.e.

DBy, = M(A1-A14,).

However, the author does not know whether the converse inclusion holds. The
question remains open if replaced M, by the smaller class M; of all the metric spaces
over partially ordered semi-groups with cancellation. The additional axioms A.15,
and A.16 make the construction of fﬁ& p,py Tather simply, since they imply the
useful statements 2.8-2.11 and 3.4-3.5. On the other hand, these axioms restrict
considerably the class of involved metric spaces.

Our axiom system is far no perfect. Especially the schema A.14, (connected
with the weak antysymmetry of >) looks complicated. The author has not studied
exactly the independence of this axiom system; -however it is clear that A.13; is
a tautology and A.13; depends on (A.2, A.5, A.7, A.13,). The axiom A.10 depends
on the other axioms including A.15,; nevertheless this is not omitted, since, in fact,
we are interested in the axiom system (A.1-A.14,) as well as in the whole system
(A.1-A.16).
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