Onf a class of multi-valued vector
fields in: Bapach spaces

. by

. J. Bryszewski (Gdansk)

Abstract. An upper-semicontinuous map @: X— Yis called an zn-admissible map, n=1, provided
there exist two maps p: Z—X and g: Z— Y such that:

@) p is a Vietoris n-map or, in particular, a Vietoris map,

@) g(p~1x)) CB() for all x e X.

In this paper we consider n-admissible compact fields in Banach spaces, i.e., maps of the
type p = I—®, where P is a compact n-admissible map from a subset of a Banach space £ into E.
The topological degree theory for n-admissible compact fields @: A—E is givenin the following
two cases:

(i) A is a closed ball in E,

(i) 4 is the boundary of a closed ball in E.

This theory is applied to the fixed point theory of n-admissible fields and to the proofs of
the theorem on antipodes and the theorem on the invariance of domain for some n-admissible fields.

Note that the class of n-admissible fields is essentially larger than the class of acyclic fields
and, in particular the class of convex-valued fields.

In this paper we continue the study of n-admissible maps which was under-
taken in [3]. We note that the class of n-admissible maps contains n-acyclic maps
(see [7}, [1]) and hence acyclic maps.

The object of this paper is to extend the classical Brouwer-Leray—Schauder
degree theory from n-admissible maps in finite-dimensional vector spaces to n-ad-
missible compact vector fields in Banach spaces. , 5

From this theory we obtain some fixed-point theorems and a theorem on
antipodes for n-admissible compact fields. Moreover, we obtain a theorem on
antipodes for admissible compact vector fields and a theorem on the invariance
of domain for strongly admissible compact vector fields. ‘

We would like to recall that this theory was considered with by:

(i) A. Granas [9], [10], A. Cellina and A. Lasota [4], Ju. G. Borisovic,
B. D. Gelman, E. Muhamadiev and V. V. Obuhovskii [2], T. W. Ma [12] for convex-
valued compact vector fields,

(1) 8. A. Williams [15], M. Furi and M. Martelli [6] for acyclic compact
vector fields,

(iif) D. G. Bourgin [1] for n-acyclic compact vector fields.
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1. Preliminaries. Let H denote the Cech cohomology functor with integer
coefficients Z from the category of metric spaces and continuous maps to the
category of graded abelian groups and homomorphisms of degree zero, Thus, for
a space X,

HX) = {HX)}iz0

+is a graded abelian group, and for a continuous map f* X' ¥, H( ) is the induced
homomorphism

H(f) =1* = {f*}: H()-H(X),

where f**: HYY)—H"(X).

A non-empty space X is called 0-acyclic if H(X) = Z; let us call X k-acyelic,
k21, provided HX) = 0; call X acyclic if X is k-acy¢lic for each k0.
. Let 4 be a subset of a space X. Denote by rdy 4 the relative dimension of 4
in X. From the definition given in [13] we have:

rdyA = supdimC,
Cc4

where C is a closed subset of X" and by dimC we denote the topological dimension
of C. We assume that rdyA <0 iff the set 4 is empty and in this case we put rdy A
= —o00. We observe that: *

(1.1) Let X, be a closed subset of X. Assume further th ]
. : er that A is a 2
B is a subset of X and A<B. Then we have subset of Xy,

rdy, A< dyB.

A cpntmuous map f: Y- X is proper if for each compact subset 4 <X the
counter-image f~*(4) of 4 under fis compact; f'is closed provided for each closed
subset B Y the image of B under f is closed in X, *

The following fact is evident:

A Iff: Y-Xisa Droper map, then f is closed.
The Vietoris-Begle Theorem (see [13]) and (1.2) gives
(1.3) THEOREM. Let fi Y— X be a proper and surjective map, let M j be the set

of all x € X such that f~(x) fails to be i-acyclic. Let n = 1+ max(rdy M fl +1). Then
0o o

or each k>n the i L R 5
f c n the induced homomorphism f**: H*X) ~HXY) is an isomorphis

Remark. We observe that if M is t1 : : .
£ he empty set for each i20, then 1 ;
= —oo and hence Theorem (1.3) implies that ¢h 20, then rdy M

S*: HX)-H(Y) is an isomorphism .

(1.4) DEFINITION. A map p: Y— X is called a Vietoris n

following two conditions are satisfied “map provided the
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(@) p is a proper and surjective map,

(i) rdxM,<n—2—i for each i=0.

Definition (1.4) implies that if p is a Vietoris 1-map, then rdx M ,‘;<0 for each
i>0, and from the above remark we deduce that p*: H(X) —H(Y) is an isomorphism.
In what follows a Vietoris 1-map is called simply a Vietoris map.

Finally, we note that if p is a Vietoris n-map, then we have

[+max(rdy Mi+1) <1 +max[(n—2—1)+i] = n—1
=0 20
and (1.3) implies that p**: H*X)—~H"(Y) is an isomorphism for each k>mn.

From (1.1) we deduce

(1.5) Let p: Y->X is a Vietoris n-map and A=X is closed, then the map P:
p~i(A)—d is a Vietoris n-map, where B is given by p(y) = p(y) for all y e p~i(A).

(1.6) If p: Y—X is a Vietoris map, then for each A=X the map p: p~*(4) >4
is a Vietoris map, where B is given by p(y) = p(y) for all y & D).

From (1.6) we deduce

(1.7) If py: Y—X and p,: X— Z are Vieloris maps, then the composition pyepy:
Y—Z of py and p, is also a Vietoris map.

(1.8) DermNITION. Let X be a space and let 4, B be two subsets of X. Denote
by i: (4, A n B)~(X, B) and j: (B, 4 n B)~> (X, A) the inclusion maps. A triple
(X, 4, B) is called a k-triad, k=0, provided: (i) X = 4 U B and (ii) i*: HYX, B)
—HY4,An B) and j*: H'X,A4)—H(B,An B) are isomorphisms for each
Izk+1.

If (X, 4, B) is a 0-triad, then (X, 4, B) is called simply a triad.

(1.9) MavEr-Vierorts TrEOREM. Let (X, A, B) be a k-triad. Then the sequence

4 [ B
‘Hk(A N B)—~ Hk+1(X) > Hk+1(A)@Hk+1(B) - H*" Y4 A B)—...,

in which 4, «, p are Mayer—Vietoris homomorphisms, Is exact.

The proof of (1.9) is analogous to the proof of the Mayer—-Vietoris Theorem
for triads (comp. [5], pp. 57-67). .

Similary to [5], if f: (X, 4, B)~(Y, C, D) is a map of k-triads, i.e., f: X—=Y
is a continuous map and f(4)=C, f(B)<= D, then f induces a homomorphism of the
respective Mayer—Vietoris sequences.

Let E be a Banach space and let E¥** < E**? be two subspaces of E with di-
mensions k-+1 and k+2 respectively. Denote by E%** and EX*? the two closed
half-spaces of E¥*Z such that E*" = E%"? n E**2 and S =EX? A S and
S¥*1 = E**2 S, where § is the unit sphere in E. Clearly, S* = § n E¥** = st A
n SEFL

We note that (S¥*%, S5+%, $*1) is a triad and the Mayer—Vietoris homo-
morphism 4: H¥S® — H**1($**") is an isomorphism.
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The following lemma is of importance:

(1.10) Leva. Let p,q: Y~ 8*** be two continuous map such that: (i) p is
a Vietoris n-map, n<k, (i) gp~ 4S5 and (i) gp~ (S M SYFL Then
the following diagram’ commutes:

4
Hk(Sk) R Hk+ 1 (Slc o+ 1)
gHe(pwRy = 1 . gk L4 1y =1

Hk(Sk) .,._f«..) I.[k+1(sk+1)

where g, 5: p~(SY)—~S* are contractions of q and p, respectively.

Proof. Let ¥, = p~i(S%"%) and Y. = p~*($%*"). Then from (1.5) and (1.3)
we deduce that the triple (¥, Y, ¥Y_) is a k-triad. Observe that Y, n Y.
= p~1(SH. By assumptions (i) and (ii) we infer that p, ¢ are maps from the k-triad
(Y, Y., Y_) to the k-triad (§***, S%%, §%'1), Finally, from the naturality of
the Mayc?r—Vietoris Theorem for k-triads we deduce (1.10). :

The following fact is well known (comp. [9] pp. 24-25).

(1.11) ApprOXIMATION THEOREM. Let E be a Banach space and let q: Y- E

be a compact map. Then for every £>0 there exists a .continuous Jinite dimensional
map q,: Y->E'"<E such that

lg.0)—-qG)li<e  for every ye Y.
In this case the map g, is called an g-approximation of q.

' 2. ﬂMulﬁ-valued maps. Let X' and ¥ be two spaces and assume that for every
point ;{L.eX a non-empty subset @(x)-of Y is given; in this case, we say that o is
a m!;ltpva}ﬁe];i map from X to ¥ and we write ¢: X— Y. In what follows the symbols
@, ¥, % will be reserved for multi-valued maps; the single- ill be de
eyt g p gle-valued maps will be de-

Let ¢: X— ¥ be a multi-valued map. We associate with

of contimuous maps: ¢ the 10Ilow1ng diagram

x<r, %y,
in which I', = {(x, ) e Xx Y; ye i
(x, 3 yeo(X)} is the graph of ¢ and Hatural pr j
P, and g, are given by p,(x,») = x and ol ) = y. ? ‘ C prejectiont
The image of a subset A=X under ¢ is ¢(4) = |J ®(@). The counter-image
of a subset BY under ¢ is ¢~ Y(B) = {xeX; (p(x)ca,eBli
Let ¢: X—Y be a multi-valued map, 4 is a subset of X and B a subset of Y.

I ¢(4)=B, then the contraction of ¢ to the pair (4, B) is a multi-valued map

¢': A—B defined by ¢'(4) = ¢(a) for each ae 4 T i
B de . The contract ‘ [ e pair
{4, Y) is simply the restriction |, of o to 4. Forion of ¢ o the pai

icm
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Tet ¥, ¢: X—Y be two multi-valued maps such that @(x)ci(x) for every
x e X; in this case we say that ¢ is a selector of Y and indicate this by @<y

Let ¢ X—X be a multi-valued map and let 4 be a subset of X. A point xe X
is called a fixed point for @ whenever x € ¢ (x); if moreover x € 4, we say that ¢
has a fixed point in 4.

A multi-valued map ¢: X— ¥ is called upper semi-continuous (u.s.c.) provided:
(i) @ (x) is compact for each x e X' and (ii) for each open set V' ¥ the counter-image
@~ (V) is an open subset of X. . .

(2.1) ProrosrTION. If @: XY is a u.s.c. multi-valued map, then the graph I,
of ¢ is a closed subset of Xx Y.

A u.s.c. multi-valued map @: X— Y is called compact provided the image o (X)
of X under ¢ is contained in a compact subset of Y.

A w.s.c. multi-valued map ¢: X— Y is said to be acyclic provided the set (%)
is acyclic for every point x € X. ' ’

(2.2) DEFINITION. A map ¢: X—Z is called n-admissible, n>1, provided
there exists a metric space Y and a pair of single-valued (continuous) maps of the
form X < Y£>Z such that the following two conditions are satisfied:

(i) p is a Vietoris n-map, :

(i) ¢(p~i(x))=@(x) for each xe X.

In this case the pair of maps (p,q) is called a selected pair of ¢, written

@, D=0 :
The class of all n-admissible maps from X to Z will be denoted by Cc'(X, Z).

A map ¢ e CYX,Z) is called simply admissible. .

(2.3) DeFINITION. An admissible map ¢: X Z is called strongly admissible
(s-admissible) provided there exists a selected pair (p, g)<=¢ such that: g(p~1(x))
= p(x) for each xe X, ' v

If a selected pair (p,g) of ¢ satisfies the ahove condition, then we write

.9 =o.
The class of all s-admissible maps from X to Z will be denoted by C(X, Z).

REMARKS 1. We observe that if ¢: X—Z is a compact acyclic map, then, for
example, the pair (p,, ¢,) is 2 selected pair of ¢ and hence (P, g,) = -

2. Denote by C(X, Z) the class of all compact acyclic maps from X to Z;
then we have the following inclusions:

C(Xs Z)C:CS(X,Z)CC1(X, Z)CCZ(X’ Z)
(2.4) PropoSITION. If @y € Ci(Xy, X;) and @2 € C(X3, X3), then ¢z0 ¢4

e C(X,, Xs) and for every (py, @) = @1 (P2s ) = @2 there exists a pair (p, )
= @, 0, such that

(P 7ig* = D i e
(2.5) ProrosiTION. If ¢ € C(X, Z), then for every selected pair (p, =@ we
have (57ig* = (W) g -
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For the proof of (2.4) and (2.5) see (3.4) and (3.5) in [3].

It is well known (see example (3.6) in [3]) that C(X,Z) # C(X, Z).

(2:6) DeriNiTioN, Two maps ¢,y e C"(X, 2), n=l, lp, e C(X,2)] are
called homotopic- (~y) if there exists a map

1€ C"Xx[0, 11, Z)[x € CLXx 10,11, Z)1,

where [0, 1] is the unit interval, such that ¥(x, 0)c@(x) and x(x, 1) =y (x)[x(x, 0)
= o(x) and x(x, 1) = Y (x) for each xeX.

(2.7) PrROPOSITION. If two maps ¢,V e C"(X,Z)[¢, ¥ e C(X, Z)] are homo-
topic, then there are selected pairs (po, qo)<@ and (py, q)<V such that for each
kzn

*Iy =1 *k Ky~ 1 kK
c) ) *

(po = (p1

(for each k=0, (08 g8 = ()™ 'gth.
For the proof of (2.7) see [3] (Proposition (3.8)). Consider two continuous

14 q
maps of the form X < Y — Z, where p is a Vietoris n-map. We define a multi-valued
map @, .. X—Z by putting ¢,,(x) = ¢(p~*(x)) for each x e X. Bvidently, Ppa is
an zn-admissible and u.s.c. map. Moreover, if ¢ is a compact map; then ¢, is also
compact. .

3. Admissjble maps of subsets of finite dimensional vector spaces. Let S" be
the unit sphere in the (n-+1)-dimensional vector space E"** and K*** be the unit
closed ball in E"*'; by P"** we denote the space E"*! without the point 0.

In tHis section we define the degree of an n-admissible map ¢: S}—S3 where
St (i = 1,2) are two spaces which have the cohomology of an n-sphere S". We
orient S} by choosing generators f; = H"(S).

Let ¢: S1—S3 be an n-admissible map and let (p, g) be a pair of the form

T Y— S} such that (p, g)ce.

(3.1) DeFmNtTION. The degree deg(p, g) of the pair (p, 4) is the unique integer
which satisfies

(P*)™g*"(B,) = deg(p, ¢)'B; -

- (3.2) DeFmvITION. Let ¢: S7—» 83 be an n-admissible map. By the degree
Deg(p) of ¢ we be understand the following set of integers:

Degg = {deg(p, 9); (P, 9) =0} .
(3.3) Let ¢, Y & C"(S%, S3). Then (see (42) in [3]):
(1) @~ implies that Degp N Degyy # @,
(i) @<V implies that Degep =Degi.
From Remark 1 in Section 2 we obtain:

(3.4) If ¢ is acyclic, then the set Dego is a singleton, in parti ) o
? s Tcular, @~ i
that Degg = Degy. P @~ implies

icm
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Let ¢@: K"T'—E"*! be an n-admissible map and assume that -@(S™

cE™ IN{xo}. By ¢lsn: S" E"*\{x,} we denote the contraction of ¢ to the pair
P pa

(8", E"*I\{xo}). From (1.1) we infer that ¢|s € C"(S", E"*™\{x0}). In this case

- with every selected pair (p, g)c¢@ we associate a pair (py, g;)=@lsm as follows:

let p: Y—K"*1, g: Y- E"* be two maps such that (p, g) =¢; then p;: p~*(S")—>S",
gq: pTHSM = EM\{x,} are given as contractions of p and g, respectively. Evi-
dently (p1, g <¢|sn. We define the degree Deg(p, x,) of ¢ by putting

(3.5) Deg(p, xo) = {deg(ps, 91); (P, D=0} .
Clearly, Deg(o, xo) =Deg(@|sw), but Deg(p, xo) # Deg(plsn) (see [3], Section 4)

(3.6) Lemva ((4.4) in [3]). Let @: K"**~E"*! be an n-admissible such that

(SN E" !N\{xo} for some point X, e E"*1, If Deg(p; xo) # {0}, then there
exists a point x & K""' such that x, e ¢(x).

(3.7) TuroreM ((4.5) in [3]). Let ¢: K""*>E"*' be an n-admissible map
such that (ST K""*. Then ¢ has a fixed point.

(3.8) Let ¢: S"~+8" be an n-admissible map such that Dego # {0}. Then
P(87) = 5™

Proof. The proof of (3.8) is anzdogous to the proof (6.4) in [3].

(3.9) TueoREM (Theorem on antipodes for n-admissible maps ([3], The-
orem 5.1)). Let ¢: S"—P"*! be ann-admissible map. If for every x e S" there exists
an n-subspace of E"** stricily separating ¢(x) and @(—x), then 0 ¢ Dego.

(3.10) TueoreM (Theorem on antipodes for admissible maps). Let ¢: S prti
be an admissible map such that following condition is satisfied: every radius with
origin of the zero point of E"** has an empty intersection with the set ¢ (x) or o(—x)
for each x € 8". Then 0 ¢ Dego. i

Theorem (3.10) clearly follows from Theorem (6.2) in 31

An s-admissible map ¢: X—Z is called an e-map prov1ded the condition

o) N @(x) # @ implies d(x, x)<e for each x,x € X.

(3.11) LEMMA. Let @: Ki*'—E"*' be an g-map. Then:

(@) (SN <E"N{z,} for each Zo € (p(O) ‘

(ii) 0 ¢ Deg(p, 2o)-

Lemma (3.11) clearly follows from Lemma (7.3) in [3]. .

(3.12) THEOREM (€7.5) in.[3]). Let >0 be a positive real number. If ¢: ErF
—SE"™ s an g-map, then @(E"*) is an open subset of E"**,

(3.13) TuroreM ((7.6) in [3]). Let U be an open subset of E" and 3 U—~E™?
an s-admissible map. Assume further that for any points x,,x; € U the condition
Xy # x, implies (x;) N @(x;) = @. Then ¢(U) is an open subset of E"i

4, Admissible compact vector fields in Banach spaces. Let E be a Banach
space, X a subset of E and &: X—E a multi-valued map, We define a multi-valued
map ¢: X—E by putting ¢ = I—9, where

(I-®)(x) = {x—y;y e d(x)} -for every xeX.

3 — Fundamenta Mathematicae XCVII
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(4.1) DeFINITION. A map ¢: X-YcE is called an n-admissible (s-admiss-
ible) compact vector field if and only if there exists an n-admissible (s-admissible)
compact map ¢: X—E such that ¢ = I—@.

- If & is an admissible compact map, then ¢ = I—@ is called an admissible
compact vector field. - '

A point x, € X is called a singular point of the vector field o: X— Y if the image
@(x,) contains the origin 0 of E. If there are no singular points, we say that ¢ is
singularity free (written ¢: X—P).

(4.2) DermuTiON, Two n-pdmissible (s-admissible) compact vector fields
@y =I-D,, ¢, =I-D, (¢, 0,: X»YcE) are said to be homotopic, written
@1~ @,, provided there exists a map x: X xJ— ¥, where J is a unit interval, which
can be represented in the form x(x, ) = x—X(x, ), where X: X' xJ—E is an
n-admissible (s-admissible) compact homotopy between ¢, and ¢,.

The following evident remark is of importance: . -

(4.3) Let A be a closed subset of E and let ¢: A— E be an n-admissible compact
vector field. Then the image ¢(A4) is a closed subset of E.

(4.4) Consider two maps of the form X < Y —’;E such that X is a subset of E
and p is a Vietoris n-map. Define a map §: Y~ E by putting §(») = p()~q).
Then I—p,, = @,%, (for the definition of ¢, , see. Szction 2) and hence

() if q is a compact map, then I—q, , is an n-admissible compact vector field,

(i) every n-admissible compact field is an n-admissible map.

. 5. Degree of n-admissible compact vector fields in Banach spaces. Let E be
a Banach space and let @: S—P be an n-admissible compact vector field from. the
unit sphere S to P = E\{0}. ' ‘ ‘
Consider an arbitrary but fixed selected pair(p, ¢) =& of the form S < Y-qi'E.
First, for such a pair (p, g)=® we define an integer deg(p, ) which is called the
degree of (p, q).
From Lemma (4.3) we obtain a positive number § such that 40, ¢(S)) = 8.
We observe that (0, (I—¢,,)(S))>6. Let & be a positive number such that <.
Since @ is a compact map. we infer that g is also compact. Applying the Approxi-
mation Theorem to the map ¢ and the number &, we obtain a map gt Y~ Bk
such that [lg(»)—¢.(»)ll <& for every y e Y. We may assume without loss of gener-
ality that k+122 and k+12n. ° ‘ :
- Let ¥, = p~(S"), where S* = 8§ E*"!, Consider the diagram -

Pr Qi
Sk« Y~ Ek+1 ,

in‘which p, and g, are contractions of p and g, respectively. Applying (1.5) and (4.4)

to the pair (p;, ¢), we obtain the diagram

P G
Sk« Y, > prit

icm
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in which () = p(¥) ~gu(¥). We observe that §,(y) # 0 for every y € Y. Indeed,
since [[x—g(»)||=0 for every xe S and yep~'(x), we have’

laM = 120 =a0) = lx—gO) = lIx—g())~(g.0)— g
Z[x—gMI—l1g(N—g.)=6->0.

We define deg(p, g) of the pair (p,q)<® by putting

deg(p, 9) = deg(ps, dx)

where deg(py, 4,) is given in (3.1).
(5.1) Lemma. Let ¢ = I—®: S—P be an n-admissible compact vector field and
let (p, q) be a selected pair of @ of the form s<y3E Assume further that q,, q.:
Y-+ E¥*' are two e-approximations of q. Then deg(py, d,) = deg(py, &y).
Proof. Define the map h: Y, x[0, 1]— E*"* by putting R

h(y, 1) = 1G,(3)+(1—DE) .

Then % is a homotopy between g, and §y,. We prove that h(p, £) # 0 for each y € ¥,
and te]0, 1]:

11G:) + (1 = DT = [#(p3) - 4())+ A=) (2() — 7))
= |2 —1g.)+1 =D gl
= [lp0)— () ~[t(2.0)—~ () + (1 =) (@) — g )]

= 0—e>0.

Therefore we have §;* = §¥ and the proof is complcted.

(5.2) LeMMA. Let ¢ = I—® and (p, )< ® be as in (5.1). Assume further that
E**Y EX*2 gre two subspaces of E such that E¥*1c E**2, If q,;: Y- E**! is an
e-approximation of q and q,: Y—E*** is the map given by q,(y) = q.(3) for every
ye Y, then deg(py, du) = deg(Prs1s fiw 1) _

Proof. Define a map r: P¥*2— S*¥1 by putting 7(2) = z/||z|. We orient S¥**
and P**? so that deg([’kﬂ:q;’cu) = deg(Pr+1, Mie 1) Applying Lemma (1.10)
to the pair (Prs1, Fe+y), We obtain (5.2).

Finally, from (5.1) and (5.2) we deduce that deg(p, q) of the pair (p, ¢) is
well defined.

Now, we define Deg(7— &) of an n-admissible compact vector field ¢ = I—®:
S—P by putting
63 Deg(I— @) = {deg(p, 9); (p,9) =2} .

(5.4) ProposITION. Let @, yi: S—P be two n-admissible compact vector fields,
Then

(i) @~V implies Deg(p) n Deg(y) # O,

(i) @<V implies Deg(p)<=Deg().

3%
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Proof. Let y = I—X be a homotopy between ¢ and V and let r, 9) be
a selected pair of . The set x(§x [0, 1]) is closed and does not contain the origin,
Then from the above construction of the degree for the selected pairs (2.7) and (3.3
we obtain (i).

The proof of (ii) is evident.

(5.5) PROPOSITION. Let ¢ = I—®: S—P be an admissible compact vector
Jield. If @ is an acyclic map, then the set Deg(p) is a singleton.

Proof, Let (p, g)= ® be a selected pair of @ of the form § & ¥ 5 £ Consider
the commutative diagram

Pa 1o
S<~—Ty—>E

A4

Y

in vs{hich SO = (p(»), q(»)) for each y e ¥, Let (@p)s: Lo E¥™* be an g-approxi-
mation of g,. For the proof we take an e-approximation of g such that g(y)
= (42)./(3) for each y e Y. Denote by I, the graph of g (S* = S EYY, Let

Pt i S*  and  (gg)y: Ty EF*L

be contractions of p, and (g,),, respectively. Finally, we obtain (comp. the defi-
nition of deg(p, g) in this section) the commutative diagram
. Pol fk _(_q;ﬁ pr+l
y IT\"' l’;lc/f
I,
L
PTHSH

in which p and f are contractions of p and f; respectively, and the map (o) : I'y—PFH
Is given by (Ge)(x, ) = (Pah(x, ) —(go)(¥, ) for each (x,y)eI,. The map
di: pTUS > P¥L is given by 40 = p(»—q,(») for each yep~i(S*). Now, the
proof of (5.5) is strictly analogous to the proof of (3.5) in [3].

(.5.6) ExAmPLE. Let E be a Banach space and Yo € E apoint such that ol >1.
Consider the map ®: S—E given by @(x) = {0, y,} for cach x e 8. Clearly, & is
an admissible and compact map, We have the following selected pairs of @:

D (ids,f)=®, where f: S—E is given by f(x) = 0 for yes,

. 2) (Idg, g), where g; S—E is given by g(x) =y, for each x.

MoreoYer, we infer that deg(ldg,f) # 0 and deg(Idg, g) = 0 and hence
Deg(I—®) is not singleton, i

The following theorem ‘is a generalization of the following classical result:
‘If. f:.8"> 8" is a continuous single-valued map on the n-dimensional unit sphere
with a non-vanishing degree, then J must be surjective, o

(5.7) THEOREM. Let ¢: S—P be an n-admissible compact field such that Dego
# {0}. Then for each xe 8 there is a bpositive real number A such that ix & @ (S).
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Proof. Suppose that there exists an x, € § such that
L, = {ixp; 420} n p(S) = &

Let ¢ = 3min(d(¢(S), Ly,), 40, ¢(S))) . We observe that d(p(S), L,)>0, and by
assumption we have £>0.

Let (p, )= ® be a selected pair of the form § E-Y-‘-;E such that deg(p, q) #0.
We take an g-approximation ¢,; Y- E**! such that x, e EF*1,
Consider the diagram

o
Sk-é- Yk —>Pk+1

(comp. the definition of deg(p, ¢) in this section). Since g, is an e-approximation
of ¢, we obtain

3 (2 1(59)=0,(0(5)) ,
where O,(@(S)) = {y € E; there is a point z € ¢(S) such that |z—y| <&} and Lence
® Lo, 0 Gu(pe(S9) = 2.

Consider the map ,: S*»P**! given by Y, (x) = §i(pr (%)) for each x e S*.
Then (p; §i) <, is a selected pair of ¥, and hence ¥, is an n-admissible map.
Moreover, deg(py, §) = deg(p, q) # 0.

Let r: P¥18% be retraction (r(x) = x/||x[). Then Deg(ry,) # {0} and
from (1) we have x, ¢ (n),)(S9), but this contradicts (3.8). The proof of (5.7) is
completed.

Let ¢ = I—@: K—FE be an n-admissible compact field such that ¢(S)cP,
where S is the boundary of the closed ball K. By ¢|s: S—P we denote the contrac-
tion of ¢ to the pair (S, P). From (1.6) we infer that ¢|g is an n-admissible com-
pact vector field on S. In this case with every selected pair (p, g)=® we associate
a pair (p;, q,)<=®|s as follows: let p: ¥—K, g: Y—E be two maps such that
(p, g)=®; then py: p~*(S) — 8, q,: p~(S)— E are given as contractions of p and ¢,
respectively. Bvidently (p,, ¢,) = ®|s. We define degree Deg(yp, 0) of ¢ by putting -

(5.8) Deg(p, 0) = {deg(p;, ¢:); (p, ) =P} .
Clearly, Deg(p, 0)=Deg(olg)-
Let ¢: K— E be an n-admissible compact field such. ¢ (S) < E\{z,}. By (¢ —2o):
K— E we denote the n-admissible compact field given by ‘
(p—2) (%) = {y—20,y € p(x)}
for each x e K. Observe that (¢ —z,)(S)<=P. We define Deg(ep, z,) by putting
(5.9) Deg(p, zp) = Deg(p—z,,0) .

The following lemma is of importance:
(5.10) LemmA. Let ¢: K— E be an n-admissible compact vector field such that
@ (S)cP. If Deg(p, 0)# {0}, then there exists a point xy € K such that 0 € ¢ (x;).
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Proof. Let ¢ = I—®, where ®: K—E is an n-admissible compact map,

Assume that 0 ¢ ¢(x) for all x e K. From Lemma (4.3) we obtain a positive number §

such that d(0, ¢(K)) = 8. Let & be a positive number such that e<d. Let (p, ¢)
be a selected pair of & of the form K < Y—E>E. Let g,: Y—E*"* be an e-approxi-

mation of g. Then, as in the definition of degree deg(p, ¢), we obtain the following
diagram: i ‘

.
FGa P ka’;.Plﬁl

Consider the map 1: X*+— P**1 given by ¥/ (x) = g(py '()) for each x & K***,
Applying Lemma (3.6) to the map ¥ we have Deg(y,0) = {0}. Consequently,
deg(p;; q1) = 0, where (p,, g,) is the pair associated with (p, ¢). Since (p, ¢) is
an arbitrary selected pair of &, we obtain Deg(p,0) = {0} and the proof is
completed.

The following theorem is an extension to the case of n-admissible maps of
a well known theorem of Rothe (cf. [9,6]).

(5.11) TurorEM. If &: K— E is an n-admissible compact map such that $(S)c K,
then @ has a fixed point.

Proof. Let ¢: K- E be an n-admissible compact field given by ¢ = I—d.
We may assume without loss of generality that ¢(S)cP and by Lemma (5.10) it
suffices to prove that Deg(p,0) # {0}. For this purpose let

V(x,9) = x—1®(x) for an arbitrary x e S, 0<s<]1.

It follows from our assumption that for an arbitrary z e (x, ) we have
Izl = x| 2 x| 2y} >0 for 0xr<1

and thus ¥: Sx[0, 1]-P, i . ‘

It is evident that y(S'x [0, 1])is a closed subset of £ and hence d 0, y(Sx[0, 1)
= §>0. .
Let (p, 9)=® be a selected pair of th¢ form KL Y—q%*E and let Sﬂp"l(,g)

4q1
= E be the pair associated with (p, g) (comp. the definition of Deg(p, 0)). Let
ge: pPHS) = E** be an e-approximation of g, where 0<e<§. We put §* = §
A E*1 and ¥, = pmi(SH).

We have the diagram

S
Sk < Y > EFFL

in which p,, g, are contractions of p, and g,, respectively.

Define the map g,: Y,~P*** by putting §,(3) = () —q(») for each ye ¥,.
We claim that deg(p,, g;) = deg(py, d) # 0. In this order, consider the map
F2 Y—P* ! given by f(3) = p,(3) and a homotopy A: ¥, x [0, 1]—P**! given by
A, 1) = pi(»)—1g,(»). Since ¢ (S)<P and g, is an e-approximation of qy, 0<e<d,
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we deduce that A(¥,x [0, 1])=P***. Then the maps f and §, are homotopic and
hence f* = §;. Finally, we obtain - ‘ .

deg(pl) ql) = deg(Pk: qk) = deg(pksf) # 0 B

and the proof is completed.

- In fact, from the above proof we infer that Deg(p,0) is a singleton and
0 5 Deg(e, 0).

6. Theorems on antipodes. Let 4 be a subset of Banach space E and let 5 be
a positive real number. Define the set 0,(4) by putting O,(4) = {z e E; there is
an x &€ 4 such that |z—x[ <7} '

The following theorem is a certain extension of the theorem on antipodes
(I9], [12]) to n-admissible fields. .

(6.1) THEOREM. Let ¢ = I—®: S—P be an n-admissible compact field. Suppose
that there exists a real positive number n such that for each x € S there exists a sub-
space E, of E, of codimension equal to 1, strictly separating O,((x)) and O,(¢(—x)).
Then 0 ¢ Dego. ‘ :

Proof. Consider a selected pair (p, g)=@ of the form S<YSE Let N
= min(y, d(0, ¢(S))). By assumption g>0. We take an s-approximation g,:
Y- E¥** of g, with 0<s<egy (k>n). Consider the diagram

'Sk _‘:f_p—'l(sk) E;val’

where p, is the contraction map of p to the pair (S*, p~*(59) and §,() = P — 2 (»)
for each y e p~(S¥). Then we have an n-admissible map : S¥—P¥*! given as
the composition ¥ = dp; *. o

Let Ef = E¥ n E**'. Observe that dim Ex = k. Since g, is an g-approximatio
of g, e<n, by assumption we have y(x)<=O,(p(x)) foreach x e S*. This implies
that E¥ strictly separate ¥ (x) and y(—x) for each x € S*. Applying Theorem (3.8)
to i, we obtain 0 ¢ Deg(i)) and hence 0 # deg(p, ¢). Since (p, q) is an arbitrary
selected pair of @, we have 0 ¢ Deg(¢) and the proof is completed.

From (5.10) and (6.1) we obtain :

(6.2) CorROLLARY. Let @: K— E be an n-admissible compact field such that o|g
satigfies all the assumptions of (6.1). Then there is a point x, € K\S such that O € ¢ (x,).

Now, for admissible compact fields we prove a stronger version of Theorem (6.1).

(6.3) THEOREM. Let ¢: S—P be an admissible compact field. Suppose that there
exists a positive real number n>0 such that the following condition is satisfied:

every half-ray L, = {z€E; z =ty for some 120} has an empty intersection
with the set O,(¢(x)) or O,(¢(—x)) for each x € S. Then 0 ¢ Deg(p).

Outline of the proof. Consider the admissible map ¥ given in the same
way as in the proof of (6.1). Applying Theorem (3.9) to the map ¥, we deduce (6.3)..
1
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From (5.10) and (6.3) we infer

(6.4) COROLLARY. Let ¢: K—E be an admissible compact field such that ¢|s
satisfies all the assumptions of (6:3). Then there is a point xo & K\S such that 0 € ¢ (x,).

7. Theorem on the invariance of domain. In this section we denote by K,
a closed ball in a Banach space E with the centre 0 and radius & and by S, the
boundary of K, in E. Let 4 be a subset of E.
A compact s-admissible field ¢: 4~ E is called an e-field provided the con-
dition ‘
@) N oxy) # B = [lx;—xy] <8

is satisfied for any x,, x, € 4.
A compact s-admissible field ¢: A—E is called an g-field in the narrow sense
if for some constant #>0 the condition

0,(2(x1)) N O, (x)) # B =[x, —x,] <a

is satisfied for every x;, x;, € 4.

The proof of the theorem on the invariance of domain for g-fields in the narrow
sense is based on the following lemmas.

(7..1) LEMMA, Let ¢: K—E be an ¢-field in the narrow sense. Then:

@ @(S)=E{yo} for each y, € ¢(0)
and

(i) 0 ¢ Deg(p, yo)-

Proof. For the proof of (i) we observe that if ¢(0) N ¢(x) # & for some
x€K,, then O,(p(0)) N 0,(¢(x)) # D and this implies that ||x||<e; hence ¢(S)
<E\{yo} for each y, e ¢(0).

Let ¢: K—E be a compact part of ¢, i.e., ¢ = I—@. Consider a selected pair

P q
(7, 9)=® of tl}e form K< Y- E and a point y, € E such that y, & ¢(0).

Let § = 1mn(?1, d(y(,, (p(Sb))), where ¢ is the e-field in the narrow seuse with
the f:onstant 7. It is evident that & is a positive real number. We take an §-approxi-
mation e Y1—> E**L of thie compact map ¢ such that y, € E+*1

+ . A W . .
Let K;™! = K, n E¥** and ¥, = p"*(X***). We have the diagram
K,’,‘“:f ka;Ekﬂ
in which p, is the contraction of p to the pair (¥, K*** g, is g
2 s ) and G, is given by §
= ) —a ) for cach e ¥,. qr 18 g Y §iuly)
Let ¢ K1 E¥*! be a multi-valued map g
- ap given by ¢u(x) = Gy(p; (¥
for each_ xe X*** From (4.4) we deduce that ®y is an s-admissible map. \;/c kasseR
';l;lz}t (pkh is an Ig{;ni]apd Indeed, because 0<d<7 we have . (x)< O, ®))=0,(p(x))
eac iti i i
x e K,”" and hence the condition ¢,(x,) N ¢ (x;) # @ implies O, (¢p(x,)) A

n O0,(p(x,)) # D. Then, by assumpti i i
a-m;p. : y mption, we obtain [x;—x,|<e¢ and ¢, is an
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Applying Lemma (3.10) to the map ¢, we obtain 0 ¢ Deg(py, ¥o) and hence
deg(p, q) # 0. Since (p, g) is an arbitrary selected pair of &, we obtain (ii) and
the proof is completed.

(7.2) Lemma. If @2 K—E is an admissible compact field and yo ¢ ©(S), then
for every y; € E such that [y, = <d(yo, ¢(S)) we have Deg(, yo) O Degle, 1)
# O

Proof. Consider the map y: Kx[0,1]—F ‘given by x(x, ) = x—X(x, 1),
where X (x, 1) = ®(x)+(tys +(1 =1)yo). It is evident that x(Sx [0, 1D<EN{0} and
x(Sx[0, 1) is a closed subset of E. Therefore is a homotopy between @ —Jyo
and p—y, and by similar arguments to those used in the proof of (5.4) we de-
duce (7.2).

Remark. It is possible to prove that Deg(e, ¥o) = Deg(p, y,) for ¢ as in (7.2)
but we only need (7.2).

We now prove the main result of this section.

(7.3) TreoreM. If ¢: E—E is an e-field in the narrow sense, then ¢(E) is an
open subset of E. :

Proof. Let y, € ¢(x,) be a pointin ¢ (E). Consider the closed ball K, = K(yo, €)
and let i = @|g, be the restriction of ¢ to X,. Then Y: K,—E is an g-field in the
narrow sense. Applying Lemma (7.1) to ¥, we obtain 0 ¢ Deg(yr, o). Let y, € E
be a point such that |yo—ll<d(yo, ¥ (S)). Then from (7.2) and (7.1) we infer
Deg(l, y,) # {0} and, in view of (5.10), we have y; € (K. This implies that
B(y,, Ny (K,) =@ (E), where B(yo, d) is the open ball in E with centre y, and
radius 8 = d(yg, ¥(S.)). The proof of (7.3) is completed.

Because E is a connected space, from Theorems (7.3) and (4.3) we deduce

(7.4) COROLLARY. If ¢: E—E is an ¢-field in the narrow sense, then ¢(E) = E,
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Symmetric words in nilpotent groups of class <3
by ‘

Ernest Plonka (Wroctaw)

Abstract. Let G be a group. A word w = w(%y, -, xn) is said to be symmetric if w(@y, «» ay)
= W(@ny, o> @) TOr All @1y oees On € G and all permutations 7 from the symmetric group Sp on

n-letters, In this note we describe symmetric words in nilpotent groups of class <3.

1. Tntroduction and netation. Let G be a group, and let FG(xi; s X, be the
group freely generated by Xq, ..., % in the smallest variety var(G) of groups con-
taing G. Let 4 be the group of automorphisms of Fg(Xy, s %) induced by the

mappings

xr-*x,”, 1<i$r,

4 belonging to the symmetric group S, on r letters. Let S”(G) be the set of all fixed

points of 4, ie., .
SO(G) = {w: &w = w for all e d}.

The elements of S(')(G) are called symmetric words (of r variables) in G.
Clearly, S”)(G) is a group. The aim of this note is to describe symmetric words
in nilpotent groups of class <3. We prove that in this case S®(G) is Abelian.

2. Symmetric words. In an Abelian group every word w of r variables is of the

form

W= x,
1i<r

We thus have
Tumorim 1. If G is an Abelian group, then we8YG) if and only if

we= T[] xi-

151%r
In [3] all elements of SWY(G) for a nilpotent G of class 9 are described. Namely
TrrorEM 2. If G is a nilpotent group of class 2, ther we S©(C) if and only if
I T x),

w = i
' 1€isr 18 j<isy
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