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W= {C;: iew} is an example to show that MCE] is false in M. This
Cf)mplgcs the proof of Theorem 3.6 and therefore the proof of the non-implications
given in Figure 3.

To summarize the results of this section we include Figure 4. It shows for
each of the models M,-M, which of our statements are true (T) and which are

false (F).
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Lw F T T T T T
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The hereditary classes of mappings
by

T. Maékowiak (Wroctaw)

Abstract, If @ is an arbitrary class of mappings, then a mapping f: X—7Y is hereditarily ¢ if
for each continuum K c X the partial mapping f|X is in %.In the paper we study some properties
of hereditarily monotone, hereditarily confluent, hereditarily weakly confluent and hereditarily
atriodic mappings (for the definition see § 3). In particular, it is proved that a continuum X is
hereditarily unicoherent if and only if any monotone mapping of X is hereditarily monotone, We
give also other mapping characterizations of some classes of continua. Namely, we prove that
a continuum X is hereditarily indecomposable (atriodic) if and only if any confluent (atriodic)
mapping of a continuum onto X is hereditarily confluent (hereditarily atriodic). Using these results,
we characterize hereditarily decomposable snake-like continua and an arc by hereditarily weakly
conffuent mappings. These results are connected with the problem posed in [12], and imply some

partial solutions of this problem.
Further, it is proved that any (irreducible) hereditarily confluent mapping of an arcwise con-

nected continuum (onto a locally connected continuum, respectively) is monotone. We discuss
also some invariance properties of the above mappings. In particular, we show that if a continuum
X is hereditarily decomposable, then the hereditary unicoherence of X as well as the atriodicity
of X is an invariant under hereditarily weakly confluent mappings. '

§ 1. Introduction. The topological spaces under consideration are assumed
to be metric and compact, and the mappings—to be continuous and surjective.
A continuum means a compact connected space.

Psendo-monotone mappings have been introduced in [20], p. 13, by L. E. Ward,
Jr. Namely, we call a mapping f: X— Y pseudo-monotone if, for each pair of closed
connected sets A<=X and B<f(4), some component of 4 nf ~1(B) is mapped
by f onto B. Simple examples show that the pseudo-monotoneity of f neither implies
nor is implied by its monotoneity. We describe below a monotone mapping which
is not pseudo-monotone. This example will be used in further considerations.

(1.1) ExampLE. There exists a monotone mapping f of a circle S onto itself
such that f is not pseudo-monotone.

Let (, ¢) denote a point of the Euclidean plane having r and ¢ as its polar
coordinates. Take the unit circle S = {(r, ¢): r =1 and 0<p<2n}. We define

r,2¢) if
f(ra(P):’{(r,O) if

Observe that a mapping f: S—S is monotone but it is not pseudo-monotone.

0<Lp<m,
T<P<S2T.
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Recall that a mapping f: X— Y is called confluent (weally confluent) if for every
subcontinuum Q of Y each (at least one, respectively) component of the inverse
image f1(Q) is mapped by f onto @ (see [3], p. 213 and [13], Sections 4 and 5).
The following proposition is an immediate consequences of the definitions.

(1.2) PROPOSITION. 4 mapping f: X— Y is pseudo-monotone if and only if for
each continuum K in X the partial mapping f|K is weakly confluent.

Let & be a class of mappings. We shall call a mapping f: X— Y hereditarily @ it
for each continnum K<X the partial mapping f|K is in ¥. Taking the class of
monotone, confluent or weakly confluent mappings for %, we get in this way the
classes of hereditarily monotone, hereditarily confluent and hereditarily weakly
confluent mappings, respectively.

This use of the term “hereditarily weakly confluent” instead of the term “pseudo-
confluent™ is well grounded by Proposition 1.2 in view of the terminology mentioned
above,

In the present paper we consider the hereditary classes of the above mappings,
In § 2 we study some properties of those mappings, which are used in further con-
siderations. 'We characterize hereditarily unicoherent continua, hereditarily inde-

" composable continua and atriodic continua in terms of hereditarily monotone
mappings, hereditarily confluent mappings and hereditarily weakly confluent
mappings, respectively (§ 3). Further, in § 4, we prove that hereditarily confluent
mappings of arcwise connected continua are monotone and that those mappings
onto locally connected continua are also monotone with some additional as-
sumptions. It is proved, in § 5, that if a continuum X is hereditarily decomposable,
then the hereditary unicoherence of X as well as the atriodicity of X are invariants
under hereditarily weakly confluent mappings, and we discuss these invariance
properties for other classes of mappings.

The author is indebted to Professor Charatonik for his valuable suggestions
and help during the preparation of this paper.

§ 2. Preliminaries. We have the following easy consequences of the definitions
in § 1. ‘
(2.1) PROPOSITION. Any hereditarily monotone (hereditarily confluent, heredi-
tarily weakly conflueni) mapping defined on a continuum is monotone (confluent,
weakly confluent, respectively).

(2.2) ProposITION. Any hereditarily monotone mapping is hereditarily con-
Sfluent and any hereditarily confluent mapping is hereditarily weakly monotone.

Since a composition of two monotone (confluent, weakly confluent) mappings

is monotone (confluent, weakly confluent, respectively) (see [3], III, p. 214 and
[13], 4.4), we have

(2.3) PROPOSITION. 4 composition of two hereditarily monotone (hereditarily
confluent, hereditarily weakly confluent) mappings is hereditarily monotone (heredi-
tarily confluent, hereditarily weakly confluent, respectively).

icm

The hereditary classes of mappings 125

Moreover (cf. [3], I, p. 213 and [13], 4.7)

(2.4) PROPOSITION. If a mapping f: X— Y is hereditarily monotone (hereditarily
confluent, hereditarily weakly confluent), and A is a subcontinum of X, the.n tlhe
partial mapping f|A is hereditarily monotone (hereditarily confluent, hereditarily
weakly confluent, respectively).

W now prove an analogous theorem to IV in [3], p. 214, for here'ditarily mono-.
tone, hereditarily confluent and hereditarily weakly confluent mappings.

(2.5) TrxoreM. Let a mapping f: X—Y be weakly confluent. If a mapping g
Y—Z is such that gf is hereditarily monotone (hereditarily confluent, hereditarily
weakly confluent), then the mapping g is hereditarily monotone (hereditarily confluent,
hereditarily weakly confluent, respectively).

TIndeed, it suffices to prove that for each continvum K in ¥ the partial maPping
g1k is monotone (confluent, weakly confluent, respectively). Le‘E K be an grb1t1‘ary
subcontinuum of Y. Since f is weakly confluent by the assumption, there is a con-
tinmum C in X such that f(C) = K. It follows from the definition of heredltar'y
monotoneity (hereditary confluence, hereditary weak confluence) that (gf)|C is
monotone (confluent, weakly confluent, respectively). Since (gf)IC = 9| K)(f10),
we infer that g|K is monotone (confluent, weakly confluent, respectlvely) (cf. [3],
IV, p. 214). . . .

The hypothesis of weak confluence of f in Theorem (2.5) is essential. This can
be proved by the following ’ o

(2.6) ExampLE. There are mappings f and g such tl.hat gf is hereditarily monot-
one, f is not weakly confluent and g is not hereditanly'weakly conﬂuex}t..

Let C denote the Cantor standard ternary set lying in the closed unit interval

I= [0, 1]. Given a point x € C, we have

€1 C2 Cm _
==ttt .t—=+.. (c=00r2),
x==+5 totg (m :
and we put
Cy C2 Cm
h(x)=§§+5§ "'+27ﬁ+"‘

Thus 4 is the well-known “step-function”, which maps.C continuously onto T (see

e.g. [10], § 16, 11, p. 150). _ .
¢ ][;ét] (r, @) denote a point of the Euclidean plane having r and ¢ as its polar
coordinates. Consider the set K and the mapping k: K—k(K) defined as follows:

K={(r,0): reC and 0<r<4, 0<p<m; orreC and }<r<t
and 0<p<in or dn<o<n},
k(r, ) = (h(r), ¢) for each (r,p)e K.

Put
L=Ku{({r ini): i<r<l and i = 1,2} U {(r, 3m): 0<r<d}.
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The set L is a continuum. Let f be a monotone extension of k& onto the whole .
Since M = {(r, ¢): 0<r<1, ¢ =0} is a continuum which is contained in JD),
and since any component of the set f~I(M) is degenerate, we conclude that fis
not weakly confluent. We define a mapping g: f(L)— gf(L) as follows:

(=2r+1,in) if r<i,
glr,p) =< @2r—1,0) if 4<rand 0<op<in,
@2r—1,mn) if i<rand 4n<psn.

It is easy to observe that the mapping g is monotone, but it is not hereditarily weakly
confluent. Moreover, the mapping gf is hereditarily monotone.

§ 3. Mapping characterizations of some classes of continua. Recall that a con-
tinuum is said to be unicoherent if for any its decomposi.ion into two subcontinua
the intersection of those subcontinua is connected. A continuum is said to be
hereditarily unicoherent if each of its subcontinua is unicoherent. It is known that
a continuum X is hereditarily unicoherent if and only if for any two points x, ye X’
there exists 2 unique subcontinuum I(x, y) which is irreducible between x and >.
The proof of the following theorem has been suggested by D, Zaremba.

(3.1) THEOREM. If any monotone mapping of the continuum X is hereditarily
monotone, then X is hereditarily unicoherent.

Proof. Suppose, on the contrary, that X is not hereditarily unicoherent. Then
there are subcontinua 4 and B of X such that 4 A B is not connected. We define
the following equivalence relation g. Let x,yeX. Then

.xgy ifand onlyif x=yorx,yeB.

* Since any equivalence class is a continuum, the canonical mapping ¢: X—X/o

is momnotone (cf. [21], p. 127). But the partial mapping ¢|4 is not monotone. In
fact; if a is a point of 4 N B, then

(Pl) Mol (@) = o™ 0@ nd = 4 A B,

by the definition of ¢. But by the assumption the set 4 ~ B is not connected, and
thus @4 is not monotone, a contradiction,

It is easy to prove that any monotone mapping of the hereditarily unicoherent
continuum is hereditarily monotone, Therefore, by Theorem (3.1,

(3.2) CorOLLARY. 4 continuum X is hereditarily unicoherent
monotone mapping of X is hereditarily monotone.

Recall that a continuum X is said to be decomposable (indecomposable) if there
exists (there does not exist) a decom

position of X into two proper subcontinua 4
and B such that X = 4 U B. A continuum is said to be hereditarily decomposable
(hereditarily indecomposable) if any of its subcontinua is decomposable (inde-
composable).

Let I be the unit closed interval [0, 1] and let
mapping, i.e., such that 2(x, %) = x for ¢ach xe X'

we have
if and only if any

P2 XxI-X be the projection
and tel. We have

icm
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(3.3) TueorEM. Let X be a continuum. If a projection mapping p: X x =X is
heredit-arily confluent, then X is hereditarily indecomposable.

Proof. Suppose that X is not hefeditarily indecomposable. Then ‘chej;'e a;e
roper sub‘cont‘inua 4 and B of X such that 4 "B # & and 4 :f A 1;,)! x{?)e} U
IIiet s ANB. Take the continuum QeXx[1 defined byi:1 Q1= I( ;Jact {0 v
. e i i is not confluent. In ,
1V U {a} xI. The partial mapping p|@ is 1 '
Zﬁ;ﬁi}@) ;d}s at least two components, namely Bx {O}i and ?tc ;east(((j‘:l; cl;))n:(
ich i ined in t A n B)x {1}. We have p(C)y<=p .
t C which is contained in the set ( ' . . x
io?f}r;c:A ~ B B; thus the mapping p|Q is ;101: confluent, i.e., p is not heredi
tarily confluent. - . » : )
(3.4) COROLLARY. The following conditions are equivaient:
(i) X is hereditarily indecomposable, e
i ) ] en
ii) any mapping of @ contimium X is con. uent,
(gii; ani;‘: mapping of @ continuum onto X is her;lztar}zily ;qyﬁz;lentc,onﬂuent
‘ : i ii ito X is hereditarily con A
iv) any confluent mapping of @ contmuumi onto X
(Evg thg projection mapping p: X xI-X is hereditarily confluent.

ii . (D) and (ii) imply (iii).
-oof. (i) is equivalent to (if) (see [13], 5.7, cf‘. [61, p- 24%). (D an

Indefc;,oif frfm‘ps aqcontinmrm Monto X, and Qisa Sleco?}lniﬁnoif i\l}; :;e;: t]; Eg;
is hereditarily indecomposable by (i), bet‘:aus.e any subcon ;nu e o ()
i osable continuum is hereditarily indecomposable. ' e inf rom i
mdecompi(;s:onﬂuent and thus f is hereditarily confluent. The 1.1np11catlon from (i)

E]c\)azlz)lgm obvious. Si’nce the project}ﬁn rnaqppir}lg3 )p: X x I-X is confluent, (iv)

i . Finally, (v) implies (i) by Theorem (3.3). o
phcsli\;)ml::k. éni )can find other mapping characterizations of hereditarily inde-

d atomic
composable continua, €.g. in [8], Theorem 4, p. 51, by monotone an '

mappings. . N
pll){ fal] that a continuum- 7T is called a triod provided that thef: are;gthrez s: "

£ at a - iy "
continua 4, B and C of T such that T' = 4uv BUC, A nB r; C;mh A o
= B  C and this common part is a proper subcontinuum (;) e ‘
ginuum X is said to be atriodic if it fails to contain a triod. L b Professor
We say that a mapping f: X— Y is atriodic (the name was suggestets é' o

: <l

B. Knaster) if for each continuum @ in Y there are two componen

of the set £~(Q) such that
() fICHLAC) = Q _
(ii) for each component C of the set f
=f(C") or AC)=AC")- :
f(We say (according to the gex.leral rul
f2 X— Y is hereditarily atriodic provided for eac
mapping f|X is atriodic. Obviously

kly confluent
(3.5). PROPOSITION. Any weak uent ping
tarily weakly confluent mapping is hereditarily atriodic.

1(Q) we have either f(C) = Q or §i(9)

e —see Section 1) that a mappipg
1 subcontinuum K of X the partial

mapping is atriodic, and any heredi-
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" Now we prove-the following

(3.6) THEOREM. If' a mapping f maps a contimuum M onto a hereditarily uni-
coherent and atriodic continuum X, then f is atriodie.

Proof. Let Q be an arbitrary subcontinuum of X. We shall prove three
properties of £1(Q), which are needed in the sequel.

(1) For each roint g Q there is a component C,of fH(Q) such thatge f(C)
and such that for each component C of the set F7NQ) it is not true that f(Cq)
SAQ)#ACY. '

Let C; be an arbitrary component of f “1(Q) such that f “Hg) C #9
and let € = {H: f(C) = H and there is a component K of f~*(Q) such tha’;
JA(K) = H}. Denote by @ a maximal subcollection of @ totally ordered (by inclusion)
and put D = {J {H: HeD}. It is easy to check that De%, and thus there is
a component C, of f~!(Q) such that f(C) = D. Then C, satisfies the required
conditions. ’ ‘

(2) There are no three components C. » Cyand Cy of f! 3
J(CY), f(Cy) and f(C,) are pairwise disjolint. ’  O7(O) such that et
w fI?I(fZC)t,SIslziptc;ls:t, (t)l:lnetilzt Scontreuy, that C;, C, and C, ar'e c.omp(?n.er}ts of the

. J(C), [(Cs) and f(C;) are pairwise disjoint. Then
there are continua K;, X, and K such that CicK; # C; and SEK) nfK) =0
for each i s j and i,j = 1,2,3. Since ! ’

. 3
0 =,.Q1(Q‘uf(K")) = (QUfK)) n (Q U fiKY)

for each i # j and i,j3= 1,2, 3, and f(K)\Q # @ for each i = 1,2,3, we infer
thattheset T = Q U ’91 S(K}) is a triod. But Xis atriodic, a contradiction.

(3) There are no components C,, C f-
1» Cy and C; of f7Y(Q) such that the sets
J(C) n f(C) and JCIN({(CY) U f(C)) are non-empty for i # j and i,j = 2, 3.
In fact, supposE, on the contrary, that there are such components C;, C,
and Cj of the set f~Y((Q). Then there is a continuum K’ in M such that Cy ::K%

# C; and such that the sets 7(C, ! [ £ f
7o g s (AN @) w f(C)) are non-empty for i # j and

R =f(C) v (&) nACy) v (f(K7) NS(C) v (fIKY A f(Cy))

and P, = ’ =
and hl SfKH v R, P, = f(C,) U R and Py = f(C3) U R. Since X is hereditarily
oherent, we infer that the sets R and Pifori=1,2,3 are continua. It is easy

to check that R = P, AP, A P, = P. S =
since 1 2NPy=P,nPforijandi,j= 1,2,3, Morcjover,

G # fKNQ=P\(P, UP;) and @ SIEN(E) v f(C) PP, L P)

for'z' ;é Jand i, j= 2,3, we conclude that
atriodic, a contradiction.

‘ Now, let p be an arbitrary point of
which is determined by (1). If SC) =

the set Py U P, U P, is a triod. But X is

Q and let C, be a component of £71(Q)
O, then putting €’ = ¢ = C, we com-
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plete the proof of the theorem. Suppose that f(C,) # Q. Then there is a point ¢ such
that g € ONS(C,). Let C, be a component of f ~1(Q) which is defined by (1). Then

@ JCHUAC) =0.

 Infact, suppose, on the contrary, that f(C,) U f(C)) # Q. Then there is a point r
such that r e O\ (f(C,) U f(C,). Let C, be a component of f~*(Q) which is defined
by (1). We can assume that f(C,) nf(C) # @ (or f(C,) nf(C,) # B or f(C) n
AF(C) # B; in any case the proof is the same) by (2). Then f(C,) n (f(C,) v f(Cp)
= &, because in the opposite case we obtain a contradiction of (3) simply by sub-
stituting C,, C,, C, for Cy, C,, Cs, respectively, if f(C,) N f(C,) # O. Therefore
there is a point s such that s € O\(f(C,) U ACpY VW F(C)). Take C,, which is de-
termined by (1). If 7(Co) » (f(C,) U f(C,) # @, then we can assume that f(C)) N
N f(C,) # B by (2). Thus substituting C,, C, and C, for €y, C; and Cs, respeciively,
we obtzin a contradiction of (3). If A(C,) N (f(C,) Uf(C)) = G, we have f(Cy) N
nf(C) # @ by ). So f(Cp) nf(C) # B and f(C) nf(C) # &, and

(€Y L FCY) N (fICYLAC)) =D

Therefore there is a point x such that xe ON(f(C,) U f(Cp) L f(C) LF(CY).
Consider a component C, determined by (1). It follows from (2) that either f(C) A
A (ACY UF(CY) # @ or f(C) n (f(C)uS(C)) # D. In both cases we obtain
a contradiction as above. Hence (4) holds.

Let C be an arbitrary component of £7(Q) such that f(CNf(C,) # & and
FONA(C) # D. Then, by (1), we have f(CN(C) #* @ and JCNA(C) # O,
It f(C,) nf(C)=F(C), then the sets f(C) N f(Cp, F(C) N FCY, FICINAC)U
UA(C) and FCON(A(C) U f(C,)) are non-empty. This contradicts to (3). If
(A(C) A FICHNFC) # B, then putting Py = f(C) A f(Cp, P, = f(C) N f(C))
and Py = f(C,) n f(C,p), we infer that the set P; U P, U P3 is a triod — a contra-
diction, because X is atriodic.

Therefore, by (4), the components C’ = C, and.C"" = C, satisfy conditions (i)
and (i) of the definition of an atriodic mapping. Hence the mapping [ is atriodic.
Moreover, since the property of being an atriodic ,continuum is hereditary, we
infer that the mapping f is hereditarily atriodic. The proof of Theorem (3.6) is
complete. ; »

(3.7) TuroreM. If the projection mapping p: XxI-X is hereditarily atriodic,
then the continuum X is atriodic.

Proof. Suppose, on the contrary, that X is not atriodic. Then there are three
subcontinua 4, B and C of X such that the set 4 U Bu C is a continuum, 4 N
'‘~"BAC=AnB=dAnC=BnC and there are three points a, b and ¢ of
X such that ae AN(BU C), be B\(4 U C) and ce C\(4 u B). Denote the set
A U Bu C by T. Define the continuum M contained in X'x I as follows:

M= (4 C)x{0})u ((4v B)x AHu (@Buoyx{1}) v {ax0,3hv
v ({pyxI%, 1D -
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The map_;_)ing PIM is not atriodic. In fact, let ¥ and U be open sets in 7" such
that ae Ve VeT\(BU C) and be UcUcT\(4 U C). Take the component D
of the set ANV such that 4 n B n C< D and take the component E of thé set B\U
such that A n Bn CcE Then D n V # G and En U # @ by Theorem 1 in [11]
§ 47, 111, p. 172. We infer that there are points d and e such that de DN(B u C)’
and ee EN(4 U C). Put K= Cu D U E. The set P XK) has exactly three com-
ponents, namely: (C'v D)x{0}, (Du E)x {}} and (C U E)x {1}; none of them
is mappfed under p onto the continuum K and the image under p of none of them
is conta'uned in the imagq under p of an other one. Therefore the mapping | M i
not atriodic, i.e., p is not hereditary atriodic, a contradiction, g i
mndffifn)s if‘):o:;;;\;.e nlt,e:zt a continuum X be hereditarily unicoherent. The Jollowing
() X is atriodic,
(11) any mapping of a continuum onto X is hereditarily atriodic
(l-ll) any atriodic mapping of a continuum onto X is hereditarily ’atriodz'c
(iv) the projection mapping p: Xx I-X is hereditarily atriodic. ,
'Iniieed, (1) implies (ii) by Theorem (3.6). Obviously (ii) implies (iii). Since the
prOJectlou.rflapping p is open (thus weakly confluent), we infer that 2 .is atriodi
by Proposition (3.5). Therefore (iii) implies (iv); (iv) implies (i) by Theorem (3 71)6
(3.9) TuEOREM. If the projection mapping p: XxI-X is hereditarily weall‘
confluent, then the contimum X is atriodic and hereditarily unicoherent. 7
atrioldz'irco osfu Byoiroposi;on (3.5) and Theorem. (3.7) we infer that the continuum X is
oo ar.e Su;z;zom,i on the contrary, that X is not hereditarily unicoherent. Then
nua 4 and B of X such that AN B = R U S, where R a d S
are closed, npnemply, separated (disjoint) sets. Let r be a point ;f the set Rn d
let s be a point of the set S. Consider the continuum Q<X x I defined as folioav‘\lf;'

0 = (Ux{0}) v Bx{1) v (@} x) .
'Sl;hcil ﬁz:;allzmagpir;g PlQ is not weakly confluent. In fact, let ¥ be an open set in X'
= Ve Ve X\S. Take the component C of the
set ANV he
and take the component D of the set B\V such that se D. TIl\ensuc]l et et

" G#COANANY) =CrnAdn VedB

G#DNB\(B\V)=DnBn Vi
b . .
1 gage:rce‘r\nDI ;1111 CEI ii],e §D 4\’7&112 p. 1d72 We infer that there are points ¢ and d such
3 - Consider the continuum K = ¢
¢ U D. The set
;\(g X%(})) has;j cxlaéclgi}two components, namely Cx{0} and Dx{ 1} VSVee hQa\C;
= Cck\{d} and p(Dx{1}) = DeKN\{c}; tI s n
- - . .. ? 1us
confluent, i.e., p is not hereditarily weakly corfluent, a contraﬁiligti;i ot weskdy

(3.10) CoROLLARY. If an i j
: - & any mapping of a continuum ont ] jtari
confluent, then X is hereditarily unicoherent and atriodic ? b ety veakly
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One can ask the following
(3.11) QUESTION. Let a continuum X be hereditarily unicoherent and atriodic.
Does it follow that any mapping of a continuum onto X is hereditarily weakly con-
fluent (weakly confluent)? i
T am not able to answer to this question but I have some partial results.
Recall that a continuum X is said to be snake-like (arc-like) if for each &>0
there exists an arc 7 and a map f from X to I such that the diameter of f =10 is
less than & for each te I (see [1]). It is easy to observe that any subcontinuum of
a snake-like continuum is snake-like, Theorem 4 of [17], p. 237 says that any
mapping of a continuum onto a snake-like continuum is weakly confluent. There-
fore, we have
(3.12) PROPOSITION. Any mapping of a continuum onto a snake-like continuum
is hereditarily weakly confluent.
Hereditarily weakly confluent mappings characterize hereditarily decomposable
snake-like continua; namely .
(3.13) CorOLLARY. Let a continuum X be hereditarily decomposable. The follow-
ing conditions are equivalent:
(i) X is snake-like,
(ih) X is hereditarily unicoherent and atriodic,
(iii) any mapping of a continuum onto X is hereditarily weakly confluent,
(iv) any weakly confluent mapping of a continuum onto X is hereditarily weakly
confluent,
(v) the projection mapping p: X xI-X is hereditarily weakly confluent.
Indeed, (i) and (ii) are equivalent by Theorem 2 of [16], p. 55 (cf. [1]). Con-
ditions (i) and (if) imply (iii) by Proposition (3.12). Obviously (iif) implies (iv). Since
the projection mapping p is open, and thus weakly confluent, we infer that (iv)
implies (v). Condition (v) implies (ii) by Theorem (3.9).
The problems considered above are associated wiith the following problem
‘asked by A. Lelek: characterize continua which have the property that any mapping
of a continuum onto X is weakly confluent (see [12], Problem 1). The class of those
continua does not coincide wich any class of continua considered here. We have
the following ‘
(3.14) ExampLE. There exists a hereditarily decomposable, atriodic and uni-
coherent continuum M such that any mapping of a continuum onto M is weakly

confluent. ‘
Let (r, @) denote a point of the Euclidean plane having r and ¢ as its polar

coordinates. Define a continuum M as follows:
S={r.e)xr=1, 0<o<2n},
M=Sul{lr e):l1<rs2, ¢ = 1/r—1)} .
The continuum M is a spiral winding up the circle S. Obviously, M is heredi-
tarily decomposable, atriodic and unicoherent. Let a mapping f map an arbitrary
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continnum N onto M and let N’ be a minimal subcontinuum of N such that
F(N') = M. Put b = (2,1). Since be M, there is a point 4 such that a e N’ and
f(@) = b. Consider a sequence Q;, O, ... of proper subcontinua of N " such: that

n=Ul 0, =N and ae 0, Q,,q foreach n = 1,2, ... (cf. [11], § 47, IIT, Theorem 5,

p. 173). Since N is a minimal subcontinuum of N such that f(N') = M, we have

FQ)=MNS for each n=1,2, ... Since U Q, =N’ and f(N') = M, we infer
n=1

that any subcontinuum K of -M\S is contained in some f(Q@,). Moreover, since
F(Q,) is an arc, the mapping f]Q, is weakly confluent by Proposition (3.12). There~
fore, for each subcontinuum K of M\S there is a continuum Q in N’ such that
(@) = K. Further, let R be an arbitrary subcontinuum of M. Then there is a se-
quence of subcontinua R, of M\S such that LimR, = R. Therefore there are sub-

n—ro

continua C, of N’ such that f(C,) = R,. We choose a convergent subsequence {C, }
of the sequence {C,} (cf. [11], § 42, I, Theorem 1, p. 45 and § 42, II). Put C = Lim C,,m .

m- oo

The set C is a subcontinuum of N” (cf. [1 1'], § 47, II, Theorem 4, p. 170) and
AC) = Limf(C, ) = LimR, = LimR, = R
m=r o0 n—w

m-r o

by the continuity of f. We conclude that fis weakly confluent, and thus any mapping
of a continuum- onto M is weakly confluent.

'(3._15) ExAMPLE. There is a co_ntinmim M having the following properties:
M 1s'1r1:educible; M is hereditarily -decomposable and hereditarily unicoheren‘;’
(i.e., M is a A-dendroid; cf. [5], Theorem 1, p. 16); M is not atriodic; any mappin,
of a continuum onto M is weakly confluent. ’ ¢
) Let (x, y, 2) denote a point of the Euclidean 3-space having x,y and z as
its rectangular coordinates. Let {r,} be a sequence of rationals of the’ closed unit
lnter\.ral [0, 1]. Let A4, denote the union of the straight line intervals joining con-
secutively point (0, 1, 1/n), (0, 1/n, 1/n), (r,, 0, 1/n), (0, —1/n, 1/n) and (0, ~1, 1/n);

and let
. . :
Bh = (0: 13 Zz): “‘S <
{ ) 2n Z\2n-—1

and

1 1
Cn‘: 0, _1, H < —_—
{( Z) 2n+1\2< .
We define:
T={0,y,0): —-1<y<1} u{(x,0,0): 0<x<1},

M=TuU{A,uB,UC,).
: n=1 .
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The continuum M is a simple triod which is approximated in a special way
by the broken line. Obviously, the continuum M is irreducible, hereditarily de-
composable,. hereditarily unicoherent and not atriodic, In the same way as in
Example (3.14) we infer that if the mapping f maps the continuum N onto M, then. -
(1) for each continuum X contained in MNT there is a continuum @ in N such

that £(Q) = K.

Let R be an arbitrary subcontinuum of M that is not contained in MN\T.
Consider two cases. .

1. R (MNT) # @. Then T<R and there is a sequence {R,} of continua
such that R,cM\T and LimR, = R (for example R, = R {(x,y,2): zZ 1/n}).

[ Snd=c]
By (1), there are continua C, in N such that f(C,) =R, Take, as in Example (3.14),:
a convergent subsequence {C,,} of the sequence {€,} and put C =LimC,,. Then
; : m-> 0

f(C) = R by the continuity of f.
9. ReT. If R {(x,0,0): 0<x<1} = @, then we take

R, = {(x,y,2): (x,9,0)e R, z = 1/n};

and if R {(x,0,0): 0<x<1} # @, then we take a maximal number ro such
that the point (ro, 0, 0) belongs to R and we take a convergent subsequence {r, .}
of the sequence {r,} such that limr, =ro and then we put

-+

R, = A, 0 ({(=,9,2: 0,90 e R} U {(x, y,2): there is an o such that
xo<x and (x,,0,0) € R}).

In both cases the sequence {R,} is convergent to R and R,cM\T for each
n=1,2,.. By (1) we conclude as before that there is a continvum C in N such
that f(C) = R.

Therefore f is weakly confluent, and thus any mapping of a continuum onto
M is weakly confluent.

Remarks. Recall that an irreducible continuum X is said to be of type A
(see [11], § 48, 11, p. 197, the footnote) if there is a monotone mapping ¢ of X onto
the closed unit interval [0, 1] such that for each t e [0, 1] the set o D) hgs a void
interior. Any set P of the form P = U @ () is called a portion of X. Z. Wa-

n<t<v
raszkiewicz in 19], Theoreme 1, p. 182 proved the following

(3.16) ProPOSITION. If a mapping f maps a continuum M onto an irreducible
continuum X of type A, then for each portion P of X there is a contimum K in M such
that f(K) = P.-

Denote by 4 the collection of all irreducible continua X of type 4 such that
any subcontinuum X’ of X is the topological limit of some sequence of portions
of X. By Proposition (3.16) we conclude that any continuum X of the collection o
has the property that any mapping of a continuum onto X is weakly confluent.

6 — Fundamenta Mathematicae XCVII
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In particular, the continua described in Examples (3.14) and (3.15) belong to the
collection ",

By similar arguments to those used in the proofs of Theorems (3.7) and (3. 9)
it is easy to obtain the following

(3.17) PrOPOSITION. If any mapping of a continuum onto a continuum X is
wealkly confluent, then X is unicoherent and X is not a triod.

Every unicoherent continuum which is not a triod is an irreducible continuum
(see [18], Theorem 3.2, p. 456). We have

(3.18) QUESTION. Does it follow that if am irreducible Suslinian (with no uncount-
able collection of nondegenerate subcontinua; continuum X has the property that any
mapping of a continuum onto X is weakly. confluent, then X € A1

(3.19) QUESTION. Is any snake-like Suslinian continuum in the class A ? (Any
snake-like continuum is irreducible, because it is unicoherent and atriodic).

Note also the following

(3.20) COROLLARY. Let X be a locally connected continuum. The following con-

ditions are equivalent:
(i) X is an arc,
(i) X is a snake-like ‘continuum,

(iif) any mapping of a continuum onto X is hereditarily weakly confluent,

(iv) any weakly confluent mapping of a continuum onto X is heredijtarily weakly
confluent,
(v) the projection mapping p: X xI-X is hereditarily weakly confluent,

(vi) any mapping of a continuum onto X is weakly confluent,

(vii) any mapping of X onto itself is weakly confluent.

In fact, obviously (i) implies (ii); (ii) implies (iii) by Proposition (3.12). It is
obvious that (iii) implies (iv) and (vi), and (iv) implies (v). Condition (v) implies
that X is hereditarily unicoherent and atriodic by Theorem (3.9). Since X is locally
connected, it is easy to see that X is an arc (cf. [11], § 51, V, p. 291), i.e., (v) implies (i).
Obviously (vi) implies (vii), and condition (vii) implies (i) by Corollary 3.5 in [15].

§ 4. Hereditarily confluent mappings on some special spaces. If M is a con-
tinuum, an essential sum decomposition of M (see [9], p. 221) is a finite collection @
of subcontinua of M such that

() M= | {D: Deg},

(ii) if D € 9, then D contains a point not in the union of the other members of &.

A mapping f of a continuum X onto Y is called irreducible provided no proper
subcontinuum of X is mapped onto the whole ¥ under f (see [21], p. 162).

‘We first prove the following

(4.1) TuEOREM. If an irreducible hereditarily confluent mapping f maps a con-
tinuum X onto Y, then for each essential sum decomposition @ of Y and for each D
of D the set (D) is connected.
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Proof. We claim that

(1) if 4 and B are proper subcontinua of Y such that A u B = Y, then seté
F~1(4) and f~*(B) are connected.

Indeed, sets A N B, ANB and B\A are nonempty, and thus there are points
a, b and ¢ such that a € ANB, be B\A and ce 4 n B. Let ¢’ be an arbitrary point
of the set f ~*(c). Therefore the components 4" and B’ of the sets f ~1(4) and f~1(B),
respectively, such that ¢’ € 4 n B have the property f(4" v B') = f(4") v f(BY) =Y
by the confluence of f. This implies that 4" U B’ = X by the minimality of X with
respect to the property f(X) = Y. It suffices to prove that £ "*(4) = 4’ and f~*(B)
= B'. Let C be an arbitrary component of the set £ ~*(4). Since fis confluent, we
have f(C) = 4; thus f~Y@) nC# . But f7i(@ =f""a) n4’, because X
=Ad" UB and f(B) = B Y\{a}. We infer 4'n C # . Since 4" and C are
components of f™1(4) and 4’ N C % @, we have 4' = C, le, f71(4) = 4'. In
the same way we obtain f~*(B) = B
Now let @ be an essential sum decomposition of ¥ and let D, be an element
of @, It the set Ey = {J {D: DeP and D # Dy} is connected, then ¥ = Dy U E,
and D, and E, are proper subcontinua of ¥, Thus, by (1), we infer that f~ YD) is
connected. Assume that E, is not connected. Then E, has a finite number of com-
ponents, say Ej, E,, ..., E,, by the finiteness of 2. We bave E;n E; = & and
DonE, # @ for i#jand i,j=1,2,..,n Put 4 =E; uD; and B =Dy U

n
w U E,. It follows from (1) that the sets f ~*(4) and f~*(B) are connected. Let X be
i=2

a minimal subcontinuum in f~*(4) such that f(K) = 4. Applying (1) to the con~
fluent mapping f|K, we infer that the set K nf~*(D,) is connected, because Ey
and D, are proper subcontinua of 4 and E; U Dy = A. Moreover, the set K n
A f~Y(B) is nonempty, because ™" (Do)cfH(B) and K nf (Do) # B. Thus
KU fi(B) = X by the irreducibility of f. Since f~1(4) = KU f™}(Dy) and the
sets f1(4) and K ~f~Y(D,) are continua, we infer that f (D) is a continuum
by Theorem 2 in [11], § 47, I, p. 168. The proof of Theorem (4.1) is complete.

(4.2) COROLLARY. If a hereditarily confluent mapping f maps a hereditarily
unicoherent continuum X onto Y, then for each subcontinuum Q of Y there is a con-
tinuum K in X such that f(K) = Q and for any subcontinuum R which has the non-
empty interior in Q, we find that the set f~*(Q) n K is connected.

Proof. Let Q be an arbitrary subcontinuum of ¥. Since f is hereditarily con-
fluent, there is a subcontinuum K in X such that f}K is an irreducible hereditarily
confluent mapping from K onto Q. Let R be an arbitrary subcontinuum of @ such
that the interior of R is nonempty. If the set Q\R is connected, then the closure
of O\R is a continuum (see [11], § 46, II, Corollary 3, p. 132) and if ONR 5 &,
then 2 = {R, Q\R} is an essential sum decomposition of Q. Therefore the set
(fIK)"*(R) = KA f~1(R) is connected by Theorem (4.1). If the set O\KR is not
connected, then ONR = M U N, where M and N are separated sets. This implies
Cid
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that the sets R U M and R u N are continua (see [11], § 47, I, Theorem 3, p. 168).
Then 9 = {RuU M, RuU N} is an essential sum decomposition of Q. Therefore
the sets K nf YR u M) and K nf~*(Ru N) are connected by Theorem (4.1);
and since

Kof 'R = (KnfRuM)nEKnf RUN)

and X is hereditarily unicoherent, we conclude that the set X n f~*(R) is connected.
Now we prove
(4.3) LEMMA. Let a continuum Y be locally connected and let y be an arbitrary
point of Y. Then there is a sequence {Q,} of subcontinua of Y such that
@) Qu+1<=0, for each n =1,2, ...,
o0
@ 02 =0k
n=
-(il) any Q, is an element of some essential sum decomposition @, of Y.
Proof. We shall proceed by induction. If » = 1, then we take Q; = Y. As-
sume that Qy, ..., O, are subcontinua of ¥ such that yeInt Q,c Q;< O, 4...< 0y,
diam 0;<%diamQ;_, for i = 2,3, ... and for i =1, 2, ..., s the continuum O, is
an element of some essential sum decomposition F; of Y. Since y € Int O, we can
assume that the set {x: ¢(x, ¥)<e} is contained in Q, for some positive number &,
where ¢ denotes the metric in Y. Since Y is locally connected, we infer by Theorem 2
of [11], § 50, II, p. 256 that there are continua Kj, ..., K,, of diameter less than }&
m
and such that ¥ = {J K;. We can assume that 9{,; = {K;, ..., K,,} is an essential
i=1
sum decomposition of ¥. Put O,y = | {K:ye Kand Ke D;,,}. Theny € Int Q,+,
CQ_HICQS and diam Q,;<%diam Q,. Moreover, Q,;, is an element of an es-
sential sum decomposition %, defined as follows:

Dpy ={K: K= Q,pq or KeD,y and ye I\K}.

Therefore the sequence {Q,} satisfies (i) and (iii) and diam Q;..;<%diam Q,
for each 7 = 1,2, ... by the construction, i.e., it also satisfies (ii).
‘ (4.4) TueoreM. If a hereditarily confluent mapping f maps a continuum X onto ¥
and Y' is a locally connected subcontinuum of Y, then there is a subcontinuum X'
of X such that f(X") = Y’ and the partial mapping is monotone.

Proof. Since f is hereditarily confluent, we infer that there is a subcontinuum
X '.of X such that f(X") = Y¥* and the partial mapping f|X” is an irreducible heredi-
tarily ?onﬁuent mapping from X onto Y. It suffices to prove that the set £ 1(¥) A
n X" is connected for each y e Y. Let y be an arbitrary point of ¥’. It follows
from Lemma (4.3) that there is a sequence {Q,} of subcontinua of ¥* such that (i)

o0

Qus1<0Q, for each n=1,2, ..., (ii) nlg,, = {y}, and (iii) any Q, is an element
=

- of some essentiitl sum decomposition Z, of Y'. By Theorem (4.1) and (iii) we infer
that the sets £7°(Q,) n X" are continua for n =1, 2, ... Thus by (i) and (ii) and
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by Theorem 5 in [11], § 47, IL, p. 170 we conclude that the set f~1(») » X" is a con-~
tinuum, This completes the proof.

Furthermore,

(4.5) THEOREM. Any hereditarily confluent mapping of an arcwise connected
continuum is monotone.

Proof. Let a hereditarily confluent mapping f map an arcwise connected
continuum X onto ¥, and let p be an arbitrary point of Y. Suppose, on the contrary,
that the set £~*(p) is not connected. Take two components C; and C, of the set
F~H(p). Since X is arcwise connected and C,; n C, = @, we infer that there is an
arc A4 in X such that A is irreducible between C; and C,. Since the image of the
end-points of A under f is the point p, and f(AN{p} # O, we can choose a non-
degenerate subarc abof 4 having ¢ and b as its end-points and such that £ ~*(p) N
n ab = {a, b}. The mapping f is hereditarily confluent, and thus flab is hereditarily
confluent (cf. Proposition (2.4)). Therefore the set flab) is an arc (cf. [4], Cor-
ollary 20, p. 32). Denote the end-points of f(ab) by ¢ and d. Obviously we have
¢ # d. Consider two cases. ' '

U'. ¢ = p (if d = p, the proof is quite similar). Let a point d’ be the first one
in the arc ab which goes into d under f (a<d’'<b). Let e be an arbitrary point of

 flab)\{d, p} and let a point ¢’ be the first one in the arc from d’ to b in ab which

goes into e under f (a<d’<e’'<b). Take the arc ae’ in ab. Then f(ae’) = f(ab), and

the one-point set {¢'} is a component of the set FH(flab)Nfd'eD) n ae’, where

Jd'¢’ is an arc in ab which has d’ and & as its endpoints. Thus, since
{fleN}=flab)\fd'e) # {f(e)}

and the set f(ab)\f(d'e’) is a continuum, the partial mapping flae’ is not confluent,

a contradiction. .
2. ¢ # pand d# p. Let a point ¢’ be the first one in the arc ab which goes

into ¢ or d under f (a<c¢’ <b). Then flehe{c,d} and we can assume that fich)=¢
(if f(¢) = d, the proof is quite similar). This implies that the one-point set {a} is
a component of the set f™*( Flab)~f(ac')) N ab, where ac’ is an arc in ab which
has a and ¢’ as its end-points. Since the set Flab)~f(ac’) is a continuum in f(ab)
and {f(a)} < fm # {f(a)}, we conclude that the partial mapping flab is
not confluent, a contradiction. The proof of Theorem (4.5) is complete. :

(4.6) COROLLARY. Any hereditarily confluent mapping of a ‘he'reditarily arcwise

connected continuum is hereditarily monotone.
1t is easy to observe that there are hereditarily confluent mappings which are

not monotone. We have .

(4.7)- QUESTION. For which class of continua is any hereditarily confluent mapping
monotone?

In particular, - ‘

(4.8) QuesTiON. Is any hereditarily confluent ‘mapping onto arcwise -connected
continua monotone? : .
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§ 5. Invariance properties. Recall that a continvum X is called discoherent
provided for each closed sets 4 and B such that X = 4 U B and 4 # X+# B, the
set A N B is not connected. We have (see [11], § 46, X, Theorem 1, p. 163) the
following :

(5.1) PROPOSITION. A continuum X is discoherent if and only if for each con-
tinuum K< X the set X\K is connected.

Obviously any indecomposable continuum is discoherent. We will prove that
a continuum which is not hereditarily unicoherent contains a continuum which is
discoherent and decomposable (cf. [11], § 56, VII, Theorem 1, p. 421 and VIII,
Theorem 3, p. 425). We have

(5.2) LemMA. Let a continuum X be irreducible between a point a and each point
of a set A. If for each component C of a closed set M we have C n A # O, then the
set X\M is. connected. '

Proof. If the point a belongs to the set M, then the component C of M such
that a e C, is equal to X by the irreducibility of X and by Cn 4 # @. Then X\ M
=, ie., the set X\M is connected. Suppose ae X\M. Let L be a component
of the set X\ such that ¢ € L. Then (see [11], § 47, III, Theorem 2, p. 172) L
N M+# . Thus, there exists a component C of the set M such that L~ C # @.
Therefore the set Lu C is a continuum, and ae LU C and 4 n (Lu C) # @.
By the irreducibility of X we have Lu C = X. But then

LeX\M = (X\M) n (Lu C)=(X\M) n (Lu M) = (X\M) n L<L,

and since L is connected, we infer that the set X\ is connected (see [11], § 46, II,
Corollary 3, p. 132).

(5.3) Lemma. Let a continuum X be irreducible between each point of a set A
and each point of a set B. If for each component C of a closed set M we have C n
N A # @ and for each component C' of a closed set N we, have C' B O, then
the set X\(M U N) is connected.

Proof. If M n N s @, then there are components C and .C’ of the sets M
and N, respectively, such that AN C # &, BN C # @ and C~ C’' % . Then
the set C U C’ is a continuum containing some point of 4 and some point of B.
By the irreducibility of X, we have C U C’ = X, ie, XN(M U N) = &, and thus
the set X\(M U N) is connected. Assume that M n N = @. Then there is a com-
ponent L of X\(M U N) such that Ln M # @ and Ln N # @.

Indeed, if L is a component of the set XN(MUN), then Lo (M UN) # @
- (see [111, § 47, III, Theorem 2, p. 172). Suppose, on the contrary, that for each
component L of the set X\(M u N) we have either Ln M = @ or LA N # @.
Put R= U{L: L is a component of X\(M U N) and Ln M = @}, 8 = U{L:
Lis a component of XN(M u N)and LA N = @}. Thenthe sets RU Mand S U N
are separated and X = (Ru M) u (Su ), contrary to the connectedness of X.

Let L be a component of X\(M u N) such that L M % @ and L N # @.
Take components C and C” of the sets M and B, respectively, such that C ~ L &
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and ¢’ n L% @. By the irreducibility of X we obtain the equality X = C v Lu C".
Therefore

LeXNMUN) = (XNMUN)n(CuLucC)=@FMuN)n LeL,

and since the set L is connected, we conclude that the set X\(M L N) is connected
(see [11], § 46, II, Corollary 3, p. 132).

Lemmas (5.2) and (5.3) ate generalizations of Theorems 3 and 4 in [11], § 48,
1L, p. 193). We now prove

(5.4) TaEOREM. If a continuum Q is the union of two continua I and I' such
that InI' = A U B, where A and B are nonempty and separated, and the continua I
and I' are both irreducible between each point of A and each point of B, then Q is
decomposable and discoherent.

Proof. Obviously the continuum @ is decomposable. By Proposition (5.1)
it suffices to prove that for each continuum K< Q the set ONK is connected. Let
K be an arbitrary subcontinuum of Q. Consider the sets: ‘

M= {{C: Cis a component of KnIand Cn4d# @},
N = U {C: C is a component of Kn I and Cn B +# @},
M’ = U {C: Cis a component of Kn I and Cn4 # B},
N’ = {J{C: Cis a component of KnlI and Cn B # o} .

It is easy to verify that
() the sets M, M’, N and N’ are closed,

2 M=@ (N =0)if and only it M' = & (N' = , respectively). Moreover,
(3) if Cis a component of X n I (K n I') such that CnAd=@QandCnB=0,
then CnI''= @ (C n I = B, respectively).

Indeed, if CAl' # &, then G #(CnI)n(Cnl) = Cnl'nlI=Cn
NAUB)=(Cn4d)yvu (C A B) by the assumptions and by the connec?edness
of C, because C = (C ~ I) U (C n I). Therefore, either Cn 4 or Cn B is non-
empty, a contradiction.

(4) if either M or N is nonempty and C is a component of KnI(or Knl),
then either CN 4 # @ or Cn B # @, .

In fact, let C be a component of K n I suchthat Cn A =@ and Cn B =@.
By (3) we have C n I’ = @. Therefore C is a component of the set K\J' becaus?
Ce k'K r I Since either M # @ or N # @, we conclude that the set K'u [
is a continuum. Furthermore, C is a component of the set K\ = (KuIWN,
and by Theorem 2 in [11], § 47, IIL, p. 172 we obtain g # Cn (K uI'NWNEKN)
= Cn I, a contradiction.

Consider three cases. - .
1. M = N = @. Then, since K = (K~ I)u (Kn I, either KNI or Knl

is empty. Suppose K N I = @ (if Kn 1’ = @; then the proof is analogous). Then
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ONK = (INK) U (INK) = Tu (I'\K) and 4 U BcI\K. It follows from The-
orem3in [11], § 48, II, p. 193, that the set I'\K is a union of two connected sets,
C, and C,, such that C; n 4 # @ and C, n B # 4. Since 4 U Bcl, we infer
that O\K = I'u C; u C, is connected.

2. M#* Gand N= @ (if M = O and N # @, then the proof is analogous).
By (3) and (4) we obtain K = M u M’. Since (MU M)YnI= Mand (M u M) n
NI =M, we have O\K = (INM) U (I'\M"). The sets IN\M and I"M’ are
connected by Lemma (5.2). Moreover, Bo(INM) n (I\M ;), and thus the set

O\K is connected. ’
3. M+ @ and N # @. Then, by (3) and (4), the equality K = M u M' u

-U N'u N’ holds. Therefore (M U M)~ (Nu N") # @, because K is connected.

Thus one of the intersections M AN, M'nN', M N’ and M’ n N is non-
empty. If M N N # @ (analogous by if M’ n N’ # @), then for some components
C; and C, of M and N, respectively, we have C; n C, # &; thus C, U C, is
a continuum in 7 having nonempty intersec'ions with the sets 4 and B, ie., C,u
U C, = I by the irreducibili y of I, hence IcK. If M n N’ # @ (if M’ AN # &,
analogously), then, since M n N'cA4 n B, we have eithes MNn N n'Ad# & or
MANNB#@. It MAN nAd# & (if MAN nB# @, similarly), then
there is a component C of N’ such that C n 4 # @. Moreover, by the definition
of N,Cn B # . By the irreducibility of I’ we infer that the inclusion I’ < K holds.

Therefore either /oK or I'=K in any case. Suppose I=K (if I’ =K, the proof
is quite similar). Then

ONK = IN((Kn ) U AU B) = IN((M' U 4) U (V' U B)).

The set I'\((M’ U 4) U (N’ U B)) is connected by Lemma (5.3) if we substitute I’
for X, M" U A4 for M and N’ U B for N. Thus set O\K is connected. The proof
of Theorem (5.4) is complete.

(5.5) COROLLARY. If a continuum is not hereditarily unicoherent, then it contains

“a decomposable discoherent continuum. .

Indeed, suppose that a continuum X is not hereditarily unicoherent. Then
there are two continua E and Fin X such that En F = P U R and the sets P and R
are closed, disjoint and nonempty. Let I be an irreducible continuum between the
sets P and R in E, and let I’ be an irreducible continuum between the sets J A P

and InRin F. Put A=InI'aP,B=InIARand Q = [UI. By The-

orem2in {11], §48, IX, p. 222 we conclude that the continua I and I’ are irreducible
between each point of A4 and each point of B. Thus, Theorem (5.4) implies the
conclusion of the corollary.

We now prove

(5.6) THEOREM. A hereditarily weakly confluent image of a hereditarily de-
composable, hereditarily unicoherent continuum is hereditarily unicoherent.

Proof. Let a hereditarily weakly confluent mapping f map a hereditarily de-
comiposable, hereditarily unicohereént continuum X onto a continuum Y. Suppose,
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on the contrary, that the continuum Y is not hereditarily unicoherent. It follows
from Corollary (5.5) that Y contains a decomposable, discoherent continuum Q.
By the weak confluence of f there is a subcontinuum K of X such that f(K) = Q
and K is minimal with respect to this property. Since the continuum X" is hereditarily
decomposable, there are proper subcontinua A and B of K such that K = 4 U B.
Then the sets f(4) and f(B) are proper subcontinua of Q with Q = f4) v f(B).
Since the continuum Q.is discoherent, we infer that f(4) n f(B) = P w R where
the sets P and R are closed, disjoint and nonempty. The continuum X is hereditarily
unicoherent, hence the set 4 n B is a continuum, and thus the set J(4 n B)is a con-
tinuum. Therefore we have ei her f(4 N B)=P or f(4 n B)=R. Assume f(4 0 B)
cR. By the normality of ¥ there is an open set U such that R< UcUc Y\P. Let
peP. Take a component L, of the set S(ANU such that pe L, and take a com-
ponent L, of the set f(BI\U such that pe L,. Accolding to Theorem 2 in [11],
§ 47, III, p. 172 we have L nU # @ and L, n U # @. Let aeL; nU and
beL,nTU. Since UcY\P and L;n U =@ for 1,2, we obtain a e f(A)NS(B)
and b e f(BINf(4). Consider the continwum Q' = LU L;. Since A4 n B
cK\f7(Q") we infer that each component of the set f~}(Q") n K is contained
either in 4 or in B. But a e f(A)NQ', b e f(BINQ’ and {a, b} = Q'; thus no compom.ant
of the set f~1(Q") n K is mapped under f onto the whole Q’. Therefore the mapping
fIK is not weakly confluent, a contradiction.

(5.7) TueoreM. A hereditarily confluent image of « hereditarily unicoherent
continuum is heredirarily unicoherent.

Proof. Let a hereditarily confluent mapping f map a hereditarily unjcoherent
continuum X onto Y and let Q be an arbitrary subcontinuum of Y. .It suffices to
show that O is unicoherent. Let A4 and B be proper subcontinua of 'Q such that
AU B = Q and let X be a minimal subcontinuum of X with respect to thej propert'y
F(K) = Q (such K exists by the confluence of f). Then the pariial mapping f|K is
an irreducible hereditarily confluent mapping of K onto Q. By Theorem (4.1) we
conclude that the sets f~1(4) n K and f~'(B) n K are continua. Therefore the
set f71(4) nf~4(B) n K is a continuum by the hereditary unicoherence of X.
Then the equalities ‘

AnB=AnBnQ=(4nB)nfK) =f(f7M 4B nK)

=f(f71 ) nfTHB) N K)

imply that the set 4 n B is a continuum, ie, Q is unicoherent.

One can ask the following _

(5.8) QuESTION. Is a hereditarily weakly confluent image of a hereditarily
unicoherent contimum also hereditarily unicoherent?

Recell that a hereditarily decomposable, hereditarily unicoherent continuum
is called a A-dendroid (see [S], Theorem 1, p. 16). ‘We have

© (5.9) TueoreM. If a mapping f maps a hereditarily decomposable continuum X

onto a hereditarily unicoherent -continuum Y, then Y is hereditarily decomposable.
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Proof. Let Q be an arbitrary subcontinuum of Y and let K be a minimal sub-
continuum of X with respect to the property Qcf(K). Since the continuum X is
hereditarily decomposable, there are proper subcontinua 4 and B of K with K
= 4 U B. The sets f(4) n Q and f(B) n Q are continua by the hereditary uni-
coherence of Y. Moreover,

(FAANQU(BYAQ) =0 and fA)nQ#Q£fB)n Q.

Thus the continuum @ is decomposable, i.e., the continuum Y is hereditarily de-
composable.

Theorems (5.6) and (5.9) imply a partial answer to Question (5.8).

(5.10) CoroLLARY. A hereditarily weakly confluent image of a A-dendroid is
a A-dendroid. :

Remarks. The last corollary may be obtain in an other way. Namely, we
first prove that a hereditarily weakly confluent image of an arc is an arc (an
elementary proof); secondly, in the same way as in [3] (cf. [14]), we prove that
there is no hereditarily weakly confluent mapping of a A-dendroid onto a circumfer-
ence. One can prove that if a hereditarily decomposable continuum X is not heredi-
tarily unicoherent, then there are 2 subcontinuum M of X and an irreducible mono-
tone mapping ¢ of M onto a circumference S. The propositions mentioned above
imply Corollary (5.10) in the same way as in the proof of Theorem XIV in [3],
p. 217.

Recall that a dendroid is an arcwise connected and hereditarily unicoherent
continuum (see [2], p. 239). Since every dendroid is hereditarily decomposable
(see [2], (47), p. 239), and since arcwise connectedness is an invariant under an
arbitrary continuous mapping (see [21], p. 39 by Corollary (5.10), we have the
following .

(5.11) COROLLARY." Every hereditarily weakly confluent image of a dendroid is
a dendroid.

Moreover, since a dendrite is a locally connected dendroid, and since local
connectedness is an invariant under an arbitrary continuous mapping, we conclude
from Corollary (5.11) that

(5.12) CoroOLLARY. Every hereditarily weakly confluent image of a dendrite
is a dendrite.

We will now study some invariant properties of atriodic continua.

Atriodic continua need not be hereditarily unicoherent (even unicoherent;
for example: a circumference), but they are hereditarily bicoherent (see [21], p. 153,
the definition of function r(X)); namely we have

(5.13) THEOREM. The common part of each two subcontinua of an arriodic con-
tinuum is the umion of two continua.

Proof. Let 4 and B be arbitrary subcontinua of an atriodic continuum X Sup-
pose, on the contrary, that the set 4 n B has more than two components. Then
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(see [11], § 46, TI, Theorem 6, p. 133) we h:.w_e .A NB=CiuC,u Qs where C{,
C, and Cj are closed, nonempty, mutually disjoint sets. By the normal‘lty o'f X _thel g
are open sets Gy, G, and G5 such that C;=G, apd GnG =0 for i#jan
i,j=1,2,3. Let ¢,e C;. Consider a component K; of the set G; n B such that
¢,;€ K;. Then (see [11], § 47, III, Theorem 2, p. 172)

Put L, = K, u 4 for i =1,2,3. Since the sels K, and 4 are continua and
¢,€ K;n A, we infer that the sets L, are continua. Morcover, since K, n K;=G; n
n G; = @ for i # j, we conclude that

@ LinLi=EudHnE&ud)=(KnK)ud=4 for i#j.

This implies by
E,n(B\G)nd=G,n jLiiGj =0

that K; n (B\G) =K N\4 = LN\A. Therefore we conclude fr91n (1) that th.e .sets
LA are nonempty. Thus the set T'=L; UL, u L, is a triod, a contradiction.
(5.14) LemmA. Let Ly, L, and Ly be subcontinua of an atriodic continuum X such
that Iy Ly # @, LynLy # @, LynLy = @ and LN\L, # &. If K, and K,
are continua such that Ky O KycLy ULy ULy and Ly O L,cKy n K,, then we
have either K, <K, or K,<K;.
Proof. We prove that

(1) if R is a continuum such that ReL; UL, U L, and L,cR, ﬁhen the set
R~ (L, U Ly) is a continuum.

In fact, since R = (RN L) UL, u(RNL;) and L; n Ly = &, both com-
ponents' of the set R N Ly (cf. Theorem (5.13)) intersect the set L,. Therefore the
A L) = R n (L, u Ly) is a continuum.
- Lﬁe\:gg and3)K2 be sxgbzontinua of X such that K; v K,=L; v L, U Ly and
v L,cK; n K,. Consider two cases.
h l’Ijohelset Ki n K, is connected. Then put 4, = J.K'l NKy, Ay = (L, U ,[_4.3) N
N K, and Ay = (L, v Ly) n K,. The set 4, is a continuum by the assumpuops,
and the sets 4, and 45 are continua by (1) (put X an.d K, for IF). Moreover,d Fhe
set Adg=A;nd; =K 0K, 0 (L L) fo1.' i#j is a ,f:on.tmuum accor lzg
to (1) if we put K, n K; for R. Since the continuum X is atrx(?dlc and @ 5 L\ L
cAN\dy, we conclude that either Az\.Ao or the set A3N\A, is §mpty, be}(;auie Qljn
the opposite case the set A, U 4, A3 is a triod. If 4,Ndo = &, then KI\: é)——- A
ie., K ck,, because K;\Krcd,\do. If ANAy = O, then Ko\NK; =9, ie.,
¥ e _
& C21’< 1 ’TE:C:;s?QK :\\II(? isfﬁ:i;ion of two nonempty disjoint continua C and D
(cf. T};eorem (5.13)). Then eithier C or'D contains the set L, U L,. Assume L; U
U L, = C. By the normality of X there is an open set U such that DeUcUcX\C.

i
i
[
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Denote the component of the set K,\U containing C by K{, and denote the com-
ponent of the set K,\U containing C by K,. Obviously C<K; n Ky =(K; n K)\D
= C, i.e., K1 0 K5 = C, and thus the set K; n K; is connected. It follows from 1’
that either K< Kj or K,;<K; holds. Theorem 2 in [11], § 47, IIT, p. 172 implies
that KinU # @ and K;nU # @. Therefore 9# K nK;,nU=CnT,
a contradiction, because Uc=X\C.

(5.15) LEMMA. Let continua A', B" and C’ be irreducible between a continuum W
and points a, b and c, respectively, and let W = (WU AV N (WU B) = (Wu 4) n
NWuC)Y=(WuB)Yn(WuC). If a contiuum T =Wou d uB Ul is
hereditarily decomposable and if a continuum S<T contains the points a, b and c,
then there are continua A,, B, and C; such that

() 4, "B, C, # O,

(i) 4, UB, UC, =S,

(iii) ae 4,\(B; U Cy), be B)\(4, U C)) and ce C,\(4; U B,).

Proof. It follows from the assumptions that

48] {a,b,c}=ScT.
Therefore S =SNT = (EnW)u (S n4d)u(SnB)U(Sn C). Moreover
()] SAW#O.

In fact, if S " W = @, then, since § is a continuum, the intersection of two
sets of S N A", S~ B and §~n C' is nonempty. Assume (S 4') A (SN B) # &
Then @ # (SnA)n(SNB)=SnA nB'cSnW by the inclusion 4’ n
N B'cW; a contradiction.

Let a continuum DS be irreducible between a and W (cf. (1) and (2)) and
let P be a composant of a point a in D (for the definiiion of a composant see [11]
§ 48, VI, p. 208). Since the continuum D is irreducible between the point @ anc;
each pcint of the set W D (see [11], § 48, VIII, Theorem 2, p. 220), we have
PaW=0; thus PcS\Wc(A\W) U (BA\W) u (C\W). Sets A’\;/V B\W
and C_"\W are separated and aeP n (A'\W), we infer that Pcd’. T’herefore
D =Pcd’ (see [11], § 48, VI, Theorem 2, p. 209). Since the continuum A’ is ir-
reducible‘ between the point a and the set W, we conclude that D = 4’, and thus
A’ =S, Since the role of 4', B’ and C’ is symmetric, we obtain the inciusion

(€)) AuBuclcSs.

Let R be a component of the set S n W, By Theorem 1 i
we have m 11 [11], § 47, 111, p. 172

® RnS\W @,
It follows from (1) and (2) that S\W<4' U B’ U C'. Therefore, (4) implies

that the set (RN A) V(RN B)U (RN C') is nonempty, ie., each component
of the set § n W has a nonempty intersection with either 4’, or B, or C'. We define
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A" = J{R: R is a component of SN W and Rn A’ # &} and similatly we
define the sets B”” and C’’, Then
(5) SAW=4"0vB"vC".

It is easy to check that the sets 4", B” and C’' are closed. Therefore the sets
A" w A", B"u B’ and C’ ) C”" are continua. Moreover, conditions (1), (3) and (5)
imply the equality
©) S=(AuvAYU (B uBHYU(C uC).

Since the set S is a continuum, we see that there are two continua of this de-
composition, both intersecting the third one. Assume

(M @udyn(CouC)#@ and (B UB)N(CU Cy#d.

The continuum T is hereditarily decomposable, thus there are continua Cj
and C, with. C' = C; U C, and C; # C” # C,. The continuum C’ is irreducible
between the point ¢ and each point of the set C' n W, we may assume
) C'nWeCNC, and c¢eCN\C,.

Put A, = (4 ud)u(C,uC”) and B, = (B UB)uU(C,u C'). Since

Aud)n(CuC) = vd)n(C Ul
and

(B UBYA(C,uC)y=BUB)N(C U c
and since sets the 4’ U 4”', B".u B and C, u C” are continua, we conclude that
the sets 4, and B, are continua by (7). Moreover, Cy N C,# @ and C; n C,

<A, n By n Cy; thus
A "B, nC #D.°

Equality (6) implies the equality
S=A4, B, uC,.

By (8) and by the definitions of 4, B; and Cy, we conclude from the as-
sumptions relative to the sets 4', B’ and C’ that

beBNA;uC) and ceC\(4 VB,

ae ANBL L Cy),

Therefore, the continua 4,, B, and C satisfy the required conditions.

‘We now prove

(5.16) TueorEM. Each hereditarily weakly confluent image of a hereditarily
decomposable atriodic continuum is hereditarily decomposable and atriodic.

Proof. Let a hereditarily weakly confluent mapping f map a hereditarily de-
composable, atriodic continuum X onto Y. Then the continuum Y is hereditarily
decomposable by the weak confluence of f (cf. [3], XIIL, p. 217). Suppose, on the
contrary, that the continuum ¥ is not atriodic. Then there continua 4, B and C
in ¥ such that AnBnC=4AB=AnC=BnC#®d and the set AN
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ABNC is a proper subcontintum of each continuum 4, B and C. Let
ae AN(BUC), beB\(dU C) and ce C\(4 U B). Take a continuum A'cd
irreducible between the point @ and the set W= 4 n Bn C, a continuum B'<B
irreducible between the point b and the set W, and a continium C’< C irreducible
between the point ¢ and the set W. The set T = Wu 4’ v B’ U C’ is a continuum;
thus there is a subcontinuum Q of X such that f(Q) = T by the weak confluence
of f. Take a subcontinuum Q' of Q which is minimal with respect to the property
{a, b, c}=f(Q). Put S = f(Q).

The continua T, W, 4’, B, C’ and S satisfy the assumptions of Lemma (5.15);
thus there are contimua 4, , B, and C; such that (i), (ii) and (iii) of Lemma (5.15) hold.

Since the continuum X is hereditarily decomposable, we infer that there are
continua L and L' contained in Q' such that Q' =L u L and L # Q' # L. By
the minimality of Q' with respect to the property {a, b, ¢}=f(Q") we may assume
that f"Y @) n L' = & and f~1(b) nL = &. Thus

0 B#f M a)n QcINL and @B £f B nQcL\L.
Since f~Y(c) N Q" # O, we may assume
2 ffOonLl #9.

Take a continuum L,<L irreducible between the set f~*(a) and the set L'.
Since {a, b, c}cf(Ly v L), we conclude that Lo UL’ = Q' by the minimality
of Q' wi.h respect to the property {a, b, ¢} =f(Q"). Therefore the continuum Lj is
irreducible between each point of the set £~ (a) n Q' and each point of the set
Ly u L'. Moreover,

(3) if a subcontinuum K of Q' is such that Knf (a) # @ and K n L’ # &,
then Ly K.

Since a continuum Lg is decomposable and irreducible between the sets £~ !(a)
and L', we infer that there are continua L, and L, such that

(4 Li=L UL,, L NL,#@, IL;aL'=@ and L,nL #&.
Putting L' = L,, we obtain :
@) LinL,#@, L,nL#@, LnL =0 ad L L, # 0.

The sets 4; U B, and 4, U C, are continua which are contained in f/(Q") = S
(cf. () and (ii) of Lemma (5.15)); thus, by the hereditary weak confluence of f;
there are components K, and K, of sets Q' nf~1(4; u B) and @' nf~ (4, U Cp),
respectively, such that

©) S&EK)=4,vB and f(K)=A, uC;.

Therefore K; nf~a) # @ and Ky nf~1() # G. Hence, by (1), we obtain
Ky nf'ay # @ and K, n L' + @. It follows from (3) that Ly K,, thus by (4)
we conclude that

© L uL,ck,.
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Conditions (5) and (6) imply that the set f~*(c) 0 L, is empty. But f~*(c) N
nEK, # @and f7Ya) n K, # F; thus K, n L' 5 @ and K, nfYa) # @. Thus,
by (3), we infer that Lo=K,. Therefore condition (4) implies
Q] LiulL,ckK,.

Conditions. (4), (6) and (7) imply that the continua L;, Lj, L3, K; and K,
satisy the assumptions of Lemma (5.14), thus we have either K; =K, or Kz <= K.

It K,=K,, then f(Ky)=f(K,). Thus, by (5), we have 4; U Bjc=d; v Cy.
Therefore B,\(A; U C))=B;\(d, L By) = @, i.e., B\(4, L Cy) = G, contrary
to (ili) of Lemma (5.15). .

U K,=K;, then f(K;)cf(Ky). Thus, by (5), we have 4; U Ci=dy W By,
Therefore C;\(4; U B)cC\(4; U C)) = &, ie, C\(4, v By) = G, contrary
to (iii) of Lemma (5.15).

The proof of Theorem (5.15) is complete.

Corollary (5.9) and Theorem (5.16) imply

(5.17) CorOLLARY. Each hereditarily weakly confluent image of an atriodic
A-dendroid is an atriodic A-dendroid.

Theorem (5.16) is a partial solution of the following problem.

(5.18) QUESTION. Is a hereditarily weakly confluent image of an atriodic con-
tinuum also atriodic?

- Applying Theorem (5.13), it is easy to obtain

(5.19) ProPOSITION. Each confluent image of an atriodic continuum is atriodig.

In fact, let £ be confluent and let # map an atriodic continuum X onto Y. Sup-
pose, on the contrary, that Y is not atriodic. Then there are continua 4, B, and C
in ¥ such that ANBAC=AnB=AnC=BnC#@ and the set 4N
ABn C is a proper subcontinuum of each of the sets 4, B and C. Let
%" €f%(A4 A B ~ C). Take the components 4', B and C” of F7i(4), f7H(B) and
f7XC), respectively, such that x" belongs to each of them. By the confluence of f
we have
43 fdY=4, fBY=B and f(C)=C.

Theorem (5.13) implies that any of sets 4’ 0 B, 4'n C’ and B’ n C’ has
at most two components. Denote the component of A’ n B containing x’ by Wy,
the component of 4’ n C’ containing x" by W, and the component of BBnC’
containing x’ by W,. Since

T U FW) U f(W3) = (fd) 0 f(BY) L (F(4) A f(CD) v (f(B) N f(C)

, =((AnB)u(AnC)u(Br\C)):AmBnC
by (1), we conclude that W, = W, = W;, because 4n B = AnC=BnC

=AdnBnCand x'e Wy n W, nWs.
Take an open neighbourhood U of the set W; such that

(A ABYUA NCYUB N CHNTU =W,
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(it is possible by Theorem (5.13)). Let 4", B" and C" be components of the sets
A U, B U and C’ AT, respectively, and such that Wicd” nB" n C”,
Then .

Wy=dA"nB' nC'=4"0B" =4"nC"=B"nC"
Therefore, by (1), we infer that the set 4”7 U B U C" is a triod, a contradiction,

‘We have

(5.20) ExAmPLE. There is a weakly confluent mapping of an atriodic
A-dendroid onto a simple triod.

Let (x, ») denote a point of Euclidean plane having x and y as its rectangular
coordinates. Let C;, be the Cantor set (cf. Example (2.8)) situated on the line y =0
and let C, be the same set located on the line y = 1. Join each point of C, with
the corresponding point of C; by a vertical segment and add the contignous intervals
to C, with lengths 1/3, 1/33, ... and add the contiguous intervals to C; with lengths
1/3%, 1/3%, ... (cf. [11], § 48, I, Example 4, p. 191). The continuum X obtained in
this way is an atriodic A-dendroid. Put g(x,») = (h(x),») if (x,0)e Cy, where
h: C— [0, 1] is the “step-function” recalled here in Example (2.8). Take an extension
g* of g such that g*|X ~ {(x, y): y = 0} and g*|X n {(x, y): y = 1} are monotone.
Thus g* maps X onto the unit square J>. Further, take a mapping f* defined as

follows:
2y . 2~x
(o, 2—;};) it osy<— =,
1 —
(4J”‘(2"x),§) if ?—Zj<y<é,
frx,y) = .
(—4y+(x+2),—> if —<y<%f~x
2, 4 °
2p-1 . 2+x

Put f(x, y) = F*(g*(x, »)) for each (x,y) e X. The mapping f is weakly con-
fluent and maps X onto a simple triod. :

Corollary (5.12) and Theorem (5.16) imply

(5.21) CoroLLARY. A4 hereditarily weakly confluent image of an arc is an arc.

Remar.k. Corollary (5.21) follows also from Corollary (5.12) and from Cor-
oflary (3.3) in [15] (cf. [7], Corollary 2.3).

'Recall that~a<point p of a continuum X is called a ramification point (in the
classical sense) if it is the common end-point of three (or more) arcs in X whose
only gommon point is p. Denote the set of all ramification points of X by R(X).
A dendrc_nd X haVJ_ng exactly one ramification point is called a fan (see [4], p. 6).
The ramification point of a fan is called its.zop.
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We have

(5.22) TueoreM. Let a hereditarily arcwise connected continuum X have a finite
set R(X). If a hereditarily weakly confluent mapping f maps X onto ¥, then Y is
hereditarily arcwise connected, and R(Y)<f(R(X)).

‘Proof. Obviously Y is hereditarily arcwise connected, because the mapping

. fis weakly confluent and arcwise connectedness is an invariant under an arbitrary

continuous mapping (see [21], p. 39). Suppose, on the contrary, that R(Y)
cf(R(X)) # @. Since R(X) is finite, we infer that the set f(R(X)) is finite. There-
fore there is a triod Q in Y such that @< Y\F(R(X)). 8o f (@)= X\R(X), whence
every component of f™*(Q) is either an arc or a circle. Let 4 be the component
of f~1(Q) such that f(4) = @ which does exist by the weak confluence of f. Since
f is hereditarily weakly confluent, we infer that f|4 is weakly confluent; conse-
quently Q is either an arc or a circle by Corallary 2,3 in [7], a contradiction.

Corollary (5.11) and Theorem (5.22) imply ‘

(5.23) COROLLARY. A hereditarily weakly confluent imgge of a fan is a fan (or
an arc) and the top of the model is mapped on the top of the image.

There is a hereditarily weakly confluent mapping f which maps a smooth fan
(for the definition of smoothness, see [4], p. 7) onto a fan which is not smooth (for
example 2 mapping f described in Example 5.7 of [14], p. 263). o

The Cantor fan may be mapped onto a dendrite with two (or more) ramification
points by a weakly confluent mapping (an easy modification of Exemple I in [7]).

Finally note that unicoherence is not preserved by hereditarily weakly con-
fluent mappings, but we have ’ - ‘

(5.24) QuesTION. Is the hereditarily confluent image of unicoherent contiruum
also unicoherent? ‘

Moreover, we have o ,

(5.25) QuestioN. Is the hereditarily confluent (hereditarily weakly . confluent)
image of an arc-like (tree-like) continuum also arc-like (tree-like)? (for the definition
of tree-likeness see [1], p. 653).

Added in proof. Question (3.11) has a negative answer and Questions (4.8) and (5.24)
have positive answers (see my paper Continuous mappings on continua, Dissertationes Math., to
appear, Example (6.14) and Theorems (6.7) and (7.1), respectively). The assumption of the he-
reditary unicoherence in Theorem (3.6) can be omitted (see ibidem, Theorem (6.12)).
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