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family & = #, U &, fulfils all the required conditions. This completes the proof
of the theorem.
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Abstract. The concept of shape, first introduced by Borsuk in his study of the homotopy
theory of compacta, is extended to an abstract categorical setting. The shape of an arbitrary functor
K is defined, and it is proved that the Kan extension is shape-invariant. One then shows that many
of the categorical aspects of shape remain valid in this very general seiting; others require some
restriction on the functor X, and the notion of a rich functor is introduced, which is more general
than the notion of a full functor. In addition, it is proved that if K is rich, the iteration of the shape
construction produces the same shape category. Finally, the special case when X has a left adjoint
is discussed in some detail, and a relation with the categories of fractions is exhibited.

Introduction. Since Borsuk [1] first introduced the concept of shape in his
study of the homotopy theory of compacta many authors (e.g. [5], [6], [7], [11],
[12], [14], [15], [16], [17]) have contributed to the develepment of shape theory.
However the theory has remained almost exclusively confined to a topological
context, never very far removed from the setting in which it was originally cast
by Borsuk; and further, and arising from this restriction in the scope of the theory,
the concept has, in the work cited, related to some category of topological spaces T
and a full subcategory P of T. However, Holsztysiski [10] observed, scon after
Borsuk’s invention of the concept, that shape could be formulated as an abstract
limit, and was thus of more general applicability.

It is the principal purpose of this paper to free shape theory from its restricted
scope. Thus we replace the full embedding of a topological category P in aiopologi-
cal category T by an arbitrary functor K: P—T from the arbitrary category P to
the arbitrary category T. In so doing we are very much inspired by the point of
view adopted by LeVan in his thesis [12]. ' We then find that many of the categorical
aspects of shape theory (we do not speak of the fopological aspects) remain valid
in this very general setting. Others require some restriction on the functor K, but
a restriction far milder than that K should be a full embedding.

In Section 1 we define shape and the dual concept coshape. Indeed, for K: P—T,

* The first-named author was partially supported by NSF Grant GP38804, and the second-
named author by NSF Grant GP43703, during the preparation of this paper.
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the shape of K is the category whose objects are those of T and whose morphisms
are given by

S(X: Y) = Nat(T(Y: K'—)s T(X:K")): X: Yel-n >

with the obvious law of composition. There is an evident functor S: T—$ which
is the identity on objects. A functor F: T—C is said to be shape-invariant if F = FS
for some functor F: §—C; we may also say that F extends F. The principal result
of Section 1 is that right Kan extensions of functors P—C along K are always
shape-invariant; this generalizes Holsztyriski’s observation [10] that Cech co-
homology is shape-invariant (*). We also give an explicit process, given such a Kan
extension F, for constructing F: S—C with FS = F.

In Section 2 we recall from [3] the notion of a dominant functor and then give
the definition of a rick functor. Thus a functor U: C—D is rich if, given any objects
C, C' of € and any morphism g: UC—UC’ in D, there is a diagram

Jare—1 Jzr
C——>A1<—— Ay ——> Ay <—C'

in C such that Uf,; is invertible, 1<i<k, and

g = (Uka)—‘lUka—l (Ufz)_iUfl .

It turns out that certain results proved (in a restricted topological context) when
K is a full embedding retain their validity when K is merely assumed. to be rich.
If K is rich and dominant then S is an isomorphism of categories; this fact about
S in fact characterizes the codense functors K in the sense of [13]. We also take the
opportunity in Section 2 to improve some results of [3], replacing a hypothesis of
fullness by a hypothesis of richness. Further we prove that the extension F: §—C
of the right Kan extension F: T—C of the functor F: P—C along X, constructed
in Section 1, is the right Kan extension of F along SK, provided that X is rich.
With the same llypothems on K, we give a characterization of the shape functor
S: T-S.

In Section 3 we first point out that, if Kis rich, then the shape of SK: P—$§
is isomorphic to § itself. Thus it is reasonable to ask what happens if we iterate the
shape construction when K is not rich, and we obtain a few preliminary results.

In Section 4 we discuss in some detail the special case when K has a left adjoint
L: T-P. It then turns out that the shape of K: P—T depends only on the triple
generated by the adjunction; precisely, the shape of X is isomorphic to the Kleisli
category of T with respect to the triple T' generated by the adjunction L— K. From
this it follows from results in [3] that, if T is idempotent, the shape of K is iso-
morphic to the category of fractions of T with respect to the family S, of morphisms
of T rendered invertible by L. At this point, the concept of richness again plays
a role, since we show, improving a result in [3], that T is idempotent if X is rich.

() This observation may be regarded as following dlrcctly the original motivation of Borsuk
in introducing shape
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It is a pleasure to acknowledge valuable conversations with John Macdonald
on the current state of shape theory. We are also grateful to the referece for many
helpful remarks, especially with regard to the formulation of shape by means of
diagram (1.3) below. We plan to exploit this point of view extensively in a sequel
to this paper, On Borsuk shape and the Grothendieck category of pro-objects (*). As
remarked by the referee, we could also have used this formulation of the shape
morphisms to provide alternative, and in some cases slicker, proofs of some of
the results of this paper, especially those related to Kan extensions (e.g., Theorem 1.4,.
and the first statement of Theorem 4.4). However, we have preferred to adopt
a more explicit approach to the Kan extension, believing that our arguments would
thereby be more accessible to the reader more familiar with topology than with
category theory. For the slick proofs would involve fairly esoteric theorems of
category theory; moreover, we have also wanted to exhibit explicit maps achieving
the various relations in question (e.g., Sy in Proposition 3.1, I in Theorem 4.3)
and these maps do emerge directly from the exploitation of (1.1). Nevertheless,.
we appreciate the value of the referee’s observation.

1. Shape and right Kan extensions.

DermNiTION 1.1. Let K: P—T be a functor. Then the shape of K is the category $
whose objects are the objects of T and whose morphisms are given by
(1.1) S(X, Y) = Nat(T(Y, X-), T(X, K-)).

The composition of morphisms in § is the usual composition of natural trans-
formations. The coshape S’ of K is the opposite of the shape of K°P: P°P—Te,
so that
1.2) §'(X,Y) = Nat(T(X—, X), T(Kk—,1)).

The shape category was introduced by LeVan [12] for the particular case
that K is a full embedding, and independently by Mardesié [14] for the special
case when T is the homotopy category of topological spaces, P is the full subcategory
of spaces having the homotopy type of CW-complexes, and X is the full embedding.
‘We remark that we may describe the morphisms of $ by means of the comma

category. Thus, for each object X of T, let (X \lr K) denote the comma category of
P-objects under X. There is a forgetful functor Dy: (X 1, K)—P, given by

DX(X—>KP) =P, PelP|,
and a morphism 0: X— Y in § is just a functor 0: (Y\Jr K)— (X\'y K) such that the:
diagram
(rv 1() N (XJ«K)

(l 3) I)\\ / D;.

commutes (see thc closing paragraph of the Intreduction).

Q] Scc 18]
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The shape of K may be furnished with the canonical functor §: T-—§ which
is the identity on objects and which associates with /: X~ Y'in T the induced natural
transformation f*: T(¥, K—=)—-»T(X, K—). We will regard S as forming part of
“the structure of the shape of K; further we will denote by .Ky: P—$ the composition
K, = SK. Now if v: X»Y in § and P e|P| we will denote by ¥ the function
T(Y, KP)-»T(X, KP) determined by r; the justification for this notation is that
if also ¢: Y~ Z in §, then

(1.4) (o7)F = 1¥a”.

We abbreviate f*F to fFif f: X—»Y in T.

We observe that the definition of shape involves us in the usual set-theoretical
-difficulties, since $(X, ¥) may well fail to be a set. 4d hoc arguments, such as the
.one given by Mardesié in [14], may be used in individual cases to show that S(X, ¥
is well defined. In general, if T is a category in a given universe U, then § is a category
in a higher universe containing U as an element.

We say that a functor F: T—C is shape-invariant (with respect to K) if it factors
through S: T—S. In the study of shape-invariant functors we are naturally led to
‘the study of right Kan extensions of functors P—C. We first consider such extensions
when € = Ens, the category of sets.

ProOPOSITION 1.2. Let F: P—Ens be a functor. Then the right Kan extension
.of F along K: P—-T is the functor F: T—Ens, given by

XelT],
fiX-YinT & TX,K-)-F,

FY = Nat (T(X, k=), F),

Ff(& =¢&of*  for

.together with the natural transformation ¢ FK—F, given by
4 = Eollr)

Proof. It is plain that F is a functor. To prove that ¢ is a natural transform-
-ation, let u: P— Q in P; we must prove that

&

PelP|, & (KP,K—)—F.

Fxp—t s Fp
(1.5) ‘ ™
¢

Fu
FKQ —2 5 FQ
commutes. Now if &: T(KP, K—)—F, then (Fu o &) () =
(eg° FKu) (&) = (¢ Ku#)g(lag) Ea(Ku) = (&g o Kuy)(Ikp) ,

and the commutativity of (1.5) follows from the naturality of &.
‘We complete the proof by establishing the universal property of (F, 8. As-
:sume given a functor G: T—Ens, and a natural transformation t: GK—~F. We

(Fu o &p)(1gp), while
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define a natural transformation o: G—F by the rule

(1.6)  ox(@p(f) = (rp° Gf)(@), XelT|, Pe|P|, aeGX, feT(X, KP).

That oy(a) is natural follows immediately from the naturality of 7; that ¢ is natural
follows from the fact, easily proved, that if z: X— Y in T, then

(Fh o ox)(@)p(f) = (tp o Gf  Gh)(a) =

for f: ¥Y—KP in T. Moreover

(oy o GRY)(@)p(f) »

(o 0K)p(a) = &p (pr(a)) = ogp(@p(lgp) = (TP g G(IKP))(U) =1p(a), aeGKP,

so that

.7 gooK = 1.

It remains to show that (1.7) characterizes o. Now, merely by naturality we
infer that, in the notation of (1.6),

ax(@)p(f) = (Ef- o) (@p(lgp) = (ogp > GF)(@)p(1gp) = (ep ° oxp) Gf @),

so that ¢ is uniquely determined by &o oK, and the proof of the proposition is
complete.

COROLLARY 1.3. For each X in |T|, the right Kan extension of the functor
T(X, K—): P—Ens along K is

S(X,=): T-Ens

(together with the natural transformation e given by Proposition 1.2).

It is this corollary which we now propose to generalize; the generalization
consists of replacing T(X, K—) by an arbitrary functor F: P—C. We construct
the right Kan extension F: T—C of F along K, and prove

THEOREM 1.4. Let F: P—C be a functor and let F: T—C be the right Kan ex-
tension of F along K. Then F is shape-invariant.

Proof. We will construct an explicit functor F: $->C such that FS§ = F.

(1.8)



Artur


162 . A. Deleanu and P, Hilton

Of course, we must define F on objects by FX = FX, X eS| = |T|. To define F on
morphisms of §, we need to recall the explicit form of F on objects. Thus if X, ¥ e [T],

1.9) Fx = tim FP, FY= Ilim FQ.
K v:(lT:;(Q
Let o2 FX—FP, B,: FY-FQ be the canonical morphiéms defining the two in-
verse limits (1.9). Then for any p: P»P’, g: 0—Q’'in P we have
(1.10) Fpoa, = o, With &' = Kpou, Fgof,=f,, with v' = Kgev.
Now let A: XY in S. We define a morphism Fi: FX-FY by the rule
(1.11) ’ Boo FA = oyq,.

u X—+KP

That (1.11) really does define a morphism FA is clear; for, if g: 0— Q" in P, then
Fgo o0, = tg,ci00 = Urorxger) -
Moreover, if u: Y—Z in §, then, in an obvious notation with w: Z—KR in T,
Yw© F(/'M') = O‘(uﬂ)nw = O‘lR;LRw = ﬁu“w ° F)“ = Yy Fﬂ' ° F/%"
so that
F(u)) =

Since F obviously preserves identities, it is obvious that F is a functor. Finally we
see that, if /2 X—Y in T, then

BUFSf= Mu[ = ﬁuuFfs
so that FS = F, as desired.

Notice that the natural transformation g: FK—F, which forms part of the
universal characterization of the right Kan extension F, may also be interpreted
as a naturzl transformation ¢: FK,->F, where K, = SK. Thus it is natural to pose
the question whether the functor F we have constructed is the right Kan extension
of F along K;; we will return to this question in the next section. Meanwhile we
observe that if F =T(W,K—): P-Ens, so that F =S(W,~): T-Ens, then
indeed F = S(W,—): S—Ens, where We |T|. For if u: X—KP, then a,: S(W,X)
—-T(W, KP) is given by (1) = u’(1), so that

(Bso FAW) = aze(w) = p%% = w)20) = B4 = (B, 24) (1) »

and F1 = Ay, implying that F = S(W, —). Thus the general construction of F in
the proof of Theorem 1.4 vyields the “natural” extension in the case that
F=TW,K-).

ExampLE 1.5. We do not give an example of a shape category now, preferring
to postpone this till we have the stronger theorems of Section 4 which enable us
to identify shape in certain familiar cases. However, we are able at this stage to
give examples of shape invariance.

FuoFi.
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In [4] examples were glven of the process of exiending cohomology functors
from a homotopy category T to a larger homowpy category T1 If we interpret
such a cohomology functor as a functor A: T0v>C, where Cis the category opposite
to the category of graded abelian groups, then the process described in [4] consisted
precisely in taking the right Kan extension Ag: i’lac of A It thus follows that
any cohomology functor h, constructed in this way is a shape-invariant of the
embedding K: To ch

A special case of this cxample would be that in which the objects of To are
compact polyhedra and those of T1 are compact spaces. Then if /4 is ordinary co-
homology (with coefficients in some abelian group G), A, is Cech cohomology,
and Cech cohomology is shape-invariant. This last very special case constituted
a motivation for Borsuk’s original introduction of shape.

Of course, the process of extending homo[ogy functors, described in [2], leads
to coshape-invariants.

2. Rich functors. We first recall a definition from [3].
DeFmITION 2.1. A functor U: C—+D is dominant if, given any object D of D
there is an object C of € and morphisms

.0 p-vuctsp

with o = 1. We call (2.1) a domination of D.

Of course if every object of D is isomorphic to some U-image then U is domi-
nant. Another example of a dominant functor is provided by a free functor, re-
garded as mapping to the full subcategory of projective objects.

We now introduce a definition which will play a fundamental role in the sequel.

DEFINITION 2.2. A functor U: C—D is rich if, given any objects C, C’ of €
and any morphism g: UC—UC’ of D, there is a diagram

far-1 Sare

T fa
Co d < dy =2 55 Ay =

in € such that Uf,; is invertible for each i, 1<i<k, and

g = (Ufw) " o Ufpmy o - o (Uf) ™ o Uy .

Of course, a full functor is rich. An example of a rich functor which is not
fult is provided by the direct limit functor L from the category of direct systems
of groups (over arbitrary filtering categories) to the category of groups [8]. The
most immediate example of a rich functor (which is not full) is provided by the
canonical functor

2.2) Py €z

from a category € to the category of fractions with respect to a family of mor-
phisms Z. Indeed, we may characterize rich functors by means of the appropriate
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functor Py (2.2). For let U: C—~D be a functor, let X be the family of morphisms
rendered invertible by U and let

C— D
2.3 N\ /!
¢ L

[z
be the canonical factorization of U. Then it is plain that
.4 Uis rich iff U is full.

‘We will need the following improvement of Proposition 1.4 of [3].

PROPOSITION 2.3. Let U: C-D and V, W: D—E be functors and let
U*: Nat(V,W) - Nat(VU, WU) be the induced map. Then

@) if U is dominant, U* is injective,

(i) if U is rich and dominant, U* is bijective.

Proof. In Proposition 1.4 of [3] we proved (i) and obtained the conclusion
of (ii) under the hypothesis that U was full and dominant. Thus we need only discuss
that aspect of the proof of (ii) in which we show it is sufficient to suppose U to
be rich.

Given t: ¥U-» WU and D e |D|, choose a domination of D,

pAsvuctp, pu=1,
and define o,: VD>WD by
(@.5) op = Wpotgo Vo.
‘We must show that ¢ is natural. To this end, consider g: D—D’ in D and let
r-Sucr sy, pa=1,
Be a domination of D'; and consider the diagram
vp 2 vue =5 wue 25 wo

Vg

2.6)

Wg

Veoh) { Wwap)

s ¥
VD'~ VUC' —> WUC' = WD’
Va! ETed wa

The outside squares commute, so we must prove that the inside square commutes.
This would follow immediately if U were full (as in Proposition 1.4 of [3]). However,
it suffices that U be rich. For then we find

f1 T2 I Sax- S
Co Ay < dy > 2 g, o
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in € with Uf,; invertible and
2.7 a'gh = (Ufy) ™t o Ufog—y 00 (Ufz)_l o Ufy .

Since ¢ is mnatural, WUf;ot,, , = 14,0 VUf;, i odd, Ay = C; and WUf; 0 14,
= 14,_, ° VUf;, i even, 4,, = C’. It therefore follows from-(2.7) that the middle
square of (2.6) commutes, so that the naturality of ¢ is established.

Notice that our proof shows (by taking g = 1: D—D) that o}, is independent
of the choice of domination of D. If D = UC, we choose the trivial domination.
uc > uc 5 UC, so that oyc=rtc. Thus U's = 7, establishing that U* is
surjective and completing the proof of the proposition.

Before proceeding to our applications of the notion of rich functors to the
theory of shape, we take the opportunity to point out how Proposition 1.5 of [3];
may now be strengthened in the light of Proposition 2.3. The corollary below will
be exploited in Section 4.

COROLLARY 2.4. Consider the triangle of categories and functors

L——«LjM
N
J\N/I

Assume that H is left adjoint to JI with unit n: 1-JIH and counit &' : HJI—1. Then
if I is rich and dominant, there is a unique natural transformation &: IHJ—1, given
by el = I¢', and IH is left adjoint to J with unit n and counit e. Moreover, the two-
adjunctions generate the same triple on L.

We now pass to further applications of the concept of richness, and of Prop-
osition 2.3. i :

COROLLARY 2.5. Let K: P—T, let X be the family of morphisms rendered in-
vertible by K, and let

N\ ;

P=™"] B
be the canonical factorization of K through the category of fractions. Then the shape
of K is isomorphic to the shape of K.

Proof. We merely observe that Py is rich and dominant. Thus, for X, Y e T]..
Nat(T(Y, k=), T(X, K-))
= Nat(T(¥,K—) o Py, T(X,K—) s Py)xNat(T(¥,K-),T(X, Ky,
the isomorphism being attested by Proposition 2.3.

Remark. Corollary 2.5 is, of course, only a special case of the fact that the:
shape of K is isomorphic to the shape of KU for any rich and dominant functor U.
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COROLLARY 2.6. If the functor K is rich and dominant then the canonical functor
8: T-S is an isomorphism of categories. _

Proof. By the remark above the shape of K is ISO‘mOlpth to the shape of
1d: T—T. The isomorphism from the shape of Id to the shape of K is obviously
induced by S.

Actually, necessary and sufficient conditions for § to be an isomorphism are
provided by a result in [13]. Recall ([13], p. 242) that a functor K: P—T is codense
if, for each X'e|T|,

lim (XY K) —>P=>T) = X
<

with canonical morphism o;: X~»KP defined by a, = £, for each 1 X—KPin (X + K).
“Then Proposition 2 on p. 242 of [13] immediately implies

ProPOSITION 2.7, The canonical functor S: T—S$ is an isomorphism iff K: P—T
s codense.

Thus we have an indirect proof that rich and dominant functors are
<codense.

ExampLE 2.8. (i) The Yoneda embedding X: P —Funct(P, Ens)®, given by
KP = P(P, —), is codense by Corollary 3 on p. 243 of [13]. Thus the shape of K is
Funct (P, Ens)* itself.

(ii) Let G be the category of groups and let P be the subcategory of G whose
‘objects are Z and Z+Z (free group on 2 generators) and whose morphisms consist
.of the identities, the usual embeddings g;; Z—Z*Z, i = 1,2, and the comultipli-
cation u: Z—Z+Z. The embedding K: P—G may easily be seen to be dense so
that the coshape of K is G itself. This example may, of course, be modified to yield
.corresponding results in the category of A-modules for some fixed unitary
ring 4.

Our next result generalizes the Yoneda Lemma.

PROPOSITION 2.9. If the functor K: P—T is rich, then, for any Pel|P| and
functor F: T—Ens, there is a bijection

Nat (T (KP, K—), FK) = FKP

given by o Tp(lgp)-

Proof. Given ae FKP, define 1*: T(KP, K—)— FK by t5(9) = Fg(a), g: KP
—KQ. It is easy to see that ¢ is natural and that t3(1xp) = a. Thus t+>7p(lgp) is
surjective. and it remains to show that 7 is determined by tp(lgp); it is here that
‘we invoke the richness of K. For, given g: KP-KQ, we may find

Jar-1 fak

42.8) P—sAdic— 4, — —-——-—>A2k 1<— 0
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in P with Kf,; invertible and g = (Kfy)~
gives rise to the diagram

Yo Ky o e o (Kfy)™' 0 Kf;. Then (2.8)

T(KP!, KP) » T(KP, KA,)<—T(KP, Kdy)— ..
! | |

123 # TAy

- > T(KP, KAy 1) <—T(KP, KQ)

TAz Thog -1 tQ

~ ¢

FKP FKAy—— ...

FKA,

¥
s FR Ay < FKQ

which commutes by the naturality of r. But this shows that

= (Fg)(tp) (Ixp)»

so that 7 is determined by 7,(1xp) as required,
As an immediate consequence we have

THEOREM 2.10. If the functor K: P—T is rich then the Sfunction

TQ(Q)

S: T(X, KP)>S(X, K, P)

is bijective for all X e |T|, Pe|P|.
Prooi. We apply Proposition 2.9 with F= T(X, —): T—Ens. Then

FKP = T(X, KP) = Nat(T(KP, K-), T(X, K-)) =SX, K P).
Moreoyer, the. bijection is given by associating with a: X—KP the natural trans
formation 1“ given by ©4(g) = ga, g: KP—~KQ. Thus ° is precisely Sa, establishing
the theorem. .

Now let §': T-$* be any functor which is the identity on objects and let K}
= S"K. We say that S’ has property (+) if §": T(X, KP)—>$' (X, K{P)'is bijective
for all X' e|[T|, P e |P|. Thus Theorem 2.10 asserts that S has property (%) if X is
rich. We may immediately deduce.

THEOREM 2.11. If the functor K: P—T Is rich then

(i) given any functor S': T-S' with property (%) there ext.yt.s* a unique functor
T: 88 with TS' = §;

(ii) the right Kan extension of Ky: P—S$ along itself is the idenmy

Moreover S is characterized among the functors with domain T lmvmg properfy ) .
by (i) or (ii) above.

Pr oof.. The proof of the statements involving (i) is given in [14]; that of the
statements involving (ii) in [12]. Although in [12] and [14] K was assumed to be
a full embedding, the proofs remain valid in our more general context since the
only use made of the fact that K was a full embedding was to ensure that S has
property ().

2 — Fundamenta Mathematicae XCVIL
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We close this section with a further application of the concept of richness.
‘We recall that, in Theorem 1.4, we constructed an extension F: §—C of the Kan
extension F: T—C of a functor F: P—C along K. We now prove

Turorem 2.12. If K: P—T is rich then F: $~C is the right Kan extension of
F: P~C dlong K, and the right Kan extension of F: T-C along S.

Proof. It follows from Theorem 2.10 that, identifying T(X, KP) with
S(X, K P) under S, : ,

im FP = lim FP.
R Ry

u X—-KP A XK\ P
in T in §

Morsover if : X— Y in S then the right Kan extension of F along K associates
with 8 the morphism f of C characterized, in the notation of the proof of The-
orem 1.4, by B, o f = o,9. Butwb = 6%(v), so thatit follows from (1.11) that f = F0,
showing that F is the right Kan extension of F along K. We remark that, obviously,
the natural transformation &: FK,—F associated with the right Kan extension
F is precisely the transformation e: FK—F associated with the right Kan ex-
tension F. ‘

To show that F is the right Kan extension of F, we proceed by proving that,
given a natural transformation t: GS—F, where G: §—C is an arbitrary functor,
there is a unique natural transformation o: G—F with ¢S = t. The uniqueness
of o follows from Proposition 2.3(f), since S is dominant, so it remains to establish
the existence of o.

Consider ¢o tK: GK,—F. Since F is the right Kan extension of F along K,
there exists o: G—F with ¢ o 6K, = & o 7K. Since F is the right Kan extension of £
along K, this last equation implies that ¢:S = ¢, so that the proof of the theorem
is complete. -

3. Tterated shape. Let $ be the shape of K: P—T with canonical functof S:T-§
and let K, = SK: P—S. We may then form the shape §; of K, with canonical
functor S;: $—8;. We immediately prove

ProposiTION 3.1. If K: P—T is rich then Sy: $—$, is an isomorphism of

categories.

Proof. Consider the function
Nat(T(Y, K-), T(X, K—))—=Nat(S(Y, K —), $(X, K, -))

given by Ar 1, where I = SoAfo 874, with S: T(Z, KP)-8(Z, K, P) the bi-
jection of Theorem 2.10 (Z ranging over |T|). It is plain that this function is bijective,
so it remains to show that

3.1 I=2S4.

icm®
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NAOW let ;4 = ;. Thenif teS(Y, K, P), ue T(KP, KQ) it is straightforward
to verify that oo :
%) = uo M (1gp),  (F0)%00) = 2%°) .

Thus (3.1) is established once we have proved the following lemma (*).

LemMa 3.2. Let K: P—T be rich. Then for any 0: X—Y in § and any f: Y—KP,
u: KP—KQ in T, we have .

0% ucf) = usof.

Proof. We use the richness of X to construct a commutative diagram

<

. Iy o
T(Y, KP) =5 T(Y, KA) <2 T(Y, Kdy) — .. T(¥, Kds_ ) 25 (Y, KO)
i ) 1

,

|
B i )’ |

‘ E c e E

Kby ¥ » Kha \ ¢ !
T(X, KP) 25T (X, KA <22 T (X, K)o > TOX, 1?,42,‘_1) < 1oy ko)

where each Kby, is invertible and u = (Khy) ™! o ... o (Khy) "' o Kh,.
Proposition 3.1 shows that the shape of K is stable under iteration if K is rich.

TI‘husiwe will devote some attention in this section to the situation which arises
if X is not rich. :

Thus let K: P—T be an arbitrary functor and consider the function
S: S(Y, K, —)->T(Y,K-),

gi\.re'n by 8%(2) = P(1xp), 7: Y—K; P in §. Examination of the proofs of Prop-
osition 2.9 and Theorem 2.10 shows that SS = 1, where S: T(¥, K—)—S(Y, K, —)
ProrosiTioN 3.3. § is a natural transformation of functors P—Ens.
Proof. If u: P»Q in P, 7: Y-K, P in §, then

© Kuo (1) = t%(Ku) = S%K,uoc7).

We now revert to the proof of Proposition 3.1, using § instead of S~* (of
course, the latter will not in general exist). Thus we define functions

D: $(X,Y)=S$,(X,Y), ¥:$,(X,V)-S(X,Y)

by
(3.2) &(1) = S8,

¥(w) = Sws
(‘? A sh_oncr proof of the isomorphism of § with S, is available via the formulation of shape
morphisms given by (1.3). However, Lemma 3.2 would still need to be invoked to establish that

’cl.'ni1 isomorphism is achieved by .Sy ; moreover, Lemma 3.2 seems to us to be interesting in its own
right.

2%
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and each of these is well-defined. by Proposition 3.3. Moreover $ respects compo-
sition and W@ = 1 since §S = 1. On the other hand & does not respect identities

(although ¥ does!).
In the case in which K was rich @ coincided with S;. Of course, & coincides

with 8 iff @ is a functor iff St T(Y, K=)—S8(¥, K;—) is bijective for all Ye [T|
iff S, is an isomorphism of categories. In general, we may replace ¢ by §; and it
will remain true that

(3.3) ¥ =1.

Thus S, embeds $ as a subcategory of S, (recall that S, has the same objects as §)
and ¥ provides a rule for retracting each morphism-set $,(X, Y) onto the corre-
sponding S(X, Y).

4. The shape of right adjoints. In this section we suppose that X P-T is right
adjoint to a functor L: T—P. We first recall from [13], p. 245 a general fact about
adjoint functors; we will sketch a proof adapted to our point of view.

ProposITION 4.1. Let K: P—T have a left adjoint L: T—P. Then L is the rrght
Kan extension of the identity functor 1, along K, the natural transformation LK—1
being the counit ¢ of the adjunction.

Proof. We suppose given G: TP and a natural transformation 7: GK—1.
For X e|T| we define

oy = T x 0 Gny: GX—-LX,
where 7 is the unit.of the adjunction. Obviously ¢: G—L is natural and, for Pe Pl

gpoTygp o Ghigp = Tp o GKepo Gligp = Tp
so that
gogK =1.
Moreover, ¢ is uniquely determined by this last equation, since, by the naturality
of o,
ox = ey oLnyooy =g yooxixo Gy -

Henceforth (as in the proposition above) we will always suppose an adjunction
LK, where K: P-T, L: TP, with unit n and counit ¢&. Consider the function

S(X, Y)—=T(X, KLY), given by
4.1) r@ =*ny).

ProrosiTiON 4.2. I is bijective.

Proof. We define 4: T(X, KLY)—~S(X,Y) as follows. First we use primes
to denote pairs of morphisms (g, g") connected by the adjunction

P(LX, P) =~ T(X, KP).
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(Thus if geP(LX,P), g’ eT(X,KP); and if geT(X, KP), g’ eP(LX, P).)
Then, given f: X—KLY, we define 4(f): X~Y in § by

4.2) AN =K' o f,
First, 4(f) is natural. For if v: P-»Q in P, then

(Koo A(NT)0) = Koo K o f = A(f)%(Kv o) .
Next, AI' = 1; for if f= 7"*(yyy) then

u: Y=KPin T.

A W) = K oM (ny) = (K o 1) = ) .

Finally, T4 = 1; for A(f)"¥(ny) = f.

Now define
I': S(X,Y)-P(LX,LY)
by
4.3) I'(x) = ' (7).
We note immediately that
4.4 Ir's=1nL,

“for, if f: X=Y in T,then I'(Sf) = f=¥(ny) = nyof; so that I'(Sf) = (ny o f) = Lf.

THEOREM 4.3. I'": $(X, Y)—>P(LX, LY) is bijective and respects identities and
composition. Thus $ is isomorphic to the Kleisli category of T with respect to the
triple T generated by the adjunction I — K.

Proof. We know from Proposition 4.2 that I" is bijective, and from (4.4)
that I respect identities. Now let 7: XY, o: ¥—Z in §, and let f = I'(1),
g = I'"(6). Thus 1" = t*"(ny), g’ = 6*%(n,), and :

(00)"(n7) = 16 (ny) = (") .

From the naturality of t we infer that

") = <"(Kg o ny) = Kg o (ny) = Kg o f" = (),
so that

I'(e7) = I'"(6)'(x) ,

and the first statement of the theorem is proved. The second statement is then an
1mmed1ate consequence of the explicit definition of the Kleisli category (see [13],
p. 143).

Remark. LeVan [12] established the bijection S(X Y) = P(LX,LY) when
K is a full embedding of a reflective subcategory. We may apply the theorem to any
adjoint pair. Thus, for example, if H is the homotopy category of pointed spaces.
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of the homotopy type of CW-complexes then the shape of the loop functor
Q: H-H is given by

S(X,Y)=HEX,zY),

where I is the suspension. Thus, effectively, we may identify (upder Z) the shape
of Q with the full subcategory of H whose objects are suspensions.

THEOREM 4.4. Let K: P—T with left adjoint L and let F: P—C be an arbitrary
functor. Then the right Kan extension F: T—C of Falong K is FL, with natural trans-
formation Fe: FLK—F, where ¢ is the counit of the adjunction. If F is the extension
of F to S, given in the proof of Theorem 1.4, then

(4.5) F = FI".
Thus F is full (faithful) if F is full (faithful).

Proof. The first statement of the theorem is proved by a trivial modification
of the argument establishing the special case of Proposition 4.1; it is, in any case,
given in [13], Proposition 3, p. 245. To establish (4.5) 'we observe that, in the no-
tation of the proof of Theorem 1.4,

o, = Fuy': FX>FP where u: X-KP in T,

B, = Fv': FY-FQ where v: Y=»KQ in T,

Thus to ‘establish (4.5) we must show that

(4.6) Fy' o FI"A = F(A%)',

for all Ae S(X, Y) and all v: Y—KQ. Now, by the naturality of A (see the proof
of Theorem 4.3),
Kv'o 2 (ny) = 1%
Thus by (4.1), (4.3)
v e I'A = (A%

50 that (4.6), and hence (4.5), is established.
" The final statement of the theorem now follows immediately from Theorem 4.3.
'We now discuss the relation between shape categories and categories of frac-
‘tions, In the course of doing so, we will have occasion to improve certain results
in [2] and [3]. We first improve Proposition 2.2 of [3].
- PROPOSITION 4.5. Let the adjoint pair K: P-T, L: T-P, with L~ K, generare
the triple T on T. Then if K is rich T is idempotent.
“Our,_proof will depend on the following lemma.

Lemma- 4.6. Let % be the family of morphisms rendered invertible by K, let
Py PP[Z™'] be the canonical functor to the category of fractions and let L: T
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—=P[Z7, E: P[Z7']>T be given by

L=P,L, EKP;=K.

Then L =K and the adjunction generates the same triple T.

Proof. We apply Corollary 2.4 (with H = L, I = Py, J = K), noting that
Py is, of course, rich and dominant. We remark that, in Lemma 4.6, no use is made
of "the richness of X.

Proof of Proposition 4.5. Assume now that K is rich. By (2.4) K is full

and the adjunction L—K generates 7. Thus Proposition 4.5 follows from Prop-
osition 2.2 of [3].

We now improve Propositions 2.4 and 2.5 of [2]. We assume as before L: TP,
X: P-T with L— K, generating the triple 7 on T. Let §; be the family of morphisms
rendered invertible by L.

PROPOSITION 4.7. Given f: X—7Y in Sy, there exists a unique g: Y-KLX in T
with gf = nx, where n is the unit of the adjunction.

Proof. We have nyef = KLfony. But KLf is invertible so we may take
g = (KLf) "t ony. If gf = ny, then ly = (gf) = g’ o Lf. But Lf is invertible so
g’ is uniquely determined; so therefore is g.

ProrosiTioN 4.8. If T is idempotent, then (i) ny € Sy, for all X e [T|, (i) S, admits
a calculus of left fractions.

Proof. (i) forms part of Proposition 2.1 of [3]. The proof of Proposition 2.5
of [2] serves to prove (ii), as it depended only on the fact that 7y is in Sy.

" Remark. Proposition 4.7 and Proposition 4.8 (i) constitute the essential
content of Theorem 2.9 of [3]. Proposition 4.8 (ii) appears in the proof, but not
the statement, of Corollary 2.10 of [3]. That corollary is what we now need.

THEOREM 4.9. Let K: P—T with left adjoint L: T—P generating an idempotent
triple, and let § be the shape of K. Then S = T[Sy '], where Sy is the family of
morphisms rendered invertible by L (that is, by KL).

Proof. By Corollary 2.10 of [3] (or Theorem 1.2 of [2]) we infer ‘that there
is a natural equivalence of functors

@.7 TIS;'I(—,Y) = T(—, KLY).

Moreover, if we interpret (4.7) as a bijection

(4.8) 0: TIS{'I(X, ) = P(LX, LY),

then 0 is given by
0G6~Y) =

In the light of Theorem 4.3 it remains only to verify that § preserves composition
{since 0 obviously preserves identities). But, given also

Lo~teLf, XL4lY, ses,.

vy5BézZ, tes,,
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(s'D~g'f, where
X_f_y;i_f; ¢

then (17 1g) o (s™Y) =

s s

Y—>B
4q Tt

A

s'eSt-

Thus
0 Dg o 0(7Y) = (L) P oLgo (L) o Lf = (L)™' o (Ls') " F o Lg' o Lf
=L@ o L{g’f) = 0((t7g) < (™)),
and the theorem is proved.

Remark. The isomorphism established by this theorem is I" 7160 T[Sy,
We note that this isomorphism renders the triangle

I]MS

AN
N
TIS: 1—5=—S

ri-19

T
sy / \s
e

commutative. For (see (4.4)) I'S = L and if f+ X—»Y in T then 0P, f = Lf. Thus
the shape of K is T[S7'], with canonical functor Pg,.

COROLLARY 4.10. Let K: P—T be rich and admit the left adjoint L: T—P. Then
the shape of K is the category of fractions T[Sy '], where Sy, is the family of morphisms
rendered invertible by L. If K is, in fact, full and faithful then the shape of K is equiv-
alent to P.

The last statement follows from Theorem 4.3 since, K being full and faithful,
P = LKP for every PelP|.

Examples 4.11. (i) We first give an example of the dual form of Corollary 4.10.
Let T be the homotopy category of topological spaces and let P be the homotopy
category of spaces of the homotopy type of a CW-complex. Then the embedding
functor K: P—T has a right adjoint R which associates with the space X the geo~
metrical realization of its singular complex. The morphisms of T rendered invertible
by R are precisely the weak homotopy equivalences (that is, the maps inducing
isomorphisms of homotopy groups in the connected case). Thus the coshape of K is
the category of fractions of T with respect to weak homotopy equivalences, and- is
equivalent to P itself. _

(i) The semisimplicial analog of the situation described in (i) yields a further
example of Corollary 4.10. If T is the homotopy category of simplicial sets and P
the full subcategory of Kan complexes, then the embedding K: P—T has a left

©
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adjoint which is the singular complex of the geometric realization. Thus the shape
of K'is the category of fractions of T with respect to weak homotopy equivalences..
These are again to be understood as simplicial maps rendered invertible by L and
are indeed, in the connected case, characterized as those maps inducing iso-
morphisms of homotopy groups. The shape of K is equivalent to P itself.

(iii) Let P be a family of primes and let N, be the full subcategory of the
category N of nilpotent groups which consists of nilpotent P-local groups (see [9]).
Then there is a P-localizing functor L: N—MNp which is left adjoint to the embedding
K: Np—N. The family S, of morphisms of N rendered invertible by L consists
precisely of the P-bijections [9], so that the shape of K is the category of fractions
of N with respect to P-bijections. We may also use Theorem 4.3 (as we might have
done in the previous two examples) to give an explicit description of the shape
category via the Kleisli category of the triple generated by the adjunction L— K.
Let us write Gp, @p for KLG, KL as in [9]. Then a shape morphism from G to H is
a homomorphism «: G— Hp; and given two shape morphisms a: G—H, f: H—M,
their composite is

Boo=px,

where B: Hp—M,p is determined by fBn, = B, n being the unit of the adJunctlon_
(we may also write § = B, if we take LK = 1, as we may).

(iv) We obtain an example closely related to (iii) by replacing N by the
homotopy category NH of nilpotent spaces [9].
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S ’ Abstract. A combinatorial property [x, 4, g] of cardinals is introduced and studied. Work
of Jech shows that x inaccessible and x weakly compact implies [x, », 3]. [%, %, 3] is used to establish
an algebraic embedding theorem for certain classes of universal algebras. One corollary of this
embedding theorem is: if x is inaccessible and weakly compact and G is a group with |G| = % and
every subgroup of G of smaller cardinality is free, then G is free.

In 1949 R. Rado published the following: [9].

SELECTION LEMMA. Let A and N be sets and let A, be a finite subset of A for
each v e N. Suppose that for each finite L= N we are given a function fy : L—A such
that fi(v) € A, for each ve L. Then there is a function f: N—A such that given any
Sinite LEN there is a finite MSN with LM and f|L = fy,|L.

Through the years other have discovered versions of this lemma (see [4], [6],
[7], [10]) and several have explored its connection with logical compactness (see
[51, [7], [10D). It is natural to ask about possible generalizations of this lemma.
Rado in [9] gave an example to show that “finite” could not be replaced by “de-
numerable.” In [7] Jech defined “» is A-compact” for infinite cardinals » << with, s
regular,~and in this same paper he gave a generalization of the Selection lemma
for such x» and 4 which we denote by [x, 4, 3] (we define this notation in § 0). Jech
showed ([7], Theorem 2.2) that weakly compact inaccessible cardinals s satisfy
[, %, 3], and conversely that if [x, %, 3] holds then x» is weakly compact. Further
he in effect showed that % is compact if and only if [, 4, 3] holds for all A>s.

In this paper we study [x, %, 3] and some related properties [x, 1, ¢]. We
assume their validity and derive some of their consequences, both set theoretical
(§1 and §2) and algebraic (§3). In § 1 we show that [x, %, 3] implies that x is a reg-
ular limit cardinal without appealing to weak compactness. In § 2 we use inverse
limit systems to give a measurability criterion. Our main result, Theorem 3.1, uses
[, %, 3] to prove an algebraic embedding theorem. Because of Jech’s work this
gives an algebraic property of weakly compact inaccessible cardinals and of com-
pact cardinals, special cases of whilch, have been proved by Mekler and Gregory (*).

(*) We wish to thank Paul EXISF for informing us of the work of Mekler and Gregory.
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