Certain continua in S" with homeomorphic
complements have the same shape

by
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Abstract. In this paper we prove that if X; and X, are globally 1-alg continua in S™ (n>6)
such that X; has the shape of codimension =3, closed, 0< (2mj—n+ 1)-connected, m -dimensional
topological manifold, ¢ = 1,2, then §"—X,=S"—X, if and only if Sh(X,) = Sh(X,).

1. Yntroduction. An interesting problem is to classify compacta in a mani-
fold M such that the following statement holds: Sh(X) = Sh(Y) if and only if
M~X~M—Y, where X, Y are compacta in M.

This question has been answered affirmatively in some cases:

(1) Z-sets in the Hilbert cube by Chapman [2].

(2) Compacta in trivial range in R" satisfying the small loops condition by

Hollingsworth and Rushing [9] (this result generalizes [3] and [7].

(3) Codimension 3 continua in R" satisfying the small loops condition and havigg
the shape of a finite complex in trivial range by Theorem 2.4 of [5] and a re-
mark in [11].

(4)  Globally 1-alg continua in S" having the shape of finite cmﬁplex K in trivial
range with either (i) #,(K) = 0 or (i) =,(X) abelian and 7,(K) =0 [L1].

-----

(5) Globally 1-alg continua in S" having the shape of either a topological group
in trivial range or a S*like continua, for k& # n—2 by Venema [19]. (This
result generalizes [14] and [6].)

In this note, we will give an affirmative answer for the class of globally 1-alg
continua in S" (n36) having the shape of a codimension 3, closed, 0 <(2m—n+1)-
connected topological manifold M™. .

I would like to thank Professor T. B. Rushing and Dr. R. Stern for many
helpful questions and discussions concerning this paper. I also thank Professor

* This research will constitute a part of the author’s doctoral dissertation pnder the direction
of Professor T. B. Rushing'at the University of Utah.
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R. J. Daverman for a suggestion ‘which eliminate the /i-cobordism theorem from
my original proof of Lemma 1.

2. Notation and definitions. Throughout this note, we use the following no-

tations ]
(PL) . . .
(PL-) homeomorphic or isomorphic,

homotopy equivalence ‘or. homotopic,
homologous, )

ov, IntV boundary, interior of a manifold ¥,
ior 4G B inclusion map,

S induced maps on homology groups,
H, singular homology, Z-coeflicients.

For basic shape theory results, we refer to [1] and [12]. For convenience, in
this paper we use both shape theories [1] and [12] as is justified in [13].

A continuum is a compact, connected space.

A continuum X in S is said to be globally 1-alg in S" if for every neighbor-
hood U of X'in 8, there is a neighborhood ¥ of X (V<=U) such that if f: S*'— V- X,
f~0in V-X, then f~0 in U~X.

For definitions of the end of a manifold, stable end, etc. ..., we refer to [15].

For definitions of regular neighborhood, PL-embedding, PL-homeomorphism,
ete. ..., we refer to Hudson [8].

A closed manifold is a compact manifold without boundary.

An embedding f: M™—Int 0" is said to be locally flat if for every xef(M),
there is a neighborhood U of xin Q such that (U, U nf(M ))~(R", R™).

Let K be a subset of a manifold M, we say that K has a PL-radial neighborhood
in M if there is a closed PL-manifold neighborhood W of K ifi M such that

PL
W—-K~oWx]0, 1.

We will use A-cobordism theorem (175, p. 59) in PL or TOP-version in
appropriate situations.

R 2

?

3. Main results and details of the proof.

LemMMA 1. Let K; be a continuum in S" having a radial neighborhood Ny in S"
(i=1,2). Let g: S"—K;—»S8"—K, be a homeomorphism. Then, there is a homotopy
equivalence f: N, —dN, such that Jor [a] € Hy(0N)), a~0 in §"—K,  if and only if
Soou~0in S"—K,.

Proof. We may assume that ¢ (N1 —K,)= N, —K,. There exist homeomorphisms

0:: ON;x[0, 1) >N,~K,, i=1,2
with

(1) . ez(aNZX [‘;T: 1))C<P(N1—K1) H
2 @8; (0N, x [2, 1))<:02(0N2 x [3, ).
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Let r;: N;—K;—dN; be the retraction where r;0,(x, #) = x and
Fht 0x(N; X B, 1) ON; (= 0,0V, x {3)
with r50,(x, f) = 0,(x, 5, for every x & dN,, %\<\t.<1. 1 -
Let ¥: ON, 0N, be the trivial homeomorphism, ¥0,(x, %) = x, for every

x €0N,, then ry, = ¥rj. . B
Lezt gi: ONIZ——r 0,(ON, % {3), and gy: ON,—0,(0N, x {3}) be the obvious map,

g50,(x, %) = 05(x,3) for every x € ON,, then g, = g3%~'. Define
f'r ON,=0N,  as rypgy ,
f: 0N, =8N, as rypg, = ¥f',
i ON,—ON, as ri@ gy,
i 0N,—ON, as rip g, = FPL
" Clearly, . ‘
0] g;.";:lo,(nNzx[eg, 1)) in 02(81\’2 X [”i‘: 1))> and
(i) gyrily, -, in Ny—Kj.
It follows that
' =rip  gars0g,2r9  0g,  (by (1) and (i)
=rig1 = lay,,
and
7' = ry0g:1107 g2 =ne07 g, (by (i)
= 1292 = lo,.
Moreover, we have ff’ = Wf'f#~1. Hence,
ST=v YWl 1y = Loy
Therefore, f and f are homotopy equivalences. Furthermore, ii’ncigl_ s Gan
ry,r; can obviously be extended to homotopy equivalences gy, gz, Fa, Ty of
S"—K, and S"—K, with
(a) g(Fi=I1, Fig, =1,
(b) g2Fa1, ryg5=1,
then, so can f and f". .
Thus, the other parts of the conclusion follow. @ )
Remark. In particular, Lemma 1 is true if K , K, are finite subcomplexes of S”.
OBSERVATION. Let K be a finite subcomplex of S"<S"*. Then, K h:as a regular
neighborhood of the form N = Wx[—1, 1], where W is a reg.ular. neighborhood
of K in S". In this case, let m: N—K be a deformation retraction induced by the
collapse NN\K, and let v: K—0N defined by v(x) = (x, 1), for every xe K.
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Consider the following diagram

ON C——i—-—>- N
\;\ t
"N

k
U

v
K
“where % = n|dN.

It is easy to prove that

() mvely,

(ii) i~k7,

(iii) i(vm)1y.
) (This observation is also true if K is a globally 1-alg, simply-connected CANR
in $* (n26) having the homotopy type of a finite complex of dimension <n-3.)

;JEMMA 2. Let K be a finite subcomplex of R". Let N = Wx[~1,1], =, v be
as above. Then for every q=1, given [0] € H(0N), a~0 in R*"**—K § ,d aly
[o] € v H(K). o Fand onty i

' Proof.-The homology sequence of the pair (N, dN) can be decomposed into
‘split short exact sequences

0 Hyy 1 (N, ON) > H,(0N) 3 H(N) -0
‘for every g=1, since iy(va), = 1,. Hence,
HdN) = v*ﬁ*Hq(N)GBKer Ty
= v H (K)®Ker,  (my,ky are isomorphisms).
Now, the following commutative diagram
0—H, 1 (R™ 1, R —Int N) S H(R"™ ! —TntN) - 0
® T]*
o ‘
0—H,,,(N,8N) ~ H,(ON) — ...

. I n+1

V.V,h;e ] ONCL R ‘:H:IntN, proves that j,[Imd is an isomorphism from Tmd
-“[a] e:zB <i)fnt'o qu(Ii ”—IntN) = H,,(R“"”—K). Hence, given [a] e H,(ON), then
J;Rn:vi.a: only if [x] e v H,(K), since v(K) is contractible in R"x {1}

THEOREM 1. Let Ky, K, be simply-
, K, ply-connected subcomplexes of S*, Then S"™*—
— K, m S K, implies K~ K, plser of 5. Then S
.;roazs. Let N; be a regular neighborhood of Ky in 8™, 7;: ON,—K, and
v;: K;=0N; as in Le . : )  equivale ; i
Ji Ko i mma 2. Let f: ON,—0N, be a homotopy equivalence as in
-Define ' = 7, fv,: K ~K,.

icm®
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Since K, K, are simply-connected finite. complexes, it suffices to show that
hy: H(K;) —H,(K5) is an isomorphism for every 2<g<n—2 ([18], Theorem 7.6.25
and Corollary 7.6.24). ‘

Consider the following commutative diagram (2<g<n—2).

(v H, (K )@Ker (7, )x = Hq(aNl)ﬁHq(aNz) = (vo)u H,(Ko) @ Ker (72)«

TM). . ) (N).T\L(;z)-
hy
H,(K) H (K.

Since (Fp)ul(v)w H(K>) is an isomorphism from (v,)H,(K,) onto H,(K3),
the proof of Theorem 1 will be complete if we can show that Sul (v w H (Ky)
is an isomorphism from (v))«H,(Ky) onto (v,)« H,(K,).

However, this property can be proved from the property of f given in Lemma 1
and the property of the subgroup (v )y H,(K)) of H,(ONy), i = 1, 2 given in Lemma 2,
for2<g<n—2. @ : ‘ ‘

LemMa 3. Let X be a globally 1-alg continuum in S", n6, having the shape of
a simply-connected finite complex K, with dimK<n—3. Then there is a finite sub-
complex K’ of §", dimK’'<dimK, such that S"*'—Xw~S""'—K' and Sh(X)
= Sh(K").

Proof. By Theorem 3 [11], X has a PL-radial neighborhood W in S" such
that WK, Let n: K—IntW be a homotopy equivalence. By Stallings’ theorem
([8), Theorem 12.1), we have a subcomplex K’ of IntW with dimK’'<dim K and
K' c., Int W is a homotopy equivalence. Similai to the proof of Corollary 3 in [11],
we can prove that W is a regular neighborhood of X' :

Tt is clear that N = Wx[—1, 1] is a regular neighborhood of K’ in S"*1;

particularly, N—K' : ON %[0, 1).

Therefore, the lemma will follow if we can prove that N is also a PL-radial
neighborhood of X'in $"**, To prove this, it suffices to prove the following statement:

“Let Ny = Wy x[—%,1], where W = aWx [£,1) u X, then N—N; : ON x
x[0, 17,

Let X be a finite subcomplex of W, contained in Int Wy, with K''~K and
dimK*” <dimK such that W, is a regular neighborhood of X" in S" as above.
It is clear that N and N, are regular neighborhoods of XK'’ in §”**. The statement
follows by the uniqueness of regular neighborhoods ([16], Corollary 2.16.2). @

THEOREM 1’. Let X and Y be globally l-alg continua in 8" (n26) having the
shape of simply connected finite complexes Ky, K, with dimK;< n-3, i=1,2.
Then, S"*1 =X~ S"1—Y implies Sh(X) = Sh(Y).

Proof. By Lemma 3, we have S**!1 - X~ $"* ' K] and Sl Y St K,
where Ki, K, are subcomplexes of S" with dimX, <dimK; and K;~K;, i =1,2.

Hence, S"*'—X~§"*1— Y implies that $"*'—K;~S"** —K;.

The result follows from Theorem 1. @
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Now. we start to prove the main result.
.Conslc_ler a simply-connected topological meanifold M. Since M is a CANR,
M is .dommated by a ﬁnite simplicial complex. Therefore, by Theorem A [20]-’
M sa_tlbsﬁes the condition F, for every n. On the other hand, M™ also satisfies the
co.ndltlon D,,; hence, by Theorem F [20], M~K, where K is a finite CW-complex
with dim K = max{3, m}. ‘ ‘

‘ In the case #n>6 and m<n—3, then dim K<n—3. Combining this observation
with Theorem 3 of [I1], we have the following lemma.

LEWA 4. Let M be a codimension 3, closed, simply connected locally flat
topological submanifold of S" (n>6), then M has a PL-radial neighborhood W in §*
with W~M. & ’ ‘

, CO;OLLA;IYAdLEt X and Y be globally 1-alg continua in S" (nz6) having the
shape of a closed, 0<(2m—n-+1)-connected topological manif "
s of & dlosed, 0 pological manifold M™. (m<n—3).
Proof. By Weller’s embedding tneorem [21], we may assume thaf M is a lo-
cal‘lg}:I ﬂz;tl topological submanifold of S". Hence, it will suffice to show that S*—X
By Theorem 3 [I1] and the observation above, X has ] i iht
: X a PL-radial neighbor-
hood W, which has the homotopy type of M. neiabor
Let f: M—IntW be a homotopy equivalence. By Weller’s embedding the-
;J\;:em [il], we can assume that f is a locally flat embedding of M into Int W< S*
ow, by topological unknotting theorem [21], it suffices to sl ‘ .
v , ] ) how that S"—
~ 8" —f(M), o X
Let V l?e a PL-radial neighborhood of f(M) in S" such that V<IntW and
SM) c, V is a homotopy equivalence. Let H = W—IntV,
CrAamM. H is a PL h-cobordism.

It is clear that H is a PL-manifold with oH = dW U 8V and 7w, (OW)
= m,(8V) = 0. Moreover, since f(M) c. V and f(M) c. W are homotopy ::quiv-
alel}tz'es, Ve, W ois a homotopy equivalence. Therefore, H(H,dV) = 0 by the
excision theorem. Hence, 74 (H, 8V) = 0 since n,(H) = 0 and [18,] Theorem }/I 5.4,
Theorem 3.2 of [4] shows that H strong deformation retracts ontc; av. o

On the other hand, it is’clear that 8V c, H—dW is a homotopy ‘e uivalence
ax}d that the PL-manifold H~dW has a unique tame end ¢ (3W is quc'111c ﬂ'lt;
with 7,(e) = 0. Thus, we can apply Theorem 1.6 of [16] lb concludt; t]m; r

PL
H—-3W = ovx0,1).

Now employing this fact and a collar of 8W i it g
deformation retracts onto aW. n H, 1t follows that 2 strong
Therefore, W is a PL-radial neighborhood of £ i ‘

- X ( MY in S" " :
structure of H, and the statement $”"— X & S"—f(M) is )I;l'zved bz the product
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Tugorem 2. Let X and X, be globally 1-alg continua in 5" (nz6) having the
my

shape of codimension 3, closed, 0<(2m;—n+ 1)-connected topological manifolds Mi",
i'=1,2 (respectively). Then, S"~X;~S5"~X, if ‘ahd only if Sh(X () = Sh(X3).

Proof. \i) The “if part” is the previous corollary. ' ’

(i) The proof-of the “only if part”, by Theorem 1, will complete if we can
show that there exist finite complexes M}, M, in S"~', with dim M;<n—3, such
that M,~M; (i = 1,2) and S"—M{~8"~M;. ‘

Hence, it suffices to show that S"—X;~S"—M; with such M)s.

For the case nz6 and m = n-3, every 0<(2m—n+1)-connecled, closed
manifold has the homotopy type of the m-sphere. by the Poincaré duality theorem
and the Whitehead theorem. Hence §"—X~S"—S8""? by the previous corollary.

The case n = 6 and m<n—4, is trivial.

For the case n7, m<n—4, we may assume that M, is a locally flat submani-
fold of §"~! (n—126) by Weller’s embedding theorem [21]. Finally, by the “if
part” and Lemma 3, ' —X 8" — M~ 8" —M;, as desired. m
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Commutative rings
in which every proper ideal is maximal

by

Joachim Reineke (Hannover)

Abstract. We will give the full description of commutative rings in which evety proper
principal ideal is a prime ideal.

Introduction. Perticani studied in [2] the class of commutative rings with
identity in which every proper ideal is maximal. He gave a full description of such
a ting R only in the case when R has at least two different proper ideals. In the
case where R has only one proper ideal he reduced the problem of characterizing.
such rings to the one of the computation of cohomology groups. In this paper
we will give a fuil description in both cases. The first case is a trivial conclusion of’
the Chinese Remainder Theorem and the second will follow very easily from the
Cohen Structure Theorem of complete local rings. '

All throughout R denotes a commutative ring with identity. We have the same-
notation as in {3]. The following lemma shows that three classes of rings with
pathological properties are only one class and we do not use it in the following.

PROPOSITION 1. Let R be a ring. Then the following are equtvalent

1. every proper ideal is maximal,

2. every proper ideal is a primeideal,

3. every proper principal ideal is a primeideal,

Proof. 1-2-+3 is trivial. To see that 3—1 let A be a proper ideal of R and
aed,a#0.Suppose bee A. If be 5 0, then be (be)=d or ce (be)=4. If be = 0,
then be(dsd or ce(@cA. It follows that R/4 is an integraldomain. Clearly
R/A is a regular ring. Therefore 4 is a maximal ideal. Q.E.D.

Call a ring R a max-ring if every proper ideal is maximal.

Lemma 2 (see Theorem 1.1 and Theorem 1.4 of [2]). Suppose R i§ a max-ring
and R contains at least two. different proper ideals then R is isomorphic to a product
of two fields. ’

Proof. Let A4,, A, be proper ideals of R and 4, # Az It follows immediately
that A, n 4, = (0). Since 4,, 4, are comaximal it follows from'the Chinese:
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