

Certain continua in Sⁿ with homeomorphic complements have the same shape

h

Vo-Thanh-Liem * (Salt Lake City, Utah)

Abstract. In this paper we prove that if X_1 and X_2 are globally 1-alg continua in S^n $(n \ge 6)$ such that X_1 has the shape of codimension ≥ 3 , closed, $0 < (2m_1 - n + 1)$ -connected, m-dimensional topological manifold, i = 1, 2, then $S^n - X_1 \approx S^n - X_2$ if and only if $Sh(X_1) = Sh(X_2)$.

1. Introduction. An interesting problem is to classify compacta in a manifold M such that the following statement holds: Sh(X) = Sh(Y) if and only if $M-X \approx M-Y$, where X, Y are compacta in M.

This question has been answered affirmatively in some cases:

- (1) Z-sets in the Hilbert cube by Chapman [2].
- (2) Compacta in trivial range in R" satisfying the small loops condition by Hollingsworth and Rushing [9] (this result generalizes [3] and [7]).
- Codimension 3 continua in Rⁿ satisfying the small loops condition and having the shape of a finite complex in trivial range by Theorem 2.4 of [5] and a remark in [11].
- Globally 1-alg continua in S^n having the shape of finite complex K in trivial range with either (i) $\pi_1(K) = 0$ or (ii) $\pi_1(K)$ abelian and $\pi_2(K) = 0$ [11].
- Globally 1-alg continua in S^n having the shape of either a topological group in trivial range or a S^k -like continua, for $k \neq n-2$ by Venema [19]. (This result generalizes [14] and [6].)

In this note, we will give an affirmative answer for the class of globally 1-alg continua in S^n $(n \ge 6)$ having the shape of a codimension 3, closed, 0 < (2m-n+1)-connected topological manifold M^m .

I would like to thank Professor T. B. Rushing and Dr. R. Stern for many helpful questions and discussions concerning this paper. I also thank Professor

^{*} This research will constitute a part of the author's doctoral dissertation under the direction of Professor T. B. Rushing at the University of Utah.

223

- icm[©]
- R. J. Daverman for a suggestion which eliminate the h-cobordism theorem from my original proof of Lemma 1.
- 2. Notation and definitions. Throughout this note, we use the following notations

 $\stackrel{ ext{(PL)}}{pprox}$ (PL-) homeomorphic or isomorphic,

≃ homotopy equivalence or homotopic,

homologous,

 ∂V , Int V boundary, interior of a manifold V,

i or $A \subseteq B$ inclusion map,

 f_* induced maps on homology groups,

 H_* singular homology, Z-coefficients.

For basic shape theory results, we refer to [1] and [12]. For convenience, in this paper we use both shape theories [1] and [12] as is justified in [13].

A continuum is a compact, connected space.

A continuum X in S^n is said to be globally 1-alg in S^n if for every neighborhood U of X in S^n , there is a neighborhood V of $X(V \subset U)$ such that if $f: S^1 \to V - X$, $f \sim 0$ in V - X, then $f \simeq 0$ in U - X.

For definitions of the *end* of a manifold, *stable end*, etc. ..., we refer to [15]. For definitions of regular neighborhood, PL-embedding, PL-homeomorphism, etc. ..., we refer to Hudson [8].

A closed manifold is a compact manifold without boundary.

An embedding $f: M^m \to \operatorname{Int} Q^n$ is said to be *locally flat* if for every $x \in f(M)$, there is a neighborhood U of x in Q such that $(U, U \cap f(M)) \approx (R^n, R^m)$.

Let K be a subset of a manifold M, we say that K has a PL-radial neighborhood in M if there is a closed PL-manifold neighborhood W of K in M such that $W-K \approx \partial W \times [0, 1)$.

We will use h-cobordism theorem ([17], p. 59) in PL or TOP-version in appropriate situations.

3. Main results and details of the proof.

LEMMA 1. Let K_i be a continuum in S^n having a radial neighborhood N_i in S^n (i=1,2). Let $\varphi\colon S^n-K_1\to S^n-K_2$ be a homeomorphism. Then, there is a homotopy equivalence $f\colon \partial N_1\to \partial N_2$ such that for $[\alpha]\in H_q(\partial N_1)$, $\alpha\sim 0$ in S^n-K_1 if and only if $f\circ \alpha\sim 0$ in S^n-K_2 .

Proof. We may assume that $\varphi(N_1-K_1)\subset N_2-K_2$. There exist homeomorphisms

$$\theta_i$$
: $\partial N_i \times [0, 1) \rightarrow N_i - K_i$, $i = 1, 2$

with

(1)
$$\theta_2(\partial N_2 \times [\frac{1}{2}, 1)) \subset \varphi(N_1 - K_1),$$

(2)
$$\varphi\theta_1(\partial N_1 \times [\frac{3}{4}, 1)) \subset \theta_2(\partial N_2 \times [\frac{1}{2}, 1)).$$

Let $r_i: N_i - K_i \rightarrow \partial N_i$ be the retraction where $r_i \theta_i(x, t) = x$ and

$$r_2': \theta_2(\partial N_2 \times [\frac{1}{2}, 1)) \rightarrow \partial N_2' \ (\equiv \theta_2(\partial N_2 \times {\frac{1}{2}}))$$

with $r_2' \theta_2(x, t) = \theta_2(x, \frac{1}{2})$, for every $x \in \partial N_2$, $\frac{1}{2} \le t < 1$.

Let $\Psi: \partial N_2' \to \partial N_2$ be the trivial homeomorphism, $\Psi \theta_2(x, \frac{1}{2}) = x$, for every $x \in \partial N_2$, then $r_2 = \Psi r_2'$.

Let $g_i: \partial N_i \to \theta_i(\partial N_i \times \{\frac{3}{4}\})$, and $g_2': \partial N_2' \to \theta_2(\partial N_2 \times \{\frac{3}{4}\})$ be the obvious map, $g_2' \theta_2(x, \frac{1}{2}) = \theta_2(x, \frac{3}{4})$ for every $x \in \partial N_2$, then $g_2 = g_2' \Psi^{-1}$. Define

$$f': \partial N_1 \rightarrow \partial N_2'$$
 as $r_2' \varphi g_1$,

$$f: \partial N_1 \rightarrow \partial N_2$$
 as $r_2 \varphi g_1 = \Psi f'$,

$$\tilde{f}: \partial N_2' \rightarrow \partial N_1$$
 as $r_1 \varphi^{-1} g_2'$,

$$\tilde{f}': \partial N_2 \rightarrow \partial N_1$$
 as $r_1 \varphi^{-1} g_2 = \tilde{f} \Psi^{-1}$.

Clearly,

(i) $g_2' r_2' \simeq 1_{\theta_2(\partial N_2 \times [\frac{1}{2}, 1))}$ in $\theta_2(\partial N_2 \times [\frac{1}{2}, 1))$, and

(ii) $g_1 r_1 \simeq 1_{N_1 - K_1}$ in $N_1 - K_1$.

It follows that

$$\tilde{f}f' = r_1 \varphi^{-1} g_2' r_2' \varphi g_1 \simeq r_1 \varphi^{-1} \varphi g_1$$
 (by (1) and (i))
= $r_1 g_1 = 1_{\partial N_1}$,

and

$$f \tilde{f}' = r_2 \varphi g_1 r_1 \varphi^{-1} g_2 \simeq r_2 \varphi \varphi^{-1} g_2$$
 (by (ii))
= $r_2 g_2 = 1_{\partial N_2}$.

Moreover, we have $f\tilde{f}' = \Psi f'\tilde{f}\Psi^{-1}$. Hence,

$$f'\tilde{f} = \Psi^{-1}f\tilde{f}'\Psi \simeq \Psi^{-1}1_{\partial N_2}\Psi = 1_{\partial N_2'}.$$

Therefore, f' and \tilde{f} are homotopy equivalences. Furthermore, since g_1, g'_2, r'_2, r_1 can obviously be extended to homotopy equivalences $\bar{g}_1, \bar{g}'_2, \bar{r}'_2, \bar{r}_1$ of $S^n - K_1$ and $S^n - K_2$ with

(a) $\bar{g}_1 \bar{r}_1 \simeq 1$, $\bar{r}_1 \bar{g}_1 \simeq 1$,

(b) $\bar{g}'_2 \bar{r}'_2 \simeq 1$, $r'_2 g'_2 \simeq 1$,

then, so can \tilde{f} and f'.

Thus, the other parts of the conclusion follow.

Remark. In particular, Lemma 1 is true if K_1 , K_2 are finite subcomplexes of S^n .

OBSERVATION. Let K be a finite subcomplex of $S^n \subset S^{n+1}$. Then, K has a regular neighborhood of the form $N = W \times [-1, 1]$, where W is a regular neighborhood of K in S^n . In this case, let $\pi \colon N \to K$ be a deformation retraction induced by the collapse $N \setminus K$, and let $v \colon K \to \partial N$ defined by v(x) = (x, 1), for every $x \in K$.

225

Consider the following diagram

where $\bar{\pi} = \pi |\partial N$.

It is easy to prove that

- (i) $\bar{\pi}v \simeq 1_K$,
- (ii) $i \simeq k\bar{\pi}$,
- (iii) $i(v\pi) \simeq 1_N$.

(This observation is also true if K is a globally 1-alg, simply-connected CANR in S^n $(n \ge 6)$ having the homotopy type of a finite complex of dimension $\le n-3$.)

LEMMA 2. Let K be a finite subcomplex of Rⁿ. Let $N = W \times [-1, 1]$, π, y be as above. Then for every $q \ge 1$, given $[\alpha] \in H_n(\partial N)$, $\alpha \sim 0$ in $\mathbb{R}^{n+1} - K$ if and only if $[\alpha] \in \nu_* H_a(K)$.

Proof. The homology sequence of the pair $(N, \partial N)$ can be decomposed into split short exact sequences

$$0 \rightarrow H_{q+1}(N, \partial N) \rightarrow H_q(\partial N) \stackrel{i_*}{\rightarrow} H_q(N) \rightarrow 0$$

for every $q \ge 1$, since $i_*(\nu \pi)_* = 1_*$. Hence,

$$H_q(\partial N) = \nu_* \pi_* H_q(N) \oplus \text{Ker } i_*$$

= $\nu_* H_q(K) \oplus \text{Ker } \bar{\pi}_* \quad (\pi_*, k_* \text{ are isomorphisms}).$

Now, the following commutative diagram

$$0 \to H_{q+1}(R^{n+1}, R^{n+1} - \operatorname{Int} N) \xrightarrow{\approx} H_q(R^{n+1} - \operatorname{Int} N) \to 0$$

$$\uparrow \approx \qquad \qquad \uparrow j_*$$

$$0 \longrightarrow H_{q+1}(N, \partial N) \xrightarrow{\partial} H_q(\partial N) \longrightarrow \dots$$

where $j: \partial N \subset \mathbb{R}^{n+1} - \operatorname{Int} N$, proves that $j_* | \operatorname{Im} \partial$ is an isomorphism from $\operatorname{Im} \partial$ = Ker i_* onto $H_n(R^{n+1} - \text{Int } N) = H_n(R^{n+1} - K)$. Hence, given $[\alpha] \in H_n(\partial N)$, then $j_*[\alpha] = 0$ if and only if $[\alpha] \in \nu_* H_a(K)$, since $\nu(K)$ is contractible in $\mathbb{R}^n \times \{1\}$ $\subset R^{n+1}-K$

THEOREM 1. Let K_1 , K_2 be simply-connected subcomplexes of S^n . Then S^{n+1} $-K_1 \approx S^{n+1} - K_2$ implies $K_1 \approx K_2$.

Proof. Let N_i be a regular neighborhood of K_i in S^{n+1} , $\overline{\pi}_i$: $\partial N_i \to K_i$ and v_i : $K_i \rightarrow \partial N_i$ as in Lemma 2. Let $f: \partial N_1 \rightarrow \partial N_2$ be a homotopy equivalence as in Lemma 1.

Define $h = \bar{\pi}_2 f v_1 \colon K_1 \to K_2$.

Since K_1 , K_2 are simply-connected finite complexes, it suffices to show that $h_*: H_q(K_1) \to H_q(K_2)$ is an isomorphism for every $2 \le q \le n-2$ ([18], Theorem 7.6.25 and Corollary 7.6.24).

Consider the following commutative diagram $(2 \le q \le n-2)$.

$$(v_1)_* H_q(K_1) \oplus \operatorname{Ker}(\overline{\pi}_1)_* = H_q(\partial N_1) \xrightarrow{f_*} H_q(\partial N_2) = (v_2)_* H_q(K_2) \oplus \operatorname{Ker}(\overline{\pi}_2)_*$$

$$\uparrow^{(v_1)_*} \qquad \qquad \downarrow^{(v_2)_*} \uparrow \downarrow^{(\overline{\pi}_2)_*}$$

$$H_q(K_1) \xrightarrow{h_*} \qquad \qquad H_q(K_2).$$

Since $(\bar{\pi}_2)_*|_{(v_2)_*}H(K_2)$ is an isomorphism from $(v_2)_*H_a(K_2)$ onto $H_a(K_2)$, the proof of Theorem 1 will be complete if we can show that $f_*|(v_1)_*H_n(K_1)$ is an isomorphism from $(v_1)_* H_a(K_1)$ onto $(v_2)_* H_a(K_2)$.

However, this property can be proved from the property of f given in Lemma 1 and the property of the subgroup $(v_i)_*H_a(K_i)$ of $H_a(\partial N_i)$, i=1,2 given in Lemma 2, for $2 \le q \le n-2$.

LEMMA 3. Let X be a globally 1-alg continuum in S^n , $n \ge 6$, having the shape of a simply-connected finite complex K, with dim $K \le n-3$. Then there is a finite subcomplex K' of S'', $\dim K' \leq \dim K$, such that $S^{n+1} - X \approx S^{n+1} - K'$ and Sh(X)= Sh(K').

Proof. By Theorem 3 [11], X has a PL-radial neighborhood W in S" such that $W \simeq K$. Let $\eta: K \to \text{Int } W$ be a homotopy equivalence. By Stallings' theorem ([8], Theorem 12.1), we have a subcomplex K' of Int W with $\dim K' \leq \dim K$ and $K' \subset Int W$ is a homotopy equivalence. Similar to the proof of Corollary 3 in [11], we can prove that W is a regular neighborhood of K'.

It is clear that $N = W \times [-1, 1]$ is a regular neighborhood of K' in S^{n+1} ; particularly, $N-K' \approx \partial N \times [0,1)$.

Therefore, the lemma will follow if we can prove that N is also a PL-radial neighborhood of X in S^{n+1} . To prove this, it suffices to prove the following statement:

"Let $N_1=W_1 imes [-\frac{1}{2},\frac{1}{2}]$, where $W_1=\partial W imes [\frac{1}{2},1)\cup X$, then $\overline{N-N_1}\stackrel{\mathrm{PL}}{pprox}\partial N imes$ $\times [0, 1]$ ".

Let K'' be a finite subcomplex of W_1 contained in $\operatorname{Int} W_1$, with $K'' \simeq K$ and $\dim K'' \leq \dim K$ such that W_i is a regular neighborhood of K'' in S^n as above. It is clear that N and N_1 are regular neighborhoods of K'' in S^{n+1} . The statement follows by the uniqueness of regular neighborhoods ([16], Corollary 2.16.2).

THEOREM 1'. Let X and Y be globally 1-alg continua in S^n ($n \ge 6$) having the shape of simply connected finite complexes K_1, K_2 , with dim $K_i \le n-3$, i = 1, 2. Then, $S^{n+1} - X \approx S^{n+1} - Y$ implies Sh(X) = Sh(Y).

Proof. By Lemma 3, we have $S^{n+1} - X \approx S^{n+1} - K_1'$ and $S^{n+1} - Y \approx S^{n+1} - K_2'$. where K'_1, K'_2 are subcomplexes of S^n with $\dim K'_i \leq \dim K_i$ and $K'_i \simeq K_i$, i = 1, 2. Hence, $S^{n+1} - X \approx S^{n+1} - Y$ implies that $S^{n+1} - K_1' \approx S^{n+1} - K_2'$.

The result follows from Theorem 1.

Now we start to prove the main result.

Consider a simply-connected topological manifold M. Since M is a CANR, M is dominated by a finite simplicial complex. Therefore, by Theorem A [20], M satisfies the condition F_n for every n. On the other hand, M^m also satisfies the condition D_m ; hence, by Theorem F [20], $M \simeq K$, where K is a finite CW-complex with $\dim K = \max\{3, m\}$.

In the case $n \ge 6$ and $m \le n-3$, then $\dim K \le n-3$. Combining this observation with Theorem 3 of [11], we have the following lemma.

LEMMA 4. Let M be a codimension 3, closed, simply connected locally flat topological submanifold of S^n $(n \ge 6)$, then M has a PL-radial neighborhood W in S^n with $W \simeq M$.

COROLLARY. Let X and Y be globally 1-alg continua in S^n $(n \ge 6)$ having the shape of a closed, 0 < (2m-n+1)-connected topological manifold M^m $(m \le n-3)$. Then $S^n - X \approx S^n - Y$.

Proof. By Weller's embedding theorem [21], we may assume that M is a locally flat topological submanifold of S^n . Hence, it will suffice to show that $S^n - X \approx S^n - M$.

By Theorem 3 [11] and the observation above, X has a PL-radial neighborhood W, which has the homotopy type of M.

Let $f: M \to \operatorname{Int} W$ be a homotopy equivalence. By Weller's embedding theorem [21], we can assume that f is a locally flat embedding of M into $\operatorname{Int} W \subset S^n$. Now, by topological unknotting theorem [21], it suffices to show that $S^n - X \approx S^n - f(M)$.

Let V be a PL-radial neighborhood of f(M) in S^n such that $V \subset \operatorname{Int} W$ and $f(M) \subset V$ is a homotopy equivalence. Let $H = W - \operatorname{Int} V$.

CLAIM. H is a PL h-cobordism.

It is clear that H is a PL-manifold with $\partial H = \partial W \cup \partial V$ and $\pi_1(\partial W) = \pi_1(\partial V) = 0$. Moreover, since $f(M) \subset V$ and $f(M) \subset W$ are homotopy equivalences, $V \subset W$ is a homotopy equivalence. Therefore, $H_*(H, \partial V) = 0$ by the excision theorem. Hence, $\pi_*(H, \partial V) = 0$ since $\pi_1(H) = 0$ and [18], Theorem 7.5.4. Theorem 3.2 of [4] shows that H strong deformation retracts onto ∂V .

On the other hand, it is clear that $\partial V \subset H - \partial W$ is a homotopy equivalence and that the PL-manifold $H - \partial W$ has a unique tame end ε (∂W is locally flat) with $\pi_1(\varepsilon) = 0$. Thus, we can apply Theorem 1.6 of [16] to conclude that

$$H - \partial W \stackrel{\text{PL}}{\approx} \partial V \times [0, 1)$$
.

Now employing this fact and a collar of ∂W in H, it follows that H strong deformation retracts onto ∂W .

Therefore, W is a PL-radial neighborhood of f(M) in S^n by the product structure of H, and the statement $S^n - X \approx S^n - f(M)$ is proved.

THEOREM 2. Let X_1 and X_2 be globally 1-alg continua in S^n ($n \ge 6$) having the shape of codimension 3, closed, $0 < (2m_1 - n + 1)$ -connected topological manifolds $M_1^{m_1}$, i = 1, 2 (respectively). Then, $S^n - X_1 \approx S^n - X_2$ if and only if $Sh(X_1) = Sh(X_2)$.

Proof. (i) The "if part" is the previous corollary.

(ii) The proof of the "only if part", by Theorem 1, will complete if we can show that there exist finite complexes M_1' , M_2' in S^{n-1} , with dim $M_1' \le n-3$, such that $M_1 \simeq M_1'$ (i = 1, 2) and $S^n - M_1' \approx S^n - M_2'$.

Hence, it suffices to show that $S'' - X_i \approx S'' - M_i'$ with such M_i' 's.

For the case $n \ge 6$ and m = n - 3, every 0 < (2m - n + 1)-connected, closed manifold has the homotopy type of the m-sphere by the Poincaré duality theorem and the Whitehead theorem. Hence $S^n - X \approx S^n - S^{n-3}$ by the previous corollary.

The case n = 6 and $m \le n-4$, is trivial.

For the case $n \ge 7$, $m \le n-4$, we may assume that M_i is a locally flat submanifold of S^{n-1} $(n-1 \ge 6)$ by Weller's embedding theorem [21]. Finally, by the "if part" and Lemma 3, $S^n - X_i \approx S^n - M_i \approx S^n - M_i$, as desired.

References

- [1] K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), pp. 223-254.
- [2] T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), pp. 181-193.
- [3] Shape of finite dimensional compacta, Fund. Math. 76 (1972), pp. 261-276.
- [4] M. M. Cohen, A Course in Simple-Homotopy Theory, Springer Verlag, New York 1970.
- [5] D. Coram, R. Daverman and P. Duvall, Jr., A small loops condition for embedded compacta, Trans. Amer. Math. Soc., to appear.
- [6] and P. Duvall, Jr., Neighborhoods of sphere-like continua, to appear.
- [7] R. Geoghegan and R. R. Summerhill, Concerning the shapes of finite dimensional compacta, Trans. Amer. Math. Soc. 179 (1973), pp. 281-292.
- [8] J. F. Hudson, Piecewise Linear Topology, W. A. Benjamin, 1969.
- [9] J. H. Hollingsworth and T. B. Rushing, Embeddings of shape classes of compacta in the trivial range, to appear.
- [10] M. C. Irwin, Embeddings of polyhedral manifolds, Ann. of Math. 82 (1965), pp. 1-14.
- [11] V. T. Liem, Certain continua in Sⁿ of the same shape have homeomorphic complements, submitted to Trans. Amer. Math. Soc.
- [12] S. Mardešić and J. Segal, Shape of compacta and ANR-systems, Fund. Math. 72 (1971), pp. 41-59.
- [13] Equivalence of the Borsuk and the ANR-system approach to shapes, Fund. Math. 72 (1971), pp. 61-68.
- [14] T. B. Rushing, The compacta X in S^n for which $Sh(X) = Sh(S^k)$ is equivalent to $S^n X \approx S^n S^k$, Fund. Math. 97 (1977), pp. 1-8.
- [15] L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Ph. D. Dissertation, Princeton Univ., 1965.
- [16] On detecting open collars, Trans. Amer. Math. Soc. 142 (1969), pp. 201-227.
- [17] Disruption of low dimensional Handlebody Theory by Rohlin's Theorem, Topology of Manifolds, Markham, Chicago 1969.
- [18] E. Spanier Algebraic Topology, McGraw Hill, New York 1966.

228

V.-T.-Liem

- [19] G. Venema, Embeddings of the shape classes of sphere-like continua and topological groups.
- [20] C. T. C. Wall, Finiteness condition for CW-complexes, Ann. of Math. 81 (1965), pp. 56-69.
- [21] G. P. Weller, Locally flat imbeddings of topological manifolds in codimension three, Trans. Amer. Math. Soc. 157 (1971), pp. 161-178.
- [22] E. C. Zeeman, Seminar on combinatorial topology, Mimeographed Notes, Inst. des Hautes Etudes Sci., Paris 1963.

UNIVERSITY OF UTAH Salt Lake City, Utah

to appear.

Accepté par la Rédaction le 3, 9, 1975

Commutative rings in which every proper ideal is maximal

Ĭ.

Joachim Reineke (Hannover)

Abstract. We will give the full description of commutative rings in which every proper principal ideal is a prime ideal.

Introduction. Perticani studied in [2] the class of commutative rings with identity in which every proper ideal is maximal. He gave a full description of such a ring R only in the case when R has at least two different proper ideals. In the case where R has only one proper ideal he reduced the problem of characterizing such rings to the one of the computation of cohomology groups. In this paper we will give a full description in both cases. The first case is a trivial conclusion of the Chinese Remainder Theorem and the second will follow very easily from the Cohen Structure Theorem of complete local rings.

All throughout R denotes a commutative ring with identity. We have the same notation as in [3]. The following lemma shows that three classes of rings with pathological properties are only one class and we do not use it in the following.

PROPOSITION 1. Let R be a ring. Then the following are equivalent:

- 1. every proper ideal is maximal,
- 2. every proper ideal is a primeideal,
- 3. every proper principal ideal is a primeideal.

Proof. $1\rightarrow 2\rightarrow 3$ is trivial. To see that $3\rightarrow 1$ let A be a proper ideal of R and $a\in A$, $a\neq 0$. Suppose $bc\in A$. If $bc\neq 0$, then $b\in (bc)\subseteq A$ or $c\in (bc)\subseteq A$. If bc=0, then $b\in (a)\subseteq A$ or $c\in (a)\subseteq A$. It follows that R/A is an integral domain. Clearly R/A is a regular ring. Therefore A is a maximal ideal. Q.E.D.

Call a ring R a max-ring if every proper ideal is maximal.

LEMMA 2 (see Theorem 1.1 and Theorem 1.4 of [2]). Suppose R is a max-ring and R contains at least two different proper ideals then R is isomorphic to a product of two fields.

Proof. Let A_1 , A_2 be proper ideals of R and $A_1 \neq A_2$. It follows immediately that $A_1 \cap A_2 = (0)$. Since A_1 , A_2 are comaximal it follows from the Chinese