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Properties of connected functions
in terms of their levels *

by

K. M. Garg (Edmonton, Alberta)

Abstract. Let f be a connected real-valued function defined on a connected, locally connected,
Hausdorff space X. Tn this paper we investigate necessary and sufficient conditions on the levels
of f under which f is continuous, monotone or injective, and obtain some structural properties
of f when it is nowhere monotone.

Among the main results, f is proved to be always continuous relative to the closure of the
union S of connected levels of f. If f ~* preserves relatively compact sets, and either S is dense in. X,
or its image f(S) is dense in the range of f, then 1 is proved to be continuous, monotone and proper.
When f assumes a dense set of its values only once, it is found to be continuous and monotone,
and when the singleton levels of f are dense in X, fis even injective. If X is second countable and
fis nowhere monotone, it is proved that the level f ~*(0) is dense-in-itself for a residual set of values
of @ in R, and there further exists a residual set of points x in X such that x is a limit point of the
level f ”1{ F(x)}. Some earlier results on the distribution of closed, connected, singleton, dense-in-
itself and perfect levels of f are also extended to the present setting.

1. Introduction. Before discussing the results of this paper, we first give some
definitions that are used throughout the paper. ‘

1.1. DerFNITION, The space of real numbers is denoted as usual by R. If EcR,
a point x e R is said to be a bilateral limit point of E if it is a limit point of E from
both the sides, and we call E bilaterally closed if it contains all of its bilateral limit
points. Any set E is said to be singleton if it contains one and only one point, and
E is called countable if it is finite or countably infinite. When E is a subset of
a topological space X, E is called a boundary set [8] if its interior is empty, E is
meager if it is a countable union of nowhere dense sets, and E is residual if its comp-
lement X'—E is meager.

Let X, ¥ be two topological spaces and f be a function mapping X into Y.

1.2. DermNITION. For every ye Y, the set
FTO) = fxeX: () = 3}

* This paper was presented at the Conference on Monotone Mappings and Open Mappings,
State University of New York, Binghamton, 1970 under the title “Monotonicity of connected
functions”. The research was partially supportw National Research Council of Canada
under grant no. A-4826, .
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is called a Zevel [4] of f (also known as a “point inverse” or a “fiber” of f). If @ is
any property of sets, let Sy(f) denote the union of those levels of f which have
property 6, and let Yy(f) be the set of elements y of ¥ for which the level £ ~1(y)
has property 0. These sets Sy(f) and Y,(f) may be called the domain and the
range of levels of f with property O respectively, and it is clear that Si(f)
=f"YYo(/)}. The properties of being closed, connected, singleton, dense-in-
itself and perfect are denoted in turn by k, ¢, 1, d and p respectively [4].

1.3. DepmvITION. The function f is said to be connected if the set f(C) is con-
nected for every connected set C in X, and fis weakly connected [7] (or “connected
(C,0)” [6]) if f(C) is connected at least for open connected sets C in X.

It may be remarked that every linear operator between two Hausdorff topo-
logical vector spaces X and ¥ is weakly connected, and so is in turn every seminorm

~on X (see Hrycay [6]).

As we are interested here in connected functions, the usual hypothesis of conti-
nuity (or of onto) is not included in the following definitions:

1.4. DermuTION. The function f is called

_(a) monotone if the set f~*(C) is connected for every connected set C in ¥
(see Kuratowski [9], p. 131),

(b) weakly monotone [19] if each of its levels is connected,

(c) Morrey monotone if each of its levels is compact and connected, and

(d) light [18] if every nonempty level of f is totally disconnected (i.e. each of
its components is singleton).

It is, in fact, a (continmous onto) Morrey monotone function that is usually
called a “monotone” function (see [17], [18], [19]). To distinguish this notion from
the one in (a), we refer to it as a Morrey monotone function after C. B. Morrey [12}
who introduced the definition. A weakly monotone function is also known as
a “monotone” [13] or a “semi-monotone” [17] function.

The properties of monotonicity and Morrey monotonicity are clearly not
comparable in general, although both of them imply weak monotonicity. The
usual notion of monotonicity of a function f: R—R coincides with the monotonicity
in (a), but is again not comparable with Morrey monotonicity; in case fis connected,
its usual monotonicity is also equivalent to weak monotonicity (see Proposition 3.7).
AHowever, for a continuous function f from a compact space X onto a Hausdorff
space Y all the above three notions (a), (b), (c) of monotonlclty become equivalent
(see Whyburn [18], p. 138).

1.5 DermNITION. If P is any global property of functions, the function fis
said to be nowhere P [5] when it does not possess P on any nonempty open sub-
space of X.

Throughout the paper, unless otherwise sta.led X is assumed to be a locally
connected space and f is assumed to be a weakly connected real-valued function
on X. For X = R most of the results may be found in [2], [3] and [4].
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We first consider in Section 2 the closed levels and continuity of f. Thé range
Y, (f) of closed levels of f is proved in Theorem 2.2 to be bilaterally closed (see
Definitions 1.1, 1.2). In Theorem 2.5 we obtain semicontinuity, continuity, oscil-
lation and relative continuity of f in terms of its closed levels. For example, if a is
a bilateral limit point of ¥(f), then fis continuous at every point of the level / ~*{a0).
This yields a theorem of Lipinski [10] as a corollary, viz. f is continuous whenever
Y,(f) is dense in R. If f is any connected function with a T range, it is proved in
Theorem 2.9 that f ™! preserves “composed™ sets, viz, sets whose components are
closed. Consequently, the above function f is continuous whenever it is weakly
monotone and connected. ‘

Section 3 deals with the connected levels and monotonicity of . Suppose X is
further connected and f: X—R is also connected. In Theorem 3.3 two suitable
conditions are obtained under which the set Y,(f) is bilaterally closed. It is proved
in Theorem 3.6 that f is continuous relative to the closure of the domain S.(f) of
connected levels of f. According to Proposition 3.7, fis monotone whenever it is
weakly monotone. In case X is o-coherent (see Definition 3.1), fis-proved in The-
orem 3.9 to be monotone when the set Y,(f) is dense in R, or the set S (f) is dense
in X. If on the other hand X is Hausdorff and f~* preserves relatively compact
sets, then under each of the two density conditions f is found to be monotone,
Morrey monotone and proper (Theorem 3.10).

Section 4 is devoted to the singleton levels and injectivity of f. Let X be con-
nected and Hausdorff. If X is further separable, then the set ¥;(f) is of the form
F—C, where Fis closed and C is countable (Theorem 4.4). As for the monotonicity
the set Y, (f ) turns out to be more manageable than Y.(f). Without any of the
hypotheses of Theorems 3.9 and 3.10, f is found to be monotone whenever it as-
sumes a dense set of its values only once, and when fis further nowhere constant
then it also becomes injective (Theorern 4.6). If, on the other hand, f is connected
and the set S,(f) is dense in X, then f is always monotone and injective (The-
orem 4.8). ’

Finally, in Section 5, we study the dense-in-itself levels and nowhere monot-
onicity of f. Suppose X is Hausdorff and second countable. The sets Y,(f) and
Y,(f) are proved to be both of the form G; L C, where C is countable (Theorem 5.1).
If the set S,(f) is dense in X, or X is dense-in-itself and the set ¥,(f) is dense in R,
the function f is found to be nowhere injective, and it becomes nowhere weakly
monotone when it is further light. The set Y(f) is further proved to be residual
in R whenever f is nowhere monotone (Theorem 5.5). In case f is connected and
nowhere monotone, or nowhere injective, then according to Theorem 5.9 there
exists a residual set of points x in X such that x is a limit point of the level f~ L f(x)}.
The last two theorems assume a more general and stronger form when X is locally
cyclicly connected (see Definition 5.11 and Proposition 5. 13).

It has been recently proved by Lipirski [11] that the above properties of the
sets Yo(f) (0 = k, ¢, 1, d, p) characterize these sets in the case when X = R.

o
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2. Closed levels and continuity. The results of this section are relatively simple
but essential for the following sections. Let us recall our standard hypothesis that
fis a weakly connected real-valued function on a locally connected space X. If
(x, B) is a finite or infinite subinterval of R, the inverse set f~!((x, §)) will be
denoted simply by f~*(x, f), and the same applies to the closed and semi-closed
subintervals of R.

2.1. LemMa. For every o€ R the following are equivalent:

(a) the level f~*(o) is closed,

(b) the sets f ~*(—oco, o) and f~(x, 00) are open,

(c) the sets f~*(—o0,a] and f~[x, o) are closed.

Proof. Suppose (a) holds and x is any point of the set f ~*(— 0, «). Since x does
not belong to the closed level f~*(x), it has a connected open neighborhood U that
does not intersect with f~1(c)). Then f(U) is a connected subset of R that contains
f(x)<ea but not a. Hence f(U)c(—o0, ), i.e. Ucf (—o0,a), and so x is an
interior point of the set f~1(—c0, &). This proves that f~'(—co0, a) is open, and
the openmness of the set f~*(x, c0) is proved similarly. Thus (a)=>(b), and the impli-
cations (b)=>(c) and (¢)=>(2) are quite obvious.

2.2. THEOREM. The set Y,(f) is bilaterally closed.

Proof. Xf o is any bilateral limit point of the set Y, (f), there exist two
sequences {o,}, {B,} of distinct points of ¥,(f) such that a, increases to o« and B,
decreases to o as n—o0. According to Lemma 2.1 the set

Mo B = {f (=0, 8,1} 0 {7 oz, 0D}

is closed for every m, and so the level

S = 0 S s B

is closed, ie. ae Y (f).
As an easy consequerice of the above theorem we obtain

2.3. COROLLARY. The set Y, (f) contains every open interval in which it is dense,
and it is further a G5 set with a nowhere dense boundary.

2.4. Remark. As a converse of Theorem 2.2 it has been proved by Lipitiski [11],
Theorem 2, that for every bilaterally closed subset E of R there exists a connected

function f: R—R such that Y;(f) = E. It remains to investigate the validity of
this converse for more general locally connected spaces X.

2.5. TreoreMm. (a) If o€ R is a limit point of the set Y, (f) from below (above),
then f is lower (upper) semicontinuous at every point of the level f~*(a).

(b) If o is a bilateral limit pomt of Yk( 1), then fis continuous at every point
of the level f~(x).

(© If «, Be Yi(f) and a<pB, then the oscillation of f is not greater than f—a
at any point of the inverse set f~(x, p).
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(d) The function f is contimuous relative to every set AcX for which J(A)

< Y ()

Proof. (a) Let first o be a limit point of ¥;(f) from below and x e/~ *(c).
Given A<f(x) = o, we can find a point e ¥, (f) such that A<f<a. Then the
set U =f 1B, c0) is open by Lemma 2.1, and clearly x € U. At every point ye U
we have f(»)>B>4, and so f is lower semicontinuous at x. The other part of (a)
follows on applying the above to the function —f.

(b) This part follows on combining the two parts of (a).

(©) It «, B e ¥, (f) and a<}p, then the set

e, By = {f (=0, P} n {f (e, 00)}
is open by Lemma 2.1, and so at any point of f ~(x, B) the oscillation of f cannot
be greater than the ,diaﬁmeter of f{f‘l(ac, B}, which in turn cannot be greater
than f—o.

(d) Let 4 be a subset of X such that FA) =Y (f), and let g denote. the re-
striction of fto 4. Putting F = g(4), we have g(4d)=Fc Y. (f). Let x be any point
of 4, and let o = g(x). I F is disjoint with the.interval (— oo, o), then g is clearly
lower semicontinuous at x. Otherwise let f = sup{y € F: y<a}. Since F i is. closed,
we have S e F and <o, If B = o, then o is a limit point of the set Y.(f) from
below, and so f is lower semicontinuous at x by (a), whence g is also lower
semicontinuous at x. In case f<«, then since f & F= Y, (f), theset U = f~ (8, oo)
is open by Lemma 2.1; clearly x e U and at every point yed n U we have g(3)
>a = g(x), whence g is again lower semicontinuous at x. This proves the lower
semicontinuity of g at x. A similar argument yields its upper sermcontmulty at x,
and so g is continuous at x.

Each of the parts (b) and (¢) of Theorem 2.5 ylelds the followmg theorem of
Lipifiski [10]:

2.6. COROLLARY. If the set Y,(f ) is dense in R (ar in the znterwr of | the mnge
of f), then f is continuous. - R A

2.7. Rémark. Regarding the part (d) of Theorem 2.5:it may be observed’ that
the function £ is not continuous in general relative to the set S () =YY}
For let X = R and f(x) = x—1 for x<0, f(0) =1 and f(x) = sin(1/x) for x>0.
It can be easily verified that f is weakly connected and its restri¢tion to the set
S (f) = (=00, 0) uf D) is discontinuous at 0 .~~~ . I

2.3, DEFINITION: Let a “set in any’ 1opolog1ca1 space X be called comPosed
if all of its components are closed. . C

Let us observe here that every closed set- is composed and a compos;:d set
is in turn &losed when it has only finitely many components. Also; the Intérsection
of an arbitrary family of .composed sets is. composed, ‘but ‘the union. of.two
composed sets is not in general composed. In fact, as it is clear from the Tollawing
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two subsets of R, even the union of a composed set with a qlosedvset need not
be composed :

A= {x,):x=1,%,%, ..., 0yt
B = {(x,5): 0<x<1,y = 0}.

2.9. TueoreM. Let X be any topological space, Y a Ty-space and f: X— Y be
a connected function. If C is any composed set in Y, then so is f~*(C).

Consequently, the levels of f" are composed and we have Y, (f)< Y (f).

Proof. Suppose there exists a composed set C in ¥ such that f~*(C) is not
composed. Then f~*(C) has a component A that is not closed. Let x & A —A4. Since
4 v {x} is connected, it follows that x ¢ £ ~*(C) and that the set f(d) U {0} is
connected. However, f(4) being a connected subset of C, it is contained in some
component B of C, and since C is composed, B is closed. Thus f(4) is contained
in the closed set B, whereas f(x) ¢ B. Since {f(x)} is closed, this contradicts the
connectedness of the set f(4) U {/()}. :

It follows from the above theorem that every connected weakly monotone
function with a T’ range has closed levels, strengthening thereby Theorem 3.1 of
Pervin and Levine [13]. Although Theorem 2.9 is not altogether new (see Sander-
son [14], Theorems 1, 3),it does provide in the above form a new property of continu-
ous functions f with T range, viz. that £~ preserves composed sets. With the help
of Corollary 2.6 it further gives

2.10. COROLLARY. Let X be a locally connected space and f; X— R be connected,
If the set Y (f) is dense in R, then f is continuous.

In particular, f is continuous whenever ‘it is weakly monotone.

2.11. CoROLLARY. If f is connected and it is discontinuous at a dense set of points
in X, then f is nowhere weakly monotone.

Proof. Suppose f is weakly monotone on some nonempty open set U in X.
The subspace U is clearly locally connected. As a subset of U is connected relative
to Uif and only if it is connected in X, the restriction g of fto U is also connected.
Hence, by Cordllary 2.10, g is continuous, which contradicts the hypothesis.

When the fange Y'is a “semi-locally-connected” space, viz. every point of ¥ has
2 local base of neighborhoods whose complements have only finitely many com-
ponents, with the help of Theorems 8 and 9 of Sanderson [14] we further obtain
from Theorem 2.9,

2.12. CoroOLLARY. If X is any topological space and Y is a semi-locally-connected
Ti-space, then every -connected monotone function f: X— Y is continuous.

3. Connected levels and monotonicity.

3.1 DEFINITIOI_\I. (a) A sequence {E,} of sets is said to be increasing (de-
creasing) if E,cE,, [>E,,,] for every n. Let 2 topological space X be called

o-coherent if the intersection of every decreasing sequence of closed connected
sets in X is connected. .
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{b) Given two topological spaces X and Y, a function f: X—Y is said to be
proper {11 (or “compact” [19]) if the set f7YK) is compact for every gompact set K
in Y. Analogously, let f be called relatively proper if f “.l(K) is re.lauvel}‘r compact
for every relatively compact set K in ¥, or equivalently if FTYK) is relatively com-
pact for every compact set K in Y.

It may be observed here that the space R is g-coherent, and so is every cqmpact
Haﬁsdorﬂ' space X (see [9], p. 170, Theorem 5). Also every propc?r function is rela-
tively proper, and a continuous function with a Hausdorff range is proper whenever
it is relatively proper. However, among discontinuous functxon‘s the class of re.la-
tively proper functions is much wider than that of proper funcnogs. Fo'r a funcmor;
with a compact domain is always relatively proper, .bl,}t a funct.xon with compac
Hausdorff domain and range is proper if and only if it is contm-uous.

From now on we return to our standard hypothesis that fis a weakly con-
nected real-valued function on a locally connected space X.

3.0. Lemma. Suppose X and f are conmected.
(3) If w e Y,(f), then the sets f~*(— 0, a] and f~'[a, co) are both closed and

connected. :
() Ifa, Be Y.(f) and o<, then the set f~[«, B] is also closed and connected.
Proof. (a) Since f is connected, its connected level 1) is closed by The-
orem 2.9. Hence the sets

A=f(-,a] and B=ff, )

are both closed by Lemma 2.1. Since 4 UB =X and A A B = f~*(x) are both
connected, it follows that 4 and B are also connected (see [9], p. 133). .
(b) The connected levels f4«) and foX(B) are clearly closed, and so by
Lemma 2.1 the sets
4d=fY-w,a] and C=f""[xfl .
are closed;b Sil;ce kA uC=f"Y—ow,p] is connectefd by (a), and. AN C |
= £"Y(0) is also connected, it follows as above that C is connected.

3.3. TueorEM. If X and f are connected, and ef‘ther
(a) X is o-coherent, or ’
(b) X is Hausdorff and f is relatively proper,
then the set Y,(f) is bilaterally closed. '
" Proof. Let o be any bilateral limit point of Y.(N. Th?n there exist th s;—
quences {a,}, {8} of distinct points of Y,(f) such that «, mcie:.\scs to o a;ose(,i
decreases to « as n—» 0. According to Lemma 3.2 (b), the fft F et Bl 1sh osed
and connected for every n. Since £~ *[¢,, Bal cll::creises to £~ («) as n— o0, the lev
“Yw) i ted when X is o-coherent. .
d (‘;Zx lja:&:e?tf)l‘,yf:n:::h ‘natural number n, the set f ~1a,, B, is further relatively
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compact; and since it is already closed and connected, it is in fact a continuum
(viz. compact, connected and Hausdorfl). Hence the level

76 = 0 S s B

is also a continuum (see [9], p. 170, Theorem 5).

3.4. Remark. Corollary 2.3 is thus equally valid for the set Y,(f) when f
satisfies one of the hypotheses of Theorem 3.3. If E is any bilaterally closed subset
of R, then according to Theorem 1 of Lipinski [11] there exists a continuous
function f: R—R for which Y.(f) =E. '

3.5. LEMMA. If X and f are connected and ac R is a limit point of Y. (f)
Jrom below, then the set f~'(—~co, ) is open and its boundary is contained in the
level £~ Y(a): :

Proof. There exists an increasing sequence {a,} of clements of Y,(f) such
that o, converges to o as n— 0. For every natural number n, the level f~*(a,) is
closed by Theorem 2.9, and so the set f “*(— o, a,) is open by Lemma 2.1. Hence
the set

FH=e0,0) = 0 S (=0, 0

is ‘open.

According to Lemma 3.2 (a), the set S Y00, a,] is connected for every n,
and as the sequence {f !(~ oo, @]} is increasing, it follows that its union.
S (=00, @) is connected (see [9], . 132). Thus f~%(~ 0, «) is contained in some
component C of the set f~*(—co, o]. But the latter set is composed by Theorem 2.9,
and so C is closed. Hence we have :

{f_l(——oo,ac)}—C:CCf—l(-—oo, OL] .

As f7Y(—o0, &) is open, it follows that the boundary of this set is contained in the
level £~(x). ‘
3.6. TaEOREM. If X and f are conriected, then f is continuous relative to the

closure of SAf). Consequently, if the set S.(f) is further dense in X, then fis
continuous. s

Proof. Suppose S = S,(f) is nonempty, and let g denote the restriction of .

to S. As the intervals (— o0, ) and (@, 0), & € R, form together a subbase of the
topi)logy of R, it is sufficient to show that the set g™ ~o0,0) is open. relative
to S for every « € R, for on applying this result to the function — -f the same follows.
for the set g™ *(«, o).
Given a« e R, let . .
B =sup{ye Y.(f): y<o} and y= inf{ye ¥,(f): y>a}.

Then f<a<y, and at least one of B andfy is-finite: In case 8 = «, then either o
belongs to Y_(f) c_)rvit is ‘a‘linxit point of Y,(f) from below, and 5o by Lemmas 3.2
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and 3.5 the set f~%(— o0, &) is open in each case, whence g™ (— 00, ®) is open
relative to its domain S. So let f<u.
When f is finite, we claim that

63 {Snf (=, B} cf "} (~o, Al.
For if Be Y,(f), then the set f~*(— oo, f] is closed by Lemma 3.2, which im-
plies (1), and if B¢ Y,(F)(=5(S)), then B is a limit point of Y,(f) from below,
and so with the help of Lemma 3.5 we get
{S f'\f~1(-—00, ﬂ]}* C{f—l(*goa ﬁ)}— Cf—l(— 0, ﬂ] .

In case y is finite, it is proved similarly that
@ {Saf™ty, )} cf 'y, «).

When B is finite and y = + oo, we have f(S)=(—c0, B], and so with the help
of (1) we obtain :

§={Saf N ~c0,p cf (-, fl,

proving thereby that g~*(—c0, «) = 5. In case y is finite and f = — oo, it follows.
similarly from (2) that g~(—~c0, o) = @. _

Let finally 8 and y be both finite. As the interval (8, y) does not contain any
point of f(S), we have

S={Snf =00, Bl U {Snf ", )},
and so with the help of (1) and (2) we get
S ={Snf (=, B}~ U {S S, o)}
c{Snf (=, u{Snf i, 0)}c=5.
Thus ' '
®3) S={Snf =0, B} u{Snf 'y, )},
and as the two sets on the right of this equality are disjoint, we further obtain
{Saf =, )" =5nf =m0, f, {Snf b, o) =5nf i, w),
ie. the two sets on the right of (3) are both closed. Hence
97 =0, 0= 8—{Snf [y, 0)}
is open relative to S. This completes t'he- proof of the theorem. L
3.7. PrOPOSITION. [If X" and f are. connected, then f is mongtone if and only if
it is weakly monotone. . - . e : N o :
Proof. The necessity part'of the proposition is obvious. To prove the sufficiéncy,

suppose f is weakly monotone, i.e.. Y,(f) = R.-A subset of R is connected if and
only if it is-a subinterval I of R. If Iis a degenerate interval, the set £ ~1(J)"is obvi-
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ously connected. When I is a non-degenerate interval, finite or- infinite, it can-

always be expressed as the union of an increasing sequence {7} of finite closed
intervals. Then we have

7= 077,

where, by Lemma 3.2 (b), the set f~*(1,) is connected for each n. Since {f~*(I)}
is an increasing sequence of connected sets, it follows that f ~4(I) is connected.
This proves that f is monotone.

3.8. COROLLARY. If f is connected and nowhere monotone, then it is also nowhere
weakly monotone.

Proof. Suppose fis weakly monotone on some nonempty open subset U of X.
Let ¥ be any component of U, and let g and % denote the restrictions of f to the
sets U and ¥ respectively. As a subset of ¥ is connected with respect to the relative
topology of Vif and only if it is connected in X, the function % is equally, connected,
Further, given « € R, as the function g is weakly monotone, its level g ~*(a) is a con-
nected subset of U. If g~(«) intersects with V, then clearly g~ *(x)=V, so that
hY(«) = g~ (o)) is connected, and if g~*() is disjoint with ¥, then A™(x) = &
which is again connected. Hence the function 4 is weakly monotone. Since V is
a connected open subspace of X, it is also locally connected (see [9], p. 230),
and so it follows from the above proposition that & is monotone. This contra-
dicts the hypothesis of nowhere monotonicity of f.

3.9. THEOREM. Suppose X is corinected and o-coherent and f is conriected. If
either the set Y, (f) is dense in R (or in the interior of the range of f), or the set S,(f)
is dense in X, then the function f is coritinuous and monotone.

Proof. According to Corollary 2.10 and Proposition 3.7, it suffices to show
that f is weakly monotone.

‘When the set S (f) is dense in X, the function fis continuous by Theorem 3.6,
and so we have

FX) = F(SMNef(SLUMNeYe(f) -
Since the level £ ~*(a) is trivially connected when « is not in the range of £, it follows
that the set ¥_.(f) is dense in R. .

When, on the other hand, Y.(f) is dense in R, it follows from Theorem 3.3
that f is weakly monotone.

As for the role of connectedness of f in the above theorem, it may be observed
that there exist injective functions f: R—R that are not even Lebesgue measurable
(see Sierpinski [15]), and so are clearly neither continuous nor monotone.

3.10. THEOREM. Suppose X is connected and Hausdorff, and that f is connected
and relatively proper. If either the set Y, (f) is dense in R, or.the set Sf) is dense
in X, then the function f is continuous, monotorie, Morrey monotone and proper.

Proof. In either case the continuity and monotonicity of f follow exactly as
above. If further K is any compact subset of R, then since f is continuous and
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relatively proper, the set £ 7*(K) is a closed subset of some compact set, and so
is compact. Hence f is proper. In particular, the levels of f are compact, and so f
is equally Morrey monotone.

3.11. PROBLEM. A comnected function f: R—R was proved in Theorem 2 of {4]
to be always monotone (in the usual sense) relative to the set S,(f). It remains to
investigate under what hypotheses on X and f a connected function f: X—R is
monotone, or weakly monotone, relative to the set S,(f) in general. For a partial
solution see Proposition 4.7.

4. Singleton levels and injectivity. Let F denote the boundary of any set E CX
4.1. Lemma. If ae Y, .(f), then

of ") = of (=00, ) v Af "Ha, ®).

Proof. As the level £ ~%(a) is closed, according to Lemma 2.1, f~Y(—o0, @) is
an open subset of the closed set f~(— o0, «]. Hence f ~(c) contains the boundary
of f~(=,a), and as the interior of f~*(a) cannot contain any limit point of
fi(=o0,®), it follows that 8f "*(—oo, @)<df "*(¢). By a similar argument we
obtain 3f ~*(a, c0)=df "*(«), Thus we have

of " Me) = o{f (=0, @) Uf (s 0}
o (=00, 8) U Of "i(w, )= (),
which establishes the required equality.

4.2. LemMMA. Suppose X is connected and o€ Y, (f).

(2) If the boundaries of the sets f~Y(—w, o) and f~'(a, ) are connected,
then the level f~(x) is also connected.

(b) If the level f~*(x) is a boundary set, then the boundaries of the sets f ~(— 00, %)
and f~Y(a, c0) are not disjoint.

Proof. (a) Suppose the boundaries 8f ~*(—oc0, ) and 9f ~*(x, c0) are con-
nected but the level f~*(x) is not connected, Then since f~1(«) is closed, it can be
separated into two nomempty disjoint closed sets Fy and F,. As the connected
sets 9f ~*(—oc0, ®) and 3f *(«, o) are, by Lemma 4.1, both contained in f~ 1)
= F; U F,, each of them is contained in one of F; and F,. If both are contained
in the same set, say F,, then the set

F=f"Y-c0,a)uf iz, 0)uF

is closed, and so X = F u F; provides a separation of X, contradicting thereby
the connectedness of X, In case the two boundaries are contained in different sets,
say Of "}~ o0, 0)cFy and 8f ~(w, )= F,, then

'—'{f-l( ©, “)UFi}U{f‘l(“ ®) U F}

provides a separation of X, which 1s agam a contradlctlon Hence the level ()
is connected. ‘
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(b) If the closed level £ ™1 (s) is a boundary set, then 8f ~*(2) = f~*(a), and
so with the help of Lemma 4.1 we have

f7He) = of TH(~c0, @) v Of "X, ) .

If the two boundaries on the right are disjoint, then
={f" =00, 0} L {fT @, )}~

provides a separation of X. Hence the two boundaries cannot be disjoint.

4.3. Lemma. Suppose X is connected and Hausdorff.

(2) If ae R is a limit point of Y,(f) from below and f~*(—o0, &) # X, then
the boundary of the set f~Y—o0,q) is singleton.

(b) If o is a bilateral limit point of Yi(f), then the level f~(«) is closed and
connected, and if it is further a boundary set, then it is also singleton.

Proof. (a) Since X is Hausdorff, every singleton level of fis closed, and so.it
follows from Lemma 2.1, as in the proof of Lemma 3.5, that the set U=f"1(— o0, &)
is open. As U is by hypothesis a proper subset of the connected space X, it cannot
be closed. Hence 0U # @.

Suppose dU contains two distinet points x, and x,. As 0U is clearly dlS_]Olnt
with U, we have f(x;)>« for i = 1,2. The space X being Hausdorff and locally
connected, the points x;, x, have two disjoint connected open neighborhoods V;
and ¥, respectively, and since xy, x, are limit points of U, there exist two points
P1,¥2 in U such that y,e V; (i = 1, 2). Thus f(y;) <« for each i. Let

B =max{f(y): i=1,2}.

Clearly <o, and so according to the hypothesis we can choose a point y-in the
set ¥, (f) such that f<y<a. As the sets f(Vy) and f(V,) are connected, we get

v (B, ) Lf0), fedl=f (V)

Thus the singleton level £~ 1(y) meets two disjoint sets ¥; and V,, which is not
possible. Hence dU is singleton.

(b) Let o be a bilateral limit point of the set Y;(f). Since Y;(f)<= Y.(f),
it follows from Theorem 2.2 that the level f~(c) is closed. As the sets §f ~1(~ 00, ¢)
and 8f “*(a, o0) are singleton by above, it follows from Lemma 4.2(a) that the
level £ () is connected.

If the closed level £~ () is further a boundary set, then clearly of " Ha) =S~ 1(oc),
and so with the help of Lemma 4.1 we have

(i=1,2).

@) = of H—o0,d) Uaf Tz, 00)
According to Lemma 4.2(b) the two boundaries on the right must intersect, and
as they are both singleton, it follows that f~!(x) is singleton. e
4.4. THEOREM. Suppose X is connected and Hausdorff.
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(a) If X is separable, then the set ¥,(f) is of the form F—C, where F is closed
and C is countable.

(b) If f is nowhere constant, then Y,(f) is bilaterally closed.

Proof. (a) Let 4 denote the set of values of o in R for which the level f~(x)
has a nonempty interior. As the levels of f are mutually disjoint, the set 4 is clearly
countable when X is separable. According to Lemma 4.3(b), the set ¥,(f) contains
all of its bilateral limit points which are outside 4. As the set B of unilateral limit
points of ¥, (f) is also countable, we have Y, (f) = Y,(f)~C, where C is a sub-
set of 4 v B, and so is countable.

(b) When f is nowhere constant, each of its levels is a boundary set, and so
in this case, by Lemma 4.3(b), the set Y,(f) contains all of its bilateral limit
points.

4.5. Remark. It was proved originally by Sierpiniski [16] that for every func-
tion f: R—R with a closed graph the set Y;(f) is Gs. Under the hypothesis of
Theorem 4.4, part (a), the set Y, (f) is clearly G;, and further if Y;(f) is dense
in some subinterval I of R, then it contains all but a countable set of points of I.
Moreover, if E is any subset of R of the form F—C, then according to Theorem 3
of Lipinski [11] there exists a continuous function f: R—R for which ¥;(f) =

. 4.6. THEOREM. If X is connected and Hausdorff, and f assumes a dense set of
its values only once, then f is continuous and monotone. In case f is further nowhere
constant, then it is also injective.

Proof. Since X is Hausdorff, we have Y, (f)< Y,(f), and so the function f
is continuous by Corollary 2.6. We shall assume that f is not constant, for the result
holds trivially otherwise. Then, X being connected, the range of f is a non-degenerate
subinterval of R.

When « is an interior point of f(X), it is clearly a bilateral limit point of ¥, (f),
and so the level f~1(a) is connected by Lemma 4.3(b). If o €f(X) is not in the in-
terior of f(X), then it must be an endpoint of the interval f(X). Suppose
a = max{f(x): x e X}. Then the set f~*(«, o) is empty, whence f "o, ) =
and since « is a limit point of ¥,(f) from below, it follows from Lemma 4.3(a)
that 8f ~!(—o0,«) is singleton. Thus both the boundaries 8~ '(—o0,®) and
8f ~Ya, o) are connected, and so the level f~*(«), which is clearly closed, is further
connected by Lemma 4.2(a). A similar proof holds when o = min{f(x): x & X}.
This proves that the function f is weakly monotone, and its monotonicily now
follows from Proposition 3.7.

It £is further nowhere constant, then according to Theorem 4. 4(b) the set ¥, (f)
contains all the interior points of the interval f(X). When o = max{ f(x): x€ X7},
then, as seen above, we have 8f "*(x, o) = & and the boundary &f “Y—o0, 0} is
singleton. As the level £7*(a) is now a closed boundary set, we have 5f (o))
= f~{(x). Hence, with the help of Lemma 4.1 we get f™'(2) = &f ~*(— o0, a)y
which is singleton. As the above arguments remain valid when o = min{ f(x): xe X},
this proves that f is injective.
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4.7. PROPOSITION. If X is connected and Hausdorff, and f is connected, then f is
weakly monotone relative to the set S.(f) v S.(f). Moreover, if f is further nowhere
constant, then it is injective on the closure of Si(f).

Proof. Let us denote the sets S.(f), Si(f), Y.(f) and Y,(f) simply by
S,, Sy, ¥, and Y, respectively. Let, further, 4 = S, U ;. Since S;=S,, and the
function f is continuous relative to S, (see Theorem 3.6), we have

m fEHefiS) =7,

When o e Y,, the level f~(x) is a connected subset of 4, and so it is equally
connected with respect to the relative topology of 4. So let « € f(4)—Y,. Since
Y,c¥,, a¢ Yy, and so, by (1), « is a limit point of ¥;. Also, by Lemma 4.3(b),
every bilateral limit point of ¥, is in ¥,. Hence « is a limit point of ¥; from one
and only one side, say from below. Clearly,

A, VT

@ Anf @) =8 nf'@,
and as o ¢ Y;, we have
(3 Si={Sinf (=0, )} v {S, Af e, o)} .

According to Lemma 4,3(a), the set f~*(—o0, o) has a 'éingleton boundary, and
so the level £~ (o) cannot contain more than one point of the first set on the right
of (3). Further, since « is not a limit point of ¥, from above, we have '

B=inf{yeY,: y>a}>a.

‘When f = oo, the second set on the right of (3) becomes empty. Suppose fi< 0.
If B e ¥, then the set f [, c0) is closed; otherwise f is a limit point of ¥; from
above, and so according to Lemma 3.5 we have {f (B, )}  =f ![B, ). In
any case we obtain ‘

{Sl nf_l(.a’ OO)}_ Cf_l[ﬂ9 (X)) E

and so the level f~%(x) does not contain any point of the second set on the right
of (3). Hence f assumes o at most once on Sy, and so at most once on 4 by (2).
This proves the weak monotonicity of f relative to 4.

Now suppose f is nowhere constant, and let « & f(57). According to (1), xe Y.
The level f ~*(«) is clearly singleton when & € ¥y, and in the present case also when
o is ‘a bilateral limit point of ¥; (see Lemma 4.3(b)). When « is not in ¥ and is
a-limit point of Y, only from one side, we have seen above that f assumes o at most
once on S;. Hence in this case f is injective on ;.

4.8. THEOREM. If X is.connected and Hausdorff, f is connected and the set S((f)

8 dense in X, then f is. continuous, monotore. and injective.

Proof. The function f is clearly continuous by Theorem 3.6. We may assume

that X contains more than one point, for the result holds trivially otherwise. Then
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since X is connected, it cannot have any isolated point, and so, under the present
hypothesis, the function f becomes nowhere constant. It now follows from Prop-
osition 4.7 that £ is injective, and then from Proposition 3.7 that f is monotone.

49. Remark. Tii: 1esults 4.4, 4.6 and 4.7 remain valid on replacing the hypo-
thesis “nowhere constant” by “light”. For each of these results is trivially valid
when X is empty or singleton, and when X contains more than one point, then
since X is locally connected and connected, every light function on X is nowhere
constant.

5. Dense-in-itself levels and nowhere monotonicity. Let us recall that a top-
ological space is said to be second countable if it has a countable base of open sets.

5.1. TeEOREM. If X is Hausdorff and second countable, then the sets Y,(f).
and Y,(f) are both of the form Gy v C, where C is countable.

Moreover, if f is further nowhere constant, then the two sets are also of the form
F—M, where F is closed and M is a meager G,, set. ]

Proof. Since X is second countable and locally connected, it has a countable
base {U,} of connected open sets. Let f, denote, for each n, the restriction of f to
the set U,. Given o € R, the level f ~!(c) has an isolated point if and only if x € ¥, (f,))
for some n. Hence we have

@ | vi(f) = R= U (-

For every natural number 7, the subspace U, is clearly connected, locally
connected, Hausdorff and second countable. Also, a subset of U, is connected or
open relative to U, if and only if it is so relative to X, and so the function f, is
weakly connected. Hence, by Theorem 4.4(a), we have

Y (f;x = F, n= Cys
where the set F, is closed relative to U, and C, is countable. Since F,is clearly an F,
set in X, with the help of (¥) we get )

Yu(f) = R~ Ql(F,.—C,.) = R-(F,—C)=G;V C,

(=] . -
where Ce | C,, and so is countable. Also, as the set Y,(f) is G, by Corollary 2.3,
n=
we further have

Y, (f) = Y(H) 0 Yu(f) = Gsn (Gs v €)= Gy Co s

where Cy=C, and so is countable.

In case f is nowhere constant, so is its restriction f, for each n, and so according
to Theorem 4.4, part (b), the set Yy (f,) is bilaterally closed. The set 4, = Y1 (/)
is thus a G set with a nowhere dense boundary, and the set B, = A,,—AS is in
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turn a nowhere dense G, sét. Since 4, = 4% U B,, once again with the help of (%)
we get

Yi(f) = R— U (42 U B) = R—(G U M) = F~M,
n=1

where G = |J 49 is open, F = R—G is closed and M = U B, is a meager G;, set.
n=1 Con=1

Moreover,
Y, () = V() n Y(f) = Gs 0 (F—M) = E—-M,

where E = G5 n Fis a G; set, and so is residual in the closure of E. Thus the F, set
N = E—F is meager relative to E, and so in X, and we have

Y,(f) = E-N)—=M = E-(M U N),

where M U N is again a meager Gy, set.
Recalling that a set in X is §;-dense if its intersection with every nonempty
open set is uncountable, we obtain o

5.2. CorOLLARY. If X is Hausdorff and second countable, then each of the sets
Yy(f) and Y, (f) is residual in every interval in which it is N,-dense, and if fis further
nowhere constant, then these sets are residual even in the intervals in which they are
dense. ’

5.3. Remark. It was proved originally by Sierpifiski [16] that for every func-
tion f: R—R with a closed graph the set Y, (f) is F,;. If on the other hand E is any
subset of R of the form G; U C, it has been proved by Lipinski [11], Theorem 4,
that there exists a continuous function f: R—R for which Y, () = Y,(f)=E.
Once again, it remains to investigate the validity of this converse of Theorem 5.1
for more general locally connected spaces X, and the same applies to the converse
of Theorems 3.3 and 4.4.

As for the nowhere monotonicity of a function f in terms of its dense-in-
itself levels, it is clear that f is nowhere injective when the set S4(f) is dense in X,
and if fis further light, then it is even nowhere weakly monotone (for f is injective
if and only if it is light and weakly monotone). In case the set Y,(f)is densein R,
or equivalently if it is dense in the interior of the range of £, we still have the following

5.4. PROPOSITION. If X is dense-in-itself and the set Y,(f) is dense in R, then
[is nowhere injective. In case f is Surther light, then it is also nowhere weally monotone.

Proof. Suppose there exists a nonempty open set U in X such that fis injective
on X. Then U contains a nonempty connected open set ¥, and f is equally weakly
connected and injective on V. As the space X is dense-in-itself, the set ¥ containg
more than one point, and so f is not constant on V. It follows that the set f(V)
is a non-degenerate subinterval of R. If a e S(V), then the level £~ *(«) contains
one and only one point of ¥, and so it cannot be dense-in-itself. This contradicts
. the hypothesis that the set’ ¥;(f) is dense in R. Hence the function f is nowhere
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injective. The second part of the proposition is again an obvious consequence of
the first. ¢

5.5. THEOREM. Suppose X is Hausdorff and second countable. If 1 is either
(a) nowhere monotone, or
. (b) nowhere constant and nowhere injective,
then the level {~'(«) is a boundary set for every o€ R and it is dense-in-itself for
a residual set of values of o in R, . . .
Proof. Let the function f satisfy one of the hypotheses (a) and (b). As the
space X is locally connected, in either case f is nowhere constant. Consequently,
every level of fis a boundary set.
Let {U,} be a countable base of connected open sets in X, and let, for each ,
fy denote the restriction of f to U,. Then we have, as before,

Y = R- O n0h),

and so it suffices to show that the set ¥, (£,) is nowhere dense in R for each 7.

Supposé there exists an n for 'which the set ¥y (f,) is not nowhere dense; Then
we can find two points o, f in ¥,(f,) such that «<p and the set ¥;(f,) is dense
in («, B). The set f; *(a, f) is then open by Lemma 2.1, and as this set is clearly
nonempty, it contains a nonempty connected open set V. Let g denote the restriction
of f, to V. Since fis nowhere constant, the range of g is a non-degenerate subinterval
of («, #), and since Yy (f,) n g(V)< Yy(g), the set Y;(g) is dense in the range of g.
As the subspace V is clearly connected, locally connected and Hausdorff, and the
function g is weakly connected and nowhere constant, it follows from The-
rem 4.6 that g is monotone and injective. This contradicts each of the hypotheses
(a) and (b), and the theorem is thus proved. . _

* As a continuous function has all of its levels closed, the above theorem yields
the following generalization of the necessity part of Theorem 1 of [3]:

5.6. CorROLLARY. Suppose X is Hausdorff and second countable, and that f is
continuous. If f is either (a) nowhere monotorie, or (b) nowhere constant and nowhere
injective, then.the level f™'(«) is nowhere dense for every w e R and it is perfect for -
a residual set of values of « in R.

A subset of X is said to be scartered [8] if it does not contain any nonempty
dense-in-itself set, If P is any property of functions, a function f is said to be in-
trinsically P [5] if every nonempty open set in its domain contains a nonempty
open set on which f possesses P. As another easy consequence of Theorem 5.5
we have ‘ )

5.7. COROLLARY. If X is Hausdorff and second countable, and the level f~(x)
is scattered for 'a residual set of values of o in R, then the function f is intrinsically
monotone. In case f is further nowhere constant, then it is also intrinsically injective. »

5.8 Remark. As it is clear from Proposition 5.4, the converse of the part (b)
of Theorem 5.5 holds in general. The converse of its part (a) is also valid when
3 — Fundamenta Mathematicae XCVII
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X = R (for then fis light if and only if it is nowhere constant), but not in general.
For a counterexample consider the function f(x,y) = x*+y* on R, 1t may be
observed further that the hypothesis “nowhere constant” cannot be deleted from
the part (b) of Theorem 5.5, for the Cantor’s singular function is continuous and
nowhere injective, but all but a countable set of its levels are singleton.

5.9. THEOREM. Suppose X is Hausdorff and second countable, and that fis con-
nected. If f is either (2) nowhere monotone, or (b) nowhere injective, then there exists
a residual set of points x in X such that x is a limit point of the level f “H )

Proof. Let {U,} be a countable base of connected open sets in X, and for
each n let £, denote the restriction of f to U,. If E denotes the set of points x in X
such that x is not a limit point of the level £~1{ f(x)}, it is clear that

E= lel(fn).

1t is sufficient to show that for each z the set S,(f;) is nowhere dense in U,, for
then S,(£,) would be equally nowhere dense in X, and so E would be meager in X.

Suppose there exists a natural number » for which the set S;(f,) is not nowhere
dense in U,. Then there exists a nonempty connected open set ¥ in U, such that
S,(f,) is dense in V. Denoting by g the restriction of f to ¥, we have V' n Si(f
=S,(g), and so S,(g) is dense in ¥. Hence it follows from Theorem 4.8 that g is
monotone and injective. As this contradicts each of the hypotheses (a) and (b),
the theorem is proved.

‘As an injective function is clearly Morrey monotone, the results 5.5, 5.6 and 5.9
are equally valid for nowhere Morrey monotone functions that are nowhere constant.

5.10. ProsrEm. If a continuous real-valued function f defined on a locally
connected, separable, complete metric space X (or on R") is nowhere monotone,
does there exist a residual set of points x in X such that x is a limit point of the level
FHf(x)} along every simple arc in X that has x as an endpoint? The answer is.
known to be affirmative for X = R (see [2], Theorem 2).

5.11. DEFINITION. A topological space X is said to be cyclicly connected (see
‘Whyburn [18], p. 77) if every pair of points in X is contained in some simple closed
curve of X. Let X be called further locally cyclicly connected if for each point x in X
every open neighborhood of x contains a cyclicly connected neighborhood of X,

It is clear that every locally cyclicly connected space is locally connected, and
that the Euclidean space R"islocally cyclicly connected if and only if 7> 1.In case
of locally cyclicly connected spaces Proposition 5.4 can be generalized as . follows:

5.12. PROPOSITION. If X is dense-in-itself and locally cyclicly comnected, them

every connected function f: X—R is nowhere injective, and in case f is further light,

then it is also nowhere weakly morviotone. ‘
Proof. Given a nonempty open subset U of X, let-x e U. There exists a cyclicly
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connected neighborhood ¥ of x such that Y= U. As Xis dense-in-itself, thete further
exists a point p in V" that is distinct from x. Suppose ) # f(%), for :othérwise fis
clearly not injective on U. Since V is cyclicly connected, it contains a simple closed
curve C such that x, ye C. Then C = 4 L B, where 4 and B are two simple arcs
from x to y with no other common point. As the sets 4 and B are connected, so
are their. images f(4) and f(B), and so the value { FiC)) +f(»)}/2 is assumed by} at
two distinct points of C, one in 4 and one in B. This proves that f is nowhere in-
jective, and the second part of the proposition follows from it without difficulty

Theorems 5.5 and 5.9 assume in turn the following stregthened form: .

5.13. PROPOSITION. Suppose X is locally cyclicly connected and second count-
able. If f1 X—R is connected, then

(2) the Ievel./""(oc_) is a dense-in-itself boundary set for all but countably many
values of o in R, and

(b) for all but a countable set of points in X, every point x is a limit point of the
level f~{ f(x)}. |

In particular, if f is continuous then all but countably many of its levels are nowhere
dense and perfect.

Proof. We first prove that a point xeX is an isolated point of the level
F YA} if and only if f has a strict maximum or minimum at x. The sufficiency
of the condition is obvious, and to prove its necessity suppose f does not have a strict
@a}ximum or minimum at x. In case f has an ordinary maximum or minimum at X,
it is obvious that x is a limit point of the level f Y f()}. So let us assume that f
does not have even an ordinary maximum or minimum at x. -

Given an arbitrary neighborhood U of x, there exists a cyclicly connected neigh-
borhood ¥ of x such that V'« U. Since f does not have a maximum or minimum at X,
we can find two points yand z in ¥ such that f() <f(x) <f(z). Now Vcontains a simple
closed curve C such that y, ze C, and further C = 4 U B, where 4 and B are two
simple arcs from y to z with no other common point. As the sets A and B are con-
nected, so are their images f(4) and f(B), and since each of them contains f(y)
and f(z), it follows that f(x) ef(4) N f(B). Thus the level f~*{ f(x)} contains at
least two points of U, one of which must be distinct from x. Hence x is a limit point
of £~*{ f(x)}, which proves the above assertion. '

Now, as the space X is second countable, the set E of points of strict maxima
and minima of f is countable, Thus the part (b) follows directly from the above
assertion. Further, as the levels of f are mutually disjoint, and X is separable, the
set P of values of « in R for which f~*(«) has a nonempty interior is countable.
?Fhe set O = P U f(E) is again countable, and for every « € R—Q the level £~ (x)
Is a densc-in-itself boundary set. This completes the proof of the proposition.

As another consequence of the above assertion we have the following

5.14. CoROLLARY. If X is locally cyclicly connected and a connected. function
So X~R has no strict maximum or minimum, then every level of f is dense-in-itself.

3
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Added in proof. Regarding Problem 3.11 Dr. Z. Grande has shown in a communication

to the author that for a real-valued, relatively proper, connected function f on a connected,
locally connected, hereditarily normal space X, it can be deduced from Theorems 3.3 and 3.6

with some work that f is weakly monotone relative to the set ,S‘c( f) With a little modification
In his argument the following result is obtained which may be compared with Theorem 3.10:
if fis a real-valued, relatively proper, connected function on a connected, locally connected
Hausdorff space X, then its restriction to the set Sc(f) is continuous, Morrey monotone ahd
proper. .

The following simplified version of an example -communicated by Grande shows that

Problem 5.10 does not have an affirmative answer when X is not complete. Let 4 be the set
of rational numbers and B = R—4, Then X= (AX R) U (RxB) is locally connected relative
b the induced metric of R:. The projection f ((x y)) = x, (x, ) €.X, is continuous and no-
where monotone, but no point (x, ¥) in the residual subset Rx B of X is a limit point of the
level f—2{f((x, »))} along the arc Rx{y} that is contained in X.
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A perfectly normal locally metrizable
non-paracompact space

by
R. Pol (Warszawa)

‘Abstract. We construct an example of a perfectly normal locally second — countable and
non — paracompact space by a modification of a metrizable space.

The aim of this paper is to describe a construction which by a modification
of a metric space yields a locally metrizable, perfect, collectionwise normal and
non-paracompact space containing a locally countable non F,-set, An application
in the dimension theory, given in [4], has been the motivation for such a construction.

1. Terminology and notation. We shall use the terminology of [1]. For an
ordinal o we shall denote by D(x) the set of all ordinals less than o with the discrete
topology and by W(x) the same set with the order topology. The symbol Lim stands
for limit countable ordinals. A set < W(w,) is called stationary if it intersects
each closed, cofinal set in W(w,); equivalently (cf. [3], Appendix 1.5), if for each
function ¢: Z—W(w,) with o(«)<u« there exists <, such that [p~1(&)| =
If M is a set and ¢ a metric on M, then w(M, g) denotes the weight of the metric
space (M, @) and A® = {xe M: ¢(x, 4) = 0} denotes the closure of 4= M with
respect to-@. The set of natural numbers is denoted by &, I denotes the unit real
interval and |M| stands for the cardinality of a set .

2. The definition of X, Let X be a set and ¢ a metric on X such that w(X, o)
= &;. Suppose that for {<w, we have given sets X; satisfying the following con-
ditions (¢f. [5], (3), (4)):

(1 Xie.eXe.cX, X=X, wX,0<w,
@ X= U X; and, for £eLim, X,= Ux X

§<wy Ta<y
We can obmln such sets by taking X = {;:TZE}‘" for a set {x,: a<w,} dense
in the space (X, g). '
Let us introduce a topology in the set X taking as a base the sets U ~ X, where
U'is open with respect to ¢ and <, . By open and closed sets in X we shall under-
stand sets which are open or closed with respect to that topology.


Artur




