

Added in proof. Regarding Problem 3.11 Dr. Z. Grande has shown in a communication to the author that for a real-valued, relatively proper, connected function f on a connected, locally connected, hereditarily normal space X, it can be deduced from Theorems 3.3 and 3.6 with some work that f is weakly monotone relative to the set $S_c(f)$. With a little modification In his argument the following result is obtained which may be compared with Theorem 3.10: if f is a real-valued, relatively proper, connected function on a connected, locally connected Hausdorff space X, then its restriction to the set $S_c(f)$ is continuous, Morrey monotone and proper.

The following simplified version of an example communicated by Grande shows that Problem 5.10 does not have an affirmative answer when X is not complete. Let A be the set of rational numbers and B = R - A. Then $X = (A \times R) \cup (R \times B)$ is locally connected relative to the induced metric of R^2 . The projection f((x, y)) = x, $(x, y) \in X$, is continuous and nowhere monotone, but no point (x, y) in the residual subset $R \times B$ of X is a limit point of the level $f^{-1}\{f((x, y))\}$ along the arc $R \times \{y\}$ that is contained in X.

References

- [1] G. Choquet, Lectures on Analysis, Vol. I, New York 1969.
- [2] K. M. Garg, On nowhere monotone functions. I. Derivates at a residual set, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 5 (1962), pp. 173-177.
- [3] On level sets of a continuous nowhere monotone function, Fund. Math. 52 (1963), pp. 59-68.
- [4] Monotonicity, continuity and levels of Darboux functions, Colloq. Math. 28 (1973), pp. 91-103.
- [5] On bilateral derivates and the derivative, Trans. Amer. Math. Soc. 210 (1975), pp. 295-329.
- [6] R. Hrycay, Noncontinuous multifunctions, Pacific J. Math. 35 (1970), pp. 141-154.
- [7] Weakly Connected Functions, Ph. D. Thesis, Univ. of Alberta 1971.
- [8] K. Kuratowski, Topology, Vol. I, New York-London-Warszawa 1966.
- [9] Topology, Vol. II, New York-London-Warszawa 1968.
- [10] J. S. Lipiński, Une remarque sur la continuité et la connexité, Colloq. Math. 19 (1968), pp. 251-253.
- [11] On level sets of Darboux functions, Fund. Math. 86 (1974), pp. 193-199.
- [12] C. B. Morrey, Jr., The topology of (Path) surfaces, Amer. J. Math. 57 (1935), pp. 17-50.
- [13] W. J. Pervin and N. Levine, Connected mappings of Hausdorff spaces, Proc. Amer. Math. Soc. 9 (1958), pp. 488-496.
- [14] D. E. Sanderson, Relations among some basic properties of non-continuous functions, Duke Math. J. 35 (1968), pp. 407-414.
- [15] W. Sierpiński, Sur un problème concernant les ensembles mesurables superficiellement, Fund. Math. 1 (1920), pp. 112-115.
- [16] Sur l'ensemble des valeurs qu'une fonction continue prend une infinité non dénombrable de fois, Fund. Math. 8 (1926), pp. 370-373.
- [17] J. R. Walker, Monotone Mappings and Decompositions, Ph. D. Thesis, Syracuse Univ. 1970.
- [18] G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ., Vol. 28, Amer. Math. Soc., New York 1942.
- [19] Dynamic topology, Amer. Math. Monthly 77 (1970), pp. 556-570.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ALBERTA

Edmonton, Alberta

Canada

Accepté par la Rédaction le 18, 8, 1975

A perfectly normal locally metrizable non-paracompact space

b

R. Pol (Warszawa)

Abstract. We construct an example of a perfectly normal locally second — countable and non — paracompact space by a modification of a metrizable space.

The aim of this paper is to describe a construction which by a modification of a metric space yields a locally metrizable, perfect, collectionwise normal and non-paracompact space containing a locally countable non F_{σ} -set. An application in the dimension theory, given in [4], has been the motivation for such a construction.

- 1. Terminology and notation. We shall use the terminology of [1]. For an ordinal α we shall denote by $D(\alpha)$ the set of all ordinals less than α with the discrete topology and by $W(\alpha)$ the same set with the order topology. The symbol Lim stands for limit countable ordinals. A set $\Sigma \subset W(\omega_1)$ is called *stationary* if it intersects each closed, cofinal set in $W(\omega_1)$; equivalently (cf. [3], Appendix 1.5), if for each function $\varphi \colon \Sigma \to W(\omega_1)$ with $\varphi(\alpha) < \alpha$ there exists $\xi < \omega_1$ such that $|\varphi^{-1}(\xi)| = \kappa_1$. If M is a set and ϱ a metric on M, then $w(M, \varrho)$ denotes the weight of the metric space (M, ϱ) and $\overline{A}^\varrho = \{x \in M: \varrho(x, A) = 0\}$ denotes the closure of $A \subset M$ with respect to ϱ . The set of natural numbers is denoted by N, I denotes the unit real interval and |M| stands for the cardinality of a set M.
- 2. The definition of X. Let X be a set and ϱ a metric on X such that $\psi(X, \varrho) = \aleph_1$. Suppose that for $\xi < \omega_1$ we have given sets X_{ξ} satisfying the following conditions (cf. [5], (3), (4)):

$$(1) X_1 \subset \ldots \subset X_{\xi} \subset \ldots \subset X, X_{\xi}^{\varrho} = X_{\xi}, w(X_{\xi}, \varrho) \leqslant \aleph_0,$$

We can obtain such sets by taking $X_{\xi} = \{x_{\alpha} : \alpha < \xi\}^{\alpha}$ for a set $\{x_{\alpha} : \alpha < \omega_1\}$ dense in the space (X, ϱ) .

Let us introduce a topology in the set X taking as a base the sets $U \cap X_{\xi}$ where U is open with respect to ϱ and $\xi < \omega_1$. By open and closed sets in X we shall understand sets which are open or closed with respect to that topology.

Let us put for $x \in X$

$$(3) \varkappa(x) = \min\{\xi \colon x \in X_{\xi}\}.$$

It is easy to see that X is first-countable and that

(4)
$$(x_n \to x) \equiv (\varrho(x_n, x) \to 0 \text{ and } \varkappa(x_n) \le \varkappa(x) \text{ for almost all } n)$$
.

The topology of X is, by (4) and (1), the weak topology introduced by the functions id: $X \rightarrow (X, \varrho)$ and $\kappa \colon X \rightarrow W(\omega_1)$; in other words the function $x \rightarrow (x, \kappa(x))$ maps the space X homeomorphically onto the graph of the function κ considered as a subspace of the product $(X, \varrho) \times W(\omega_1)$. It follows that

(5)
$$X_{\xi} \subset (X_{\xi}, \varrho) \times W(\xi+1)$$

and hence an open-and-closed set X_{ξ} is metrizable and separable.

Example. Let $X=D(\omega_1)^N$ and let ϱ be the standard metric on X, i.e. $(X,\varrho)=B(\aleph_1)$ be the Baire space of weight \aleph_1 (see [1], Example 4.2.2). The sets $X_\xi=D(\xi)^N$ satisfy (1) and (2) and for $x\in X$ we have $\varkappa(x)=\min\{\alpha\colon\alpha>\varkappa(i)$, for $i\in N\}$. We shall consider X with the topology defined as above. For each $\xi\in \text{Lim}$ let us choose a point $x_\xi\in X$ with $\varkappa(x_\xi)=\xi$ and put $E=\{x_\xi\colon\xi\in \text{Lim}\}$ (1). The space E is homeomorphic to the graph of \varkappa restricted to the set E, i.e.

$$E = \{(x_{\xi}, \xi) \colon \xi \in \text{Lim}\} \subset B(\aleph_1) \times W(\omega_1) .$$

Notice that the topology of E is the supremum of the metric topology introduced by ϱ and the order topology induced by the relation $(x_{\xi} \prec x_{\eta}) \equiv (\xi < \eta)$ (compare with [1] Problem 3. F(e), or [3] Example 6.3).

3. Auxiliary lemmas. The following lemma can be derived easily from the Theorem 1 of [5] (cf. also [5] Remark 5). We shall give however a simple proof of it for the sake of completness.

LEMMA 1. Let A be a subspace of X such that the set $\kappa(A)$ is stationary. Then the space A is not discrete.

Proof. Write $\Lambda = \varkappa(A) \cap \text{Lim}$, choose for each $\lambda \in \Lambda$ a point $a_{\lambda} \in A$ with $\varkappa(a_{\lambda}) = \lambda$ and put $A_{\lambda} = \{a_{\alpha} : \alpha \in \Lambda, \alpha < \lambda\}$. First we shall prove that there exists $\lambda \in \Lambda$ with $\varrho(a_{\lambda}, A_{\lambda}) = 0$. Otherwise, we have $\varrho(a_{\lambda}, A_{\lambda}) > 0$, for $\lambda \in \Lambda$, i.e. $\Lambda = \bigcup_{n} \Lambda_{n}$, where $\Lambda_{n} = \{\lambda \in \Lambda : \varrho(a_{\lambda}, A_{\lambda}) \ge 1/n\}$. There exists $n \in N$ such that Λ_{n} is stationary.

where $\Lambda_n = \{\lambda \in \Lambda: \varrho(a_\lambda, A_\lambda) \ge 1/n\}$. There exists $n \in N$ such that Λ_n is stationary. Since, by (2), $a_\lambda \in \bigcup_{\alpha < \lambda} X_\alpha^{\varrho}$ we can choose for each $\lambda \in \Lambda_n$ an ordinal $\varphi(\lambda) < \lambda$ and

a point $b_{\lambda} \in X_{\varphi(\lambda)}$ such that $\varrho(a_{\lambda}, b_{\lambda}) < 1/3n$. There exists $\xi < \omega_{1}$ with $|\varphi^{-1}(\xi)| = \mathbf{s}_{1}$, because Λ_{n} is stationary. Thus $\{b_{\lambda} \colon \lambda \in \varphi^{-1}(\xi)\} \subset X_{\xi}$ and, by (1), there exist $\alpha, \lambda \in \varphi^{-1}(\xi)$ such that $\alpha < \lambda$ and $\varrho(b_{\alpha}, b_{\lambda}) < 1/3n$. We have obtained $\varrho(a_{\alpha}, a_{\lambda}) < 1/n$ which is impossible, as $a_{\alpha} \in A_{\lambda}$ and $\lambda \in \Lambda_{n}$.

It follows that for some $\lambda \in \Lambda$ there exist $\lambda_n < \lambda$ with $\varrho(a_{\lambda_n}, a_{\lambda}) \to 0$ which gives $a_{\lambda_n} \to a_{\lambda}$, by (4). The proof is completed.

Let us put for $A \subset X$

$$R(A) = \overline{A}^{\varrho} \backslash \overline{A} .$$

In the sequel the key role will be played by the following

LEMMA 2. For each $A \subset X$ the set $\varkappa(\mathbf{R}(A))$ is not stationary.

Proof. Suppose to the contrary that the set $\varkappa(R(A)) = \Sigma$ is stationary. For each $\lambda \in \Sigma$ let us choose

(7)
$$x_{\xi} \in R(A) \quad \text{with} \quad \varkappa(x_{\xi}) = \xi ,$$

and for $m \in N$

(8)
$$a_{\xi}^m \in A \quad \text{with} \quad \varrho(a_{\xi}^m, x_{\xi}) < 1/m$$
.

Let us put for $\xi \in \Sigma$

(9)
$$\varphi(\xi) = \sup \{ \varkappa(a_{\xi}^m) \colon m \in N \}.$$

We can easily define by the transfinite induction a closed, cofinal set $\Gamma \subset W(\omega_1)$ such that

(10) if
$$\xi \in \Gamma \cap \Sigma$$
 and $\xi < \lambda \in \Gamma$ then $\varphi(\xi) \leq \lambda$.

The set $\Lambda = \Gamma \cap \Sigma$ is stationary and hence, by Lemma 1 and (4), there exist $\lambda \in \Lambda$ and a sequence $(\lambda_m) \subset \Lambda$ such that $\lambda_m < \lambda$ and $\varrho(x_{\lambda_m}, x_{\lambda}) \to 0$. We have, by (8),

$$\varrho(a_{\lambda_m}^m, x_{\lambda}) \leq \varrho(x_{\lambda_m}, x_{\lambda}) + 1/m$$

and, by (9) and (10),

$$\varkappa(a_{\lambda_m}^m) \leqslant \varphi(\lambda_m) \leqslant \lambda = \varkappa(x_1)$$
.

We have obtained, by (4), $a_{\lambda_m}^m \to x_{\lambda}$ and hence the contradiction $x_{\lambda} \in \overline{A} \cap R(A) = \emptyset$. LEMMA 3. Let $\Gamma \subset W(\omega_1)$ be a closed and cofinal set. Let us write $F = \kappa^{-1}(\Gamma)$ and $G = X \setminus F$. Then

- (11) G has a base σ -discrete in X;
- (12) $F = f^{-1}(0)$ for a continuous function $f: X \to I$;
- (13) we can assign to each set $L \subset G$ an open set $G(L) \supset L$ in such a way that (i) if $L' \subset L''$ then $G(L') \subset G(L'')$,
 - (ii) $\overline{G(L)} \cap F = L \cap F$.

Proof. Let $\{\Sigma_s \colon s \in S\}$ be the family of all order components of the set $W(\omega_1) \setminus \Gamma$. Let us write $G_s = \varkappa^{-1}(\Sigma_s)$ and take for each $s \in S$ the ordinal μ_s such that $\mu_s + 1 = \min \Sigma_s$ (we assume that $0 \in \Gamma$). Let us put

$$G_{sm} = \{x \in G_s : \varrho(x, X_{\mu_s}) > 1/m\}.$$

Since for different s, $t \in S$ we have either $G_s \subset X_{\mu_t}$ or $G_t \subset X_{\mu_s}$ it follows that $\varrho(G_{sm}, G_{tm}) \geqslant 1/m$. Thus each family $\mathscr{G}_m = \{G_{sm} : s \in S\}$ is discrete in X. Since each

⁽¹⁾ The space (E, ϱ) was investigated by A. H. Stone in [6] Section 5 as an example in Borel Theory.

 G_{sm} has a countable base, by (5), and $G = \bigcup_{m} \bigcup \mathscr{G}_{m}$ ($G_{s} = \bigcup_{m} G_{sm}$, because $G_{s} \cap X_{u_{s}} = \emptyset$) the proof of (11) is finished.

Let $\mathscr{B}=\bigcup\limits_{m}\mathscr{B}_{m}$ be a base of G such that \mathscr{B}_{m} is discrete in X and $\overline{U}\subset G$ fo each $U\in \mathscr{B}$. Let us put $U_{k}=\bigcup\limits_{m\leqslant k}\bigcup\limits_{m\leqslant k}\mathscr{B}_{k}$. Then $U_{1}\subset U_{2}\subset ...$, $G=\bigcup\limits_{k}U_{k}$ and $\overline{U}_{k}\subset G$. Since, by (11) and Nagata-Smirnov Theorem, the space G is metrizable we can choose continuous functions $f_{k}\colon G\to I$ with $f_{k}^{-1}(0)=G\setminus U_{k}$. Since $\overline{U}_{k}\subset G$ we can extend f_{k} continuously over the whole of X assuming $f_{k}(x)=0$ for $x\notin G$. The function $f=\sum\limits_{k}2^{-k}f_{k}$ satisfies (12).

For the proof of (13) let us put, for $x, y \in G$, $\sigma(x, y) = 0$ if x and y belong to the same set G_s and $\sigma(x, y) = 1$ otherwise. Since G_s is an open-and-closed subspace of G the pseudometric σ is continuous. Let us put $d(x, y) = \varrho(x, y) + \sigma(x, y)$ and assume

$$G(L) = \{x \in G: d(x, L) < f(x)\},\$$

where f is such as in (12). It is obvious that (i) is satisfied. Let $x \in \overline{G(L)} \cap F$. Then there exists, by (4), a sequence $(x_m) \subset G(L)$ such that $\varrho(x_m, x) \to 0$ and $\varkappa(x_m) \leqslant \varkappa(x)$. For each $m \in N$ let us choose a point $y_m \in L$ with $d(x_m, y_m) < f(x_m)$. Since $\varrho(x_m, y_m) \leqslant d(x_m, y_m) < f(x_m)$ we have $\varrho(y_m, x) \to 0$. Let $\varkappa(x_m) \in \Sigma_s$. Since $\sigma(x_m, y_m) \leqslant d(x_m, y_m) \leqslant 1$ we have $\varkappa(y_m) \in \Sigma_s$ and hence $\varkappa(y_m) \leqslant \varkappa(x)$, because $\varkappa(x_m) \leqslant \varkappa(x) \in \Gamma$. From (4) we infer that $y_m \to x$ and thus $x \in L$.

3. The properties of X. We shall prove in this section that X is perfectly normal and, for sufficiently complicated metric ϱ , it is not paracompact.

PROPOSITION 1. The space X is perfectly normal.

Proof. Let A_0 and A_1 be disjoint, closed subsets of X. There exists, by Lemma 2, a closed, cofinal set $\Gamma \subset W(\omega_1)$ such that

(14)
$$\Gamma \cap \varkappa(R(A_0) \cup R(A_1)) = \varnothing.$$

Let us put $F = \kappa^{-1}(\Gamma)$, $G = X \setminus F$, $K_i = A_i \cap F$, $L_i = A_i \cap G$. Since, by Lemma 3 and Nagata-Smirnov Theorem, the space G is metrizable there exist open sets U_i , i = 0, 1, such that (see (13))

$$G(L_i)\supset U_i\supset L_i$$
 and $U_0\cap U_1=\varnothing$.

By (14) we have $(\overline{K}_i^{\varrho} \cap F) \setminus K_i \subset R(A_i) \cap F = \emptyset$, thus K_0 and K_1 are separated with respect to the metric ϱ and hence we can find open sets W_i , i = 0, 1, such that

$$W_i \supset K_i$$
 and $W_0 \cap W_1 = \emptyset$,

We have (see (13), (ii))

$$V_0 = (U_0 \cup W_0) \setminus \overline{U}_1 \supset A_0,$$

$$V_1 = (U_1 \cup W_1) \setminus \overline{U}_0 \supset A_1,$$

and since $V_0 \cap V_1 = \emptyset$ the proof of normality of X is completed.

We shall prove that X is perfect. From (14) we infer that

$$X \setminus A_0 = (X \setminus \overline{A_0^{\varrho}}) \cup (G \setminus A_0)$$
.

The first member of the union is an F_{σ} -set with respect to ϱ and thus it is an F_{σ} -set in X; the second is an F_{σ} -set in X by (11) and (12) of Lemma 3. Hence $X \setminus A_0$ is an F_{σ} -set in X.

PROPOSITION 2. If the set $\varkappa(X)$ is stationary (this is satisfied in the case considered in Example) then the space X is not paracompact.

Proof. Let us choose for each $\xi \in \varkappa(X)$ a point $x_{\xi} \in X$ with $\varkappa(x_{\xi}) = \xi$. The open set X_{α} contains only countably many points of the set $A = \{x_{\xi} : \xi \in \varkappa(X)\}$ and thus A is locally countable in X. But, by Lemma 1, the space A is not σ -discrete and thus the space X cannot be paracompact.

4. Remarks. We shall establish some further properties of our construction.

Remark 1. By Theorem 1 of [5] the stationarity of $\varkappa(X)$ depends on the metric ϱ only; namely, it is equivalent to the property that the metric space (X, ϱ) cannot be expressed as the union of countably many locally separable subspaces. This is the case if (X, ϱ) is a complete space each nonempty open subspace of which has the weight \varkappa_1 (see [7] Section 2).

Remark 2. The space X is collectionwise normal.

We sketch the proof. First notice that the following strengthening of Lemma 2 holds.

LEMMA 2'. Let \mathscr{F} be a discrete family of closed sets in X. Then the union $\bigcup \{\kappa(R(A)): A \in \mathscr{F}\}\$ is not stationary.

Let us put $\Sigma_A = \varkappa(R(A))$ and let $x_A \in R(A)$ satisfies $\varkappa(x_A) = \min \Sigma_A$. Using reasonings analogous to those in the proof of Lemma 2 we can prove that the set $\{\varkappa(x_A): A \in \mathscr{F}\}$ is not stationary. Since, by Lemma 2, each set Σ_A is not stationary we conclude by Fodor's theorem ([2] Hilfssatz) that the union $\bigcup \{\Sigma_A: A \in \mathscr{F}\}$ is not stationary.

Our remark can be derived now from Lemma 2' in the same way as Proposition 1 from Lemma 2 (we must use in addition the property (13), (i)).

Remark 3. Let ϱ be a complete metric on a set X and assume that each nonempty open set in (X, ϱ) has the weight \aleph_1 (cf. Remark 1). Let us choose for each $\xi \in \varkappa(X)$ a point $x_{\xi} \in X$ with $\varkappa(x_{\xi}) = \xi$ and put $A = \{x_{\xi}: \xi \in \varkappa(X)\}$. Then Proposition 2 can be strengthened in the following way.

PROPOSITION 2'. The set A is not an F_{σ} -set in X (being locally countable in X). Suppose the contrary. Then $A = \bigcup A_m$, where A_m are closed subsets of X.

By Lemma 2 we can find a closed, cofinal set $\Gamma \subset W(\omega_1)$ such that

$$\Gamma \cap \bigcup \{ \varkappa (R(A_m)) : m \in N \} = \emptyset.$$

42

R. Pol

Write $F = \varkappa^{-1}(\Gamma)$, $A' = A \cap F$ and let us consider the metric spaces (A', ϱ) . We shall show that this is an absolutely Borel space $(^2)$. We adopt the notation of the proof of Lemma 3. Let $F_m = \bigcup \{G_{sm} : s \in S\}$. Since G_{sm} is an F_{σ} -set and $\varrho(G_{sm}, G_{tm}) \geqslant 1/m$ for distinct s, t, we infer that $F = X \setminus \bigcup F_m$ is a G_{δ} -set in (X, ϱ) . Thus (F, ϱ) is an absolutely Borel space and so is (A', ϱ) , as A' is an F_{σ} -set in (F, ϱ) . By Lemma 1 the space (A', ϱ) is not σ -discrete and thus by a Theorem of A. H. Stone ([6], Theorem 1) it must contain a Cantor set. This gives the contradiction, because separable subspaces of (A', ϱ) are countable (compare with [6], Sec. 5).

Remark 4. Let E be the space considered in the Example (Sec. 1). One can prove (see R. Pol, Comment. Math. 22 (1977)) that the product E^{\aleph_0} is perfectly normal, while E is not paracompact.

References

- [1] R. Engelking, General Topology, Warszawa 1977.
- [2] G. Fodor, Eine Bemerkung zur Theorie der regressiven Funktionen, Acta Sci. Math. (Szeged) 17 (1956), pp. 139-142.
- [3] I. Juhász, Cardinal functions in topology, Math. Centre Tracts 34, Amsterdam 1971.
- [4] E. Pol and R. Pol, A hereditarily normal strongly zero-dimensional space with a subspace of positive dimension and an N-compact space of positive dimension, Fund. Math. 97 (1977), pp. 43-50.
- [5] R. Pol, Note on decompositions of metrizable spaces I, Fund. Math. 95 (1977), pp. 95-103.
- [6] A. H. Stone, On σ-discretness and Borel isomorphism, Amer. J. Math. 85 (1963), pp. 655-666.
- [7] Non-separable Borel sets II, Gen. Top. and Appl. 2 (1972), pp. 249-270.

DEPARTMENT OF MATHEMATICS AND MECHANICS, WARSAW UNIVERSITY WYDZIAŁ MATEMATYKI I MECHANIKI UNIWERSYTETU WARSZAWSKIEGO

Accepté par la Rédaction le 18. 8. 1975

A hereditarily normal strongly zero-dimensional space with a subspace of positive dimension and an N-compact space of positive dimension

b

Elżbieta Pol and Roman Pol (Warszawa)

Abstract. In this paper we give a solution of an old Čech's problem on dimension by constructing a hereditarily normal strongly zero-dimensional space containing a subspace of positive dimension. We give also an example of an N-compact space of positive dimension.

The aim of this paper is to construct spaces with the properties mentioned in the title.

The problem of existence of a hereditarily normal space X containing a subspace with the covering dimension greater than the covering dimension of X is an old problem of Čech (see [2]; compare also [7] Appendix, [3], [11] Problem 11-14, [1] VII, Introduction). Recently, V. V. Filippov [6] showed that the existence of a Souslin Tree yields a space of this kind. Further examples, with many additional properties, were constructed by V. V. Fedorčuk [5]; he used, however, some additional set theoretic assumptions, too. The example we shall construct needs only the usual axioms for the set theory. It solves at the same time a problem on the local dimension raised by C. H. Dowker in [3].

The problem of existence of a closed subspace with the positive covering dimension in a product of countable discrete spaces appears in the natural way in the theory of N-compactness (see [12]). It was solved recently by S. Mrówka [10] (see also [13]). We give another example of this kind (it seems to us that it is simpler than the Mrówka's one).

1. Notation and terminology. Our terminology will follow [4]. We shall use the following notation: I denotes the closed real unit interval, Q stands for rationals of I, P—for irrationals of I and N—for natural numbers. For an ordinal α we shall denote by $D(\alpha)$ the set of all ordinals less than α with the discrete topology and by $W(\alpha)$ the same set with the order topology. The word "dimension" will denote the covering dimension dim (see [4], § 7.1); a space X with dim X = 0 is called strongly zero-dimensional. We say that the local dimension of a space X is at most n (abbreviated locdim $X \le n$) if each point $x \in X$ has an open neighbour-

⁽a) A metrizable space is absolutely Borel if it can be embedded as a Borel subspace in a completely metrizable space.