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Added in proof. Regarding Problem 3.11 Dr. Z. Grande has shown in a communication

to the author that for a real-valued, relatively proper, connected function f on a connected,
locally connected, hereditarily normal space X, it can be deduced from Theorems 3.3 and 3.6

with some work that f is weakly monotone relative to the set ,S‘c( f) With a little modification
In his argument the following result is obtained which may be compared with Theorem 3.10:
if fis a real-valued, relatively proper, connected function on a connected, locally connected
Hausdorff space X, then its restriction to the set Sc(f) is continuous, Morrey monotone ahd
proper. .

The following simplified version of an example -communicated by Grande shows that

Problem 5.10 does not have an affirmative answer when X is not complete. Let 4 be the set
of rational numbers and B = R—4, Then X= (AX R) U (RxB) is locally connected relative
b the induced metric of R:. The projection f ((x y)) = x, (x, ) €.X, is continuous and no-
where monotone, but no point (x, ¥) in the residual subset Rx B of X is a limit point of the
level f—2{f((x, »))} along the arc Rx{y} that is contained in X.
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A perfectly normal locally metrizable
non-paracompact space

by
R. Pol (Warszawa)

‘Abstract. We construct an example of a perfectly normal locally second — countable and
non — paracompact space by a modification of a metrizable space.

The aim of this paper is to describe a construction which by a modification
of a metric space yields a locally metrizable, perfect, collectionwise normal and
non-paracompact space containing a locally countable non F,-set, An application
in the dimension theory, given in [4], has been the motivation for such a construction.

1. Terminology and notation. We shall use the terminology of [1]. For an
ordinal o we shall denote by D(x) the set of all ordinals less than o with the discrete
topology and by W(x) the same set with the order topology. The symbol Lim stands
for limit countable ordinals. A set < W(w,) is called stationary if it intersects
each closed, cofinal set in W(w,); equivalently (cf. [3], Appendix 1.5), if for each
function ¢: Z—W(w,) with o(«)<u« there exists <, such that [p~1(&)| =
If M is a set and ¢ a metric on M, then w(M, g) denotes the weight of the metric
space (M, @) and A® = {xe M: ¢(x, 4) = 0} denotes the closure of 4= M with
respect to-@. The set of natural numbers is denoted by &, I denotes the unit real
interval and |M| stands for the cardinality of a set .

2. The definition of X, Let X be a set and ¢ a metric on X such that w(X, o)
= &;. Suppose that for {<w, we have given sets X; satisfying the following con-
ditions (¢f. [5], (3), (4)):

(1 Xie.eXe.cX, X=X, wX,0<w,
@ X= U X; and, for £eLim, X,= Ux X

§<wy Ta<y
We can obmln such sets by taking X = {;:TZE}‘" for a set {x,: a<w,} dense
in the space (X, g). '
Let us introduce a topology in the set X taking as a base the sets U ~ X, where
U'is open with respect to ¢ and <, . By open and closed sets in X we shall under-
stand sets which are open or closed with respect to that topology.
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Let us put for xe X
3) . %(x) =.min{£:'xeX¢}.
It is easy to see that X is first-countable and that
4) (x,—~%) = (0(x,, ¥)—0 and »(x,)<x(x) for almost all n).

The topology of X is, by (4) and (1), the weak topology introduced by the functions
id: X— (X, o) and %: X—W(w,); in other words the function x~- (x, %(x)) maps
the space X homeomorphically onto the graph of the function 2 considered as
a subspace of the product (X, ) x W{(w,). It follows that

©) _ : X (X, ) x W(E+1)

and hence an open-and-closed set X; is metrizable and separable.

ExampLE. Let X = D(w;)" and let ¢ be the standard metric on X, ie. (X, @)
= B(s,) be the Baire space of weight s, (see [1], Example 4.2.2). The sets X;
= D(&" satisfy (1) and (2) and for x e X we have %(x) = min{a: a>x(), for
ie N}. We shall consider X with the topology defined as above, For each ¢ e Lim
let us choose a point x,e X with %(x;) = ¢ and put E = {x,; £ e Lim} (*). The
space E is homeomorphic to the graph of % restricted to the set E, i.e.

E = {(xs &): ¢ eLim}cB(x) x W(wy) .

Notice that the topology of E is the supremum of the metric topology introduced
by ¢ and the order topology induced by the relation (x,<x,) = (<) (compare
with [1] Problem 3. F(c), or [3] Example 6.3).

3. Auxiliary lemmas. The following lemma can be derived easily from the
Theprem 1 of [5] (cf. also [5] Remark 5). We shall give however a simple proof
of it for the sake of completness. ‘

LemMMA 1. Let A be a subspace of X such that the set % (d) is stationary. Then
the space A is not discrete. '

. Proof. Write 4 = %(4)  Lim, choose for each le A a point a; €4 with

%(a;) = A and put 4, = {a,: aed, a<A}. First we shall prove that there exists

AeAwithg(a,, 4;) = 0. Otherwise, we have ¢(a,, 4,)>0,forde A,ie. 4 = {) 4,,
n

where A, = {Le A: g(a;, A;)=1/n}. There exists ne N such that A, is stationary,

Since, by (2), ai,eUXi we can choose for each A€ A4, an ordinal ¢(1)<4 and
' z;;<‘}. .

a point b; € X,;) such that g(a,, b,) <1/3n. There exists <y with [~ X&) = 8,

because A,°is stationary. Thus {b,: 1€ @™ (&}=X, and, by (1), there exist «, 4

€ @ !(&) such that a<l and ¢(b,,b;)<1/3n. We have obtained ¢(a,, a;)<1/n
which is impossible, as a,e 4, and le 4,.

(*) The space (E, g) was investigated by A. H. Stone in [6] Section 5 as an example in Borel
Theory. ., L . ) .
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It follows that for some A4 there exist 4, <A with
a;,— a,, by (4. The proof is completed.
Let us put for 4=X
6 R(4) = ANA4.
In the sequel the key role will be played by the following
LemMA 2. For each A< X the set x(R(A)) is not stationary.

Proof. Suppose to the contrary that the set x R(A4 X i
] : S = X 18 stat .
each Ae X let us choose ( ) sationay. For

0(a;,, a;)—0 which gives

) xpeR(A)  with  w(x) =¢,

and for me N

(8) died with o (a7, x)<1/m .
Let us put for £e X

© @ (&) = sup{x(a¥): me N}.

‘We can easily define by the transfinite induction a closed; cofinal set I'c Wi(w,)
such that '

(10) , it fel'mXand é<iel then o(A<A.

The set A = I' n ¥ is stationary and hence, by Lemma 1 and (4), there exist A e A
and a sequence (4,)<d such that A,<A and o(x;,, x;,)—~0. We have, by (8),

e(ds, s X) < (%3, x,)+1/m
and, by (9) and (10),

#(@1) <) <A = 2 (x)) .

We have obtained, by (4), af, —x, and hence the contradiction X6 A R(A) = 3.
LemMMA 3. Let I'c W(w,) be a closed and cofinal set. Let us write F = x4
and G = X\F. Then C
(1) G has « base o-discrete in X;
(12)  F=f"Y0) for a continuous function i X0
(13) we can assign to each set LG an open set G(L)> L in such a way that
() (ﬂi’ﬂc:L” then G(LNaG(L'Y,
(i) (L) N F = LnF.
Proof. Let {Z,: seS} be the family of all order components of the set
W(w)NTI'. Let us write G, = x~4(Z,) and take for each se S the ordinal g, such
that u,+1 = min X, (we assume that 0 e I'). Let us put

G.vm = {x € Gs: Q(x, X}L,)>I/’n} .

Since for different s, t&§ we have either G, X, or G,cX,, it follows that
0(Gy,, Gy)=1/m. Thus each family %, = {G,,: se S} is discrete in X. Since each
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G, has a countable base, by (5), and G = UU ¥, (G, = U Gy, because G, n
m ooom

N X, = @) the proof of (11) is finished.

Let # = {) 4, be a base of G such that 4, is discrete in X and UG fo
each Ue #. Letusput Uy = U U %y. Then UyjcU,=..., G = | Uy and U, <G,

m<k . B k .

Since, by (11) and Nagata-Smirnov Theorem, the .space G is metrizable we can
choose continuous functions f: G-I with fi *(0) = G\U,. Since U,=G we can
extend f; continuously over the whole of X assuming f;(x) = 0 for x ¢ G. The func-
tion f = Y. 27, satisfies (12). .
k

For the proof of (13) let us but, for x, ye G, o(x,y) = 0if x and y belong
to the same set G, and o(x,y) = 1 otherwise. Since G, is an open-and-closed sub-
space of G the pseudometric ¢ is continuous. Let us put d(x, y) = o(x, ¥)+o(x, y)
and assume

G(I) = {xe G: d(x, )<f()},

where f is such as in (12). It is obvious that (i) is satisfied. Let x € G(Z) N F. Then
there exists, by (4), a sequence (x,,) = G(L) such that g(x,,, x) »0 and x(x,,,){'x‘(x).'
For each m e N let us choose a point ,, € L with d(x,,, ¥.) <f(x,). Since o(x,, V)
S A V) <f(x,) we have @V, ) 0. Let %(x,) € Z. Since 6 (%, Y) (X, ¥,)
<1 we have x(»,,) € 2, and hence %(y,)<x(x), because %#(x,) Sx(x) € I'. From (4)
we infer that y,—x and thus xe L.

3. The properties of X. We shall prove in this section that X is perfectly normal
and, for sufficiently complicated metric g, it is not paracompact.

PROPOSITION 1. The space X is perfectly normal.

Proof. Let 4, and 4, be disjoint, closed subsets of X, There exists, by Lemma 2,
a closed, cofinal set I'c W(w,) such that
14 _ T 0 %(R(do) U R(4)) = O .

Let us put F =.x'1(1‘), G=X\F, K, =4,nF,L, = 4,nG. Since, by Lemma 3
and Nagata-Smirnov Theorem, the space G is metrizable there exist open sets Uj,
i=10,1, such that (see (13)) ' '

GL)2USL, and UynU; = @.

By (14) we have (Kf n FINK,=R(4)) n F = @, thus K, and K, are separated with
respect to the metricyg\ and hence we can find open sets Wi, i=0,1, such. that

; ,WiDKi and Wo m W1 = @,

We have (see (13), (ii)) - ’
Vo = (Us w WoNU;2 4,,
Vie= (U v Wi)\Up24, ,

and since ¥, n ¥ = @ the proof of normality of X is completed. .
‘ ‘

i
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We shall prove that X is perfect. From (14) we infer that
XNA4p = (XN\4§) U (G\4,) .

The first member of the union is an F,-set with respect to g and thus it is an F,-set
in X; the second is an Fy-set in X by (11) and (12) of Lemma 3. Hence X¥\4, is
an F,-set in X.

PROPOSITION 2. If the set w(X) is stationary (this is satisfied in the case con-
sidered in Example) then the space X is not paracompact.

Proof. Let us choose for each £ex(X) a point x,e X with %(x;) = & The
open set X, contains only countably many points of the set 4 = {x,: £ ex(X)}
and thus 4 is locally countable in X But, by Lemma 1, the space 4 is not o-discrete
and thus the space X cannot be paracompact.

4. Remarks. We shall establish some further properties of our construction.

Remark 1. By Theorem 1 of [5] the stationarity of »(X) depends on the
metric ¢ only; namely, it is equivalent to the property that the metric space (X, @)
cannot be expressed as the union of countably many locally separable subspaces.
This is the case if (X, ¢) is a complete space each nonempty open subspace of which
has the weight s, (see [7] Section 2).

Remark 2. The space X is collectionwise normal.

We sketch the proof. First notice that the following strengthening of Lemma 2
holds.

Lemma 2', Let F be a discrete family of closed sets in X. Then the union
U % (R(): AeF} is not stationary.

Let us put X, = % (R(4)) and let x, € R(4) satisfies %(x,) = minZ,. Using
reasonings analogous to those in the proof of Lemma 2 we can prove that the set
{n(x4): 4 e F}is not stationary. Since, by Lemma 2, each set 5, is not stationary
we conclude by Fodor’s theorem ([2] Hilfssatz) that the union U {Z,: deF} is
not stationary.

Our remark can be derived now from Lemma 2/ in the same way as Prop-
osition 1 from Lemma 2 (we must use in addition the property (13), (D).

Remark 3. Let ¢ be a complete metric on a set X and assume that each non-
empty open set in (X, ) has the weight 8, (cf. Remark 1). Let us choose for each
Eex(X) a point xye X with s(x) = & and put 4 = {x;: &ex(X)}. Then Propo-
sition 2 can be strengthened in the following way.

Proposrrion 2/, The set A Is not an Fy-set in X (being locally countable in X).

Suppose the contrary. Then 4 = (J 4,,, where 4,, are closed subsets of X.
m
By Lemma 2 we can find a closed, cofinal set I'c W (w,) such that

I'o U{x(R(4,)): meN}=@.
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Write F = x"Y(I'), 4’ = A~ F and let us consider the metric spaces (4, 0). We
shall show that this is an absolutely Borel space (*). We adopt. the notation of the
proof of Lemma 3. Let F,, = |J {G,,: s € S}. Since G,, is an F,-set and ¢(G,,, G
=1/m for distinct 5, #, we infer that F = X\ F,, is a G,-set in (X, @). Thus (F, 0)
is an absolutely Borel space and so is (4', g), as A’ is an F,-set in (¥, ). By Lemma ]
the space (4', g) is not o-discrete and thus by a Theorem of A. H. Stone ([6], The-
orem 1) it must contain a Cantor set. This gives the contradiction, because separable
subspaces of (4, ¢) are countable (compare with [6], Sec. 5).

Remark 4. Let E be the space considered in the Example (Sec. 1). One can
prove (see R. Pol, Comment. Math. 22 (1977)) that the product E™ jg perfectly
normal, while E is not paracompact.

(*) A metrizable space is absolutely Borel if it can, be embedded as a Borel subspace in
a completely metrizable space.
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A herediéarily normal strongly zero-dimensional space
with a subspace of positive dimension and
an N-compact space of positive dimension

by

Elibicta Pol and Roman Pol (Warszawa)

Abstract. In this paper we give a solution of an old Cech’s problem on dimension by construc-
ting a hereditarily normal strongly zero-dimensional space containing a subspace of positive di-
mension. We give also an example of an N-compact space of positive dimension.

The aim of this paper is to construct spaces with the properties mentioned in
the title:

The problem of existence of a hereditarily normal space X containing a sub-
space with the covering dimension greater than the covering dimension of X is an
old problem of Cech (see [2]; compare also [7] Appendix, [3], [11] Problem 11-14,
{1] VII, Introduction). Recently, V. V. Filippov [6] showed that the existence of
a Souslin Tree yields a space of this kind, Further examples, with many additional
properties, were constructed by V. V. Fedoruk [5]; he used, however, some
additional set theoretic assumptions, too. The example we shall construct needs
only the usual axioms for the set theory. It solves at the same time a problem on
the local dimension raised by C. H. Dowker in [3].

The problem of existence of a closed subspace with the positive covering di-
mension in a product of countable discrete spaces appears in the natural way in
the theory of N-compactness (see [12]). It was solved recently by S. Mréwka [10]
(see also [13]). We give another example of this kind (it seems to us that it is simpler
than the Mréwka’s one).

1. Notation and terminology, Qur terminology will follow [4]. We shall use
the following notation: I denotes the closed real unit interval, Q stands for rationals
of I, P—for irrationals of I and N — for natural numbers. For an ordinal o we
shall denote by D(x) the set of all ordinals less than o with the discrete topology
and by W(w) the same set with the order topology. The word “dimension” wilt
denote the covering dimension dim (see [4], § 7.1); a space X with dimX =0 i.s
called strongly zero-dimensional, We say that the local dimension of a space X is
at most n (abbreviated locdimX'<r) if each point x €.X has an open neighbour-
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