

Table des matières du tome XCVII, fascicule 2

		Pages
υ.	B. Gauld, On c-continuous fundamental groups. M. Gabbay, Undecidability of intuitionistic theories formulated with the apartness	5355
G	relation	57-69
٠. ۲	J. Michaelides, Complements of solenoids in S ³ are m-spaces.	71-77
J.	Bryszewski, On a class of multi-valued vector fields in Banach spaces	79-94
c.	Pionka, Symmetric words in nilpotent groups of class ≤3	95-103
٥.	and J. Pak, On the actions of SO(3) on lens space II	105-110
٠.	1. Howard and J. E. Rubin. The axiom of choice and linearly ordered ante	444 406
1.	Mackowiak, The hereditary classes of magnification of the hereditary classes of th	123-150

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Théorie Descriptive des Ensembles, Algèbre Abstraite

Chaque volume paraît en 3 fascicules

Adresse de la Rédaction FUNDAMENTA MATHEMATICAE, Śniadeckich 8, 00-950 Warszawa (Pologne)

Adresse de l'Échange: INSTITUT MATHÉMATIQUE, ACADÉMIE POLONAISE DES SCIENCES Śniadeckich 8, 00-950 Warszawa (Pologne)

Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa (Pologne)

Correspondence concerning editorial work and manuscripts should be addressed to: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, 00-950 Warszawa (Poland)

Correspondence concerning exchange should be addressed to:
INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, Exchange
Śniadeckich 8, 00-950 Warszawa (Poland)

The Fundamenta Mathematicae are available at your bookseller or at ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa (Poland)

DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

On c-continuous fundamental groups

by

David B. Gauld (Private Bag, Auckland)

Abstract. The notion of c-continuous fundamental group is introduced by Gentry and Hoyle in their paper "c-continuous fundamental groups", Fund. Math. 76 (1972), pp. 9-17. In this paper we place this group in a more natural setting, finding that it is in fact a subgroup of the usual fundamental group after an adjustment of the topology on the space in question.

The notion of a c-continuous fundamental group is introduced in [1]. In this paper the group is placed in a more natural setting thereby simplifying both the description of the group and the proofs of various properties.

Throughout, I = [0, 1] and J = [0, 1) denote respectively the closed and half-open unit interval, each with the usual topology.

Following [1], we say that a function $f: X \to Y$ between topological spaces is c-continuous at $x \in X$ if for each open set $U \subset Y$ containing f(x) for which Y - U is compact, there is an open set V in X containing x such that $f(V) \subset U$. The function f is c-continuous if it is c-continuous at each point of X. Let T denote the topology on Y. Let T be the topology on Y having as basis

$$\{U \in T | Y - U \text{ is compact (in } T)\}$$
.

Call this basis the standard basis for Tc.

THEOREM 1. $f: X \to (Y,T)$ is c-continuous if and only if $f: X \to (Y,T^c)$ is continuous.

Proof. Suppose $f: X \to (Y,T)$ is c-continuous and U is a member of the standard basis for T^c . Then for each $x \in f^{-1}(U)$ there is an open set V in X containing x such that $f(V) \subset U$, i.e. $V \subset f^{-1}(U)$. Hence $f^{-1}(U)$ is open so $f: X \to (Y,T^c)$ is continuous.

Conversely suppose $f: X \to (Y, T^c)$ is continuous, $x \in X$ and $U \in T$ is such that $f(x) \in U$ and Y - U is compact in T. Then $U \in T^c$ so $V = f^{-1}(U)$ is open in X. Since $x \in V$ and $f(V) \subset U$, we see that f is c-continuous.

Let $C(Y, y_0)$ be as in [1], i.e. $C(Y, y_0)$ consists of all loops in Y based at y_0 using the topology T on Y. In [1] an equivalence relation $\frac{c}{y_0}$ is defined on $C(Y, y_0)$ as follows: if f, $g \in C(Y, y_0)$ then $f \frac{c}{y_0} g$ if and only if there is a c-continuous function $F: I \times I \to (Y, T)$ such that F(x, 0) = f(x), F(x, 1) = g(x), $F(0, t) = y_0 = F(1, t)$ for each $x, t \in I$. Since $T^c \subset T$, f and g are also loops in (Y, T^c) . By Theorem 1, 1 - F-undamenta Mathematicae XCVII

icm©

 $f_{y_0}^{\varepsilon}g$ if and only if f is homotopic modulo end points to g when Y is topologised by T^c . Thus if we let $\Lambda(Y, y_0)$ denote loops in (Y, T^c) based at y_0 we see that $C(Y, y_0) \subset \Lambda(Y, y_0)$ and that $\frac{\varepsilon}{y_0}$ is the restriction to $C(Y, y_0)$ of the usual notion of homotopic loops in $\Lambda(Y, y_0)$. The operation * on $C(Y, y_0)$ given in Definition 3 of [1] is the usual notion of composition of loops so the operation * on $C_1(Y, y_0) = C(Y, y_0)|_{\frac{\varepsilon}{y_0}}$ is well-defined. $C_1(Y, y_0)$ is clearly closed under this operation: if $f, g: I \to (Y, T)$ are loops then $f * g: I \to (Y, T)$ is also a loop. Moreover if $f \in C(Y, y_0)$ then the reverse of f is also in $C(Y, y_0)$. Thus $C(Y, y_0)$ is a subgroup of the fundamental group $\pi(Y, y_0; T^c)$. In fact,

$$C_1(Y, y_0) = \{\alpha \in \pi(Y, y_0; T^c) | \text{ there is a loop } f \in \alpha$$

for which $f: I \rightarrow (Y, T)$ is continuous}...

Theorem 5 of [1] is now a consequence of the fact that if $H: (Y_1, T_1) \to (Y_2, T_2)$ is a homeomorphism then so is $H: (Y_1, T_1^c) \to (Y_2, T_2^c)$. The isomorphism from $\pi(Y_1, y_1; T_1^c)$ to $\pi(Y_2, y_2; T_2^c)$ induced by H carries $C_1(Y_1, y_1)$ to $C_1(Y_2, y_2)$.

Theorem 7 of [1] is an immediate consequence of the fact that if (Y, T) is compact then $T^c = T$.

THEOREM 2. If (Y, T) is non-compact and there is a proper path $\pi: J \rightarrow (Y, T)$ then $C_1(Y, \pi(0)) = 0$.

Proof. "Proper" means for any compact $K \subset Y$, $\pi^{-1}(K)$ is compact. Let $\lambda: I \to (Y, T)$ be any loop based at $\pi(0)$. Define $F: I \times I \to Y$ by

$$F(x, t) = \begin{cases} \lambda(x) & \text{if } t = 0, \\ \pi(4tx^2 - 4tx + 1) & \text{if } 0 < t \le \frac{1}{2} \text{ and } 0 < x < 1, \\ \pi(4(1-t)x^2 - 4(1-t)x + 1) & \text{if } \frac{1}{2} \le t < 1 \text{ and } 0 < x < 1, \\ \pi(0) & \text{if } t = 1 \text{ or } x = 0 \text{ or } x = 1. \end{cases}$$

Note that $F(x, 0) = \lambda(x)$ and $F(x, 1) = \pi(0)$ so if we can show that $F: I \times I \to (Y, T^c)$ is continuous then we can deduce that $C_1(Y, \pi(0)) = 0$.

Suppose U is in the standard basis of T^c . Then U is open in T and Y-U is compact, so $\pi^{-1}(Y-U) = J - \pi^{-1}(U)$ is compact. Thus there is a real number $a \in J$ so that $J - \pi^{-1}(U) \subset [0, a]$, so that $(a, 1) \subset \pi^{-1}(U)$.

Suppose $(x, t) \in F^{-1}(U)$. If 0 < t < 1 and 0 < x < 1 then (x, t) is clearly in the interior of $F^{-1}(U)$. If t = 0, then $(x, 0) \in \lambda^{-1}(U) \times [0, 1-a)$. Moreover,

$$\lambda^{-1}(U) \times [0, 1-a) \subset F^{-1}(U)$$
,

so (x, 0) is in the interior of $F^{-1}(U)$. Similarly one shows that (x, t) is in the interior of $F^{-1}(U)$ if t = 1 or x = 0 or x = 1. Thus $F^{-1}(U)$ is open so that $F: I \times I \to (Y, T^c)$ is continuous.

The effect of F is to pull the loop λ onto the "end" of $\pi(J)$ then to push the loop back to $\pi(0)$.

Theorem 2 motivates the following as an example of a non-compact, path-connected space having non-trivial c-continuous fundamental group.

Example. Let S^1 denote the unit circle and L the long line; L is obtained from the ordinal space $[0, \Omega)$ by connecting each ordinal with its successor by a copy of the unit interval I. Let X be the space obtained from the disjoint union of S^1 and L by identifying the point $0 \in L$ with some point of S^1 . Then X is a non-compact, path-connected space.

CLAIM. X has non-trivial c-continuous fundamental group: in fact the group is Z. Proof. It suffices to show that any c-continuous homotopy

$$H: I \times I \rightarrow X$$

is actually continuous.

Suppose not: say $(s_0, t_0) \in I \times I$ is a point at which H is not continuous. Choose $a \in L$ such that

$$H(s_0, t_0) \in S^1 \cup [0, a)$$
.

Now \forall neighbourhood V of (s_0, t_0) ,

$$H(V) \not \subset S^1 \cup [0, a]$$
,

since $S^1 \cup [0, a]$ is compact, and if H(V) did lie in this set then c-continuity of H in V would imply continuity of H in V. Thus there is a sequence $(s_n, t_n) \in I \times I$ satisfying:

- (i) (s_n, t_n) converges to (s_0, t_0) ;
- (ii) $H(s_n, t_n) \notin S^1 \cup [0, a), \forall n = 1, 2, ...$

Since $\{H(s_n, t_n)| n = 1, 2, ...\}$ is countable, $\exists b \in L$ so that

$$H(s_n, t_n) \in [a, b], \quad \forall n = 1, 2, ...$$

Consider $S^1 \cup [0, a) \cup (b, \Omega) = U$ say. Since U is open in X and X - U = [a, b] is compact, c-continuity of H implies that $H^{-1}(U)$ is open in $I \times I$. But this contradicts our choice of the sequence (s_n, t_n) since $(s_0, t_0) \in H^{-1}(U)$ but $(s_n, t_n) \notin H^{-1}(U)$ for n > 0.

Thus if H is c-continuous, H is also continuous.

Reference

 K. R. Gentry and H. B. Hoyle III, c-continuous fundamental groups, Fund. Math. 76 (1972), pp. 9-17.

THE UNIVERSITY OF AUCKLAND
New Zealand

1*

Accepté par la Rédaction le 13. 2. 1975