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Independent sets and measure algebras

by %

5

TETSUHIRO SHIMIZU (Sapporo, Hokkaido)

Abstract. Let ¢ be a non-discrete locally compact abelian group. Let M (G)
be the measure algebra on G. In this paper, at first, we shall consider the relation be-
tween independent sets and prime L-subalgebras of M (&). Finally, we shall show the
existence of measures with some. properties in case of & being compact and the dual
group of @ having an infinite independent set.

0. Introduction. Throughout this paper &(v,) denotes a non-discrete
locally compact abelian group with an underlying group & and a topology
7,- We shall denote by 7 (G(ro)) the set of all those locally compact group
topologies on G which are stronger than or equal to the original topology
7,. For any e 7 (G(z,)), let M (G (7)) be the algebra of all bounded regular

" Borel measures on G(7) under convolution multiplication, and LI(G(T))

the ideal consisting of all those measures which are absolutely continuous
with respect to the Haar measure m, on G (7).

A closed subalgebra N of M(G(,)) is called an L-subalgebra if pe N
and » <€ p implies v« N. An L-subalgebra N is said to be prime if N1 is
an ideal, where N is the set of measures » such that » + u for all ue N.

A collection # of g-compact subsets of G(v,) is called a Raikov system
if the following conditions are satisfied:

(R1) If 4;¢# and A, is a o-compact subset of A4, then Ay e F

(R2) The union of each countable subcollection of & is also in &F;

(R3) If AeF and <@, then A+ zesF;

(R4) If AeF, then 4+ A<F. A Raikov system & is said to be sym-
metric if the following additional condition is satisfied:

(RB) T AeF, then —AesF.

To each topology v in 7~ (G‘(-;:,,)) there corresponds the Raikov system
F . of all those subsets which are o-compact with respect to v.

Let @ be the homomorphism of M(G(r)) to M{G(z,)) which is induced
by the canonical injective mapping of G(z) to G(r,), then QB(M (G(r)))
= M (%) ([4]). Thus we may identity M(#,) with M (G(z)). Bach Raikov
system & gives rise to an L-subalgebra M (%) of all those measures which
are concentrated on suitable sets in #. This subalgebra is prime ([2],
Section 33).
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In Section 2, by constructing a Raikov system of a special type,
we shall show that there exists a non-trivial prime IL-subalgebra which
is different from M (G(7)) for all ve 7 (G (v,)). In this connection, we shall
prove further that, if a symmetric Raikov system &, with a single gene-
rator is contained properly in a Raikov system & ,, then there is a R aikov
system & which is contained properly in &, and contains properly £,.
In these constructions the notion of independent sets and that of semi-in-
dependent ones play a decisiverole. The rest of the paper concerns construc-
tion of measures of special types in connection with independent sets.
‘We prove the existence of a measure with independent powers. Finally,
when the dual group admits an infinite independent set, then we can
construct a measure which answers affirmatively to a problem raised
by J.L. Taylor in [10].

1. Independent sets and prime L-subalgebras. Now we shall show
that for a suitable symmetric Raikov system &%, M (#) is a non-trivial
prime L-subalgebra which is different from M (G(v)) for all ve 7 (G (z,)).

A Raikov system & such that L (4) = 0 for every set A <F, where
M., is the Haar measure on G(v,), will be called a proper Raikov sysiem.
For a subset H of G and a positive integer » we write that

nB = {4+ ..o 3, @y,..., 0, B,

and, in particular, we set 0F = {0}. If a Borel subset & of G (7,) is locally
negligible with respect to m,, then we call B locally v-negligible. )

LevwvA 1.1, For any non-discrete topology ve T (G‘(ro)) and a positive
number n, suppose that B is a Borel subset such that kE is a Borel subset
of G(z) for k = 1,2, ..., n-and nB is non-locally v-negligible. If B'is o subset
of B such that EN\E' is finite, then nE' has non-locally v-negligible Borel
subsets. :

Proof. Put ¥ = E\E', from kE+(n—k)F < kE+(n—k)E = nE,
wehave that nl = Ln) (kE +(n—k) F) . Let k, be the smallest positive integer
suach that k,H4 (;Ti ko) F is mon-locally z-negligible. Since (n—k,)F is
finite, &k, £ is non-locally z-negligible. From

ko B = koE’Uk(cjl (o — &) B' + k),
we have that
J koE\kQ((ko— BE+EF) < kB,

Since (ko—k)EB+-EF is locally z-negligible (k. =1,2,..., k) and kB
< nFE', nE' has a non-locally r-negligible Borel subset. m
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A subset E of @ is said to be independent if B has the following prop-
erty: for every choice of distinct elements #,,...,®, of B and integers
My ey Ny, either

NyBy+ ove 0yl # 0
or

M@y = ... = % = 0.

LeMMA 1.2, Let P be an independent subset in G, and @ = Pu(—P).
IfreT (G(ro)) is non-discrete and kQ) is a Borel subset in @ (v) for any positive
integer k, then the group G(P) generated by P is locally t-negligible.

o0
Proof. Since G(P) = |JkQ, it is enough to show that %@ is locally
k=1

v-negligible for any positive integer k. Assume that for some fixed positive
integer there is a t-compact subset B of %Q such that B = —F and
m(B) > 0. If x5 is the characteristic function of # and f = yz+yg, then fis
continuous on @(z) and f(0) = m,(F) > 0, hence f(«) > 0 for all 4 in some
z-neighborhood ¥ of 0 which is contained in 28 ([7], p. 108).

Let U be a z-neighborhood of 0 such that (2%+1) U = V. Since G(7)
is non-discrete, there is a non-empty finite subset {{), ..., 23)} of P such
that n{a{)+ ... +n{al) is & non-zero element of U for some choice
of non-zero integers n{’, ..., nd).

Put P, = P\{a{’, ..., 23} and @, = P,U(—P,). In view of Lemma
1.1, %@, is non-locally z-negligible, thus 2kQ, contains a meighborhood
of 0 in @(7) ([7]). By induction, we can obtain distinct elements

1, 1 2k+1, 2K+ 1
@)y ., 1), .. oD, coey Bt

of P and non-zero integers

1) 1 2k+1 k-1,
n), 0, nRED, covy MY

such that

0Pt nQal) L G L @) )
is an element of (2k+1) U. On the other hand, from (2k+1)U < 7V = 2k,
there are distinct elements yy,...,%,¢P (1< #<2k) and non-zero in-
tegers my, ..., m, such that

nPal+ . nQa)+ . f R g + Dl
= MY+ - + MY,
This contradicts the independence of P. m !
TEEOREM 1.3. Let & be a symmetric Raikov system generated by a com-

pact independent set P. Then M(F) is a symmetric prime L-subalgebra such
that M(&F) | IMG (7)) for any mon-disorete topology ve T (G(ry), therefore
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M(F) is a non-trivial prime L-subalgebra which is different from M (G(r))
for all reﬂ'(G(ro)). ' .

Proof. Let H be the c-compact group generated by P. Put Q = Py
U(—P), then kQ is 7,-compact, so that k@ is z-closed for any ze I~ (G(ro)).
Thus from Lemma 1.2, H is locally v-negligible for any non-discrete top-
ology 7eJ (G(ro)). Since any Ae& is contained in the union of some
countable cosets of I, A4 is locally 7-negligible, therefore M (#) | Ll(G—(r))
tor any non-discrete topology ve 7 (G(z,). m |

Our next purpose is to show the following theorem.

THEOREM 1.4. If F, is a symmetric Raikov system generated by a a-com-

pact group H, and if F, is a strictly larger symmetric Raikov system, then
there exists a symmetric Raikov system &F such that
(i) M(F,) g M(F) g M(F,)

and

(ii) M (&) ;éM(G(r)) for all reF(G(ro)).

Given a subset B of ¢, we say that a subset P of @ is semi-E-indepen-
dent, if P. has the property that for every choice of distinct points
®yyeey Byppe P oand integers my, ..., ny the relation

N b
D, + 1y, 4 B
=1
holds. In particular, it B = {0}, then we call briefly P semi-independent.
Lemma 1.5 (ef. [7], p. 108). Let H be a o-compact subgroup of G(z,)
and P o compact semi-H-independent subset of G(z,). If P has a cluster
point with respect to a topology vte T (G(ro)), then the group H-+G(P) is
locally ©-negligible.
Proof. If @ =PuU(—P), then H+G(P) = |J(H+kQ). Suppose
Io==1

that H+nQ is non-locally v-negligible for some integer n. Then there
exists a 7-compact subset 4 of H +n@ such that m,(4) > 0 and 4 = — 4.
We define the mapping y of G(v)****, the direct sum of 2n-+2 copies of
@ (7), to G(7) as follows:

m+2

"/’((wl’ LZTRE) m2n+2)) = 2 (_l)kwk'

Je=1

" Let @ be a v-cluster point of P. Put @, = for k = 1,2,...,2042;
en

‘S"((ml: Bog eany w2n+z)) =0.
Since m.(4)> 0, A+ 4 contains a neighborhood V of 0 with respect to

7 ([7], p. 108). Since @ is a z-cluster point and v is continuous, there is
a element (Y3, ¥a, .., Yanpo) P2 such that Yy 7 g if i'% §, and Y1— Yo+
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+ oo F Yoy Yonaac V. From Ve A4+ A4 < H4+20Q, we can choose
Wyyoory Wy €@ and heH such that

Yr—Yot oooFYong1—Yonqr = R wy-+ .. 4 wy,.
It follows that
118 ot T 181+ 2 =y

where 7y,...,7,_; are integers, 2,...,2, are distinct elements of P.
This contradicts the semi-H-independence of P. m

Exavrre. For some locally compact abelian group G (z,), there is
an example of a semi-independent compact perfect set P of G (7,) such that
G(P) is open with respect to some non-discrete locally compact group
topology on @. Let G (7,) = TeD,, where T is the circle group and D, is the
complete direct sum of countable many copies of the cyclic group of
order 2 ([7], p. 254). Let P, be an independent Cantor set of D, ([7], p.

0

103). Let ¢, be a homeomorphic mapping of P, onto D,. Put D, = [[{0,1},.
n=1

‘We define the mapping ¢, of D, to T as follows:

‘Pa((wn By o)) = Za}nlz"

n==1

for (®y, @5, ...) €D,. If we put
() = (-’”: ?’20%(9”)) (we Py),

then g is a continuous mapping of P, to D,eT. Since (,0¢,) " (?) is a finite
set for any te T, ¢(P,) has no 7p-cluster point, where 7, is the weakest
locally compact group topology on D,eT such that T is open. Clearly,
@(P,) is a compact semi-independent subset of D,eT. Now, we have
{24: e @p(P,)} = T, thus the group generated by ¢(P,) is zp-open.

LemMA 1.6. Let K be a compact subgroup of G(z,) and let a be the cano-
nical homomorphism of G(z,) to G (vo)/ K. If F is a Raikov system of G(zo),
then o(F) = {a(A): A F}is a Raikov system of G(v,)/K.

Proof. It is clear that o(Z) ratisfies (R2), (R3) and (R4) of Section 0.
Given a set 4 e#, for any o-compact set B « a(4), there is a o-compact
subset B’ of A such that a(B’) = B ([6]), and s0 Bea(F). m

LeMMA 1.7. Let F be o Raikov system generated by a o-compact group
H, and A a compact perfect set such that (H — )4 is of the first category
in A for each we Q(z,). Then there is a compact group K such that G (7o) /K
is metrizable and a(A)¢ a(F), where a is the canonical homomorphism of
G(7,) to G(7,)/K. '

Proof. Suppose that H = H,UH,u..., where each H, is compact
and symmetric. We may assume H, < H,... We can choose compact
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To-neighborhoods V,, and finite subsets {#{”, ..., a0} of 4 (n =1,2,...)
such that

(1) Vn = _Vny

(i) Vot Vapr = Vs

(ifi) @04V, < e+ TV, with i <2 <i+1,

(iv) (@ + V) — (@ + V) 0H, =@ if 5§ (cf [8], [12]).

Put A ={}=(Aydy...): =0 or 1 (i=1,2,...,)}. For ded
choose a set {m&l),wz&),. .} with A(1) = 2—1; and A(k) = 24(k—1)— 2,
(k=2,3,...). For A, Aed, it A 5 X, then A(m) # A'(m) for every
m>=k. Let K = ﬂVn, then, from (i) and (ii), K is a compact group such

n=1

that G (7,)/K is metnzable Let 2, be a cluster point of {wS( s o) %) -}, then,
from (iii), @;e ﬂ (@5gh ~+ V). Suppose 4, i’ A and 4 X, then for some
integer k it fo]l'“;v;s that A(n) 5 A'(n) if » >k, so that
(3 K) — (0 + ) A H,, )
( m&?},)—f— Vogr+H)— mﬁ’?n)-F Vi +K) )ﬂH
< ((mz myt Vatr+ Vi) ~ (w%*l- Vst Vaga) )nH
= ( wﬁmﬁ n) ~— ( m%u)‘l‘ VJ)NH, = 0‘
for every » > k. Thus 1 # A’ implies
‘ ((-’)";.‘}‘-K)_(m;."l‘K))nH =0,
that is, '
o,—2,¢d H+ K.
Sinee 4 is uncountable,

a({@}n) & (:J ((H) +3,)

for every countable set {y,}>>, of G(v,)/K. Thus a(4)¢a(F). m

Proof of Theorem 1.4. Since &, contains properly &,, there is
a compact perfect set A in &, such that (H—2)N 4 is of the first category
in A for each #e¢@ (cf. [12]). From Lemma 1.7, there exists a compact
group K such that G(r,)/K is a metrizable group and a(4d)4{ a(F,), where
a is the canonical homomorphism of G(z,) to G(z,)/K. From Lemma 1.6,
a(#,) is a Raikov system which contains properly a Raikov system a(Fy)
generamed by o-compact group o(H). Since @(v,)/E is metrizable, there
18 a compact perfect semi-a(H)-independent set Pe a(#F,)\a(F,). Let
P, be a compact perfect subset such that P\P, contains perfect subset.
If #' is a symmetric Raikov system which is generated by «(H) and
Po, then we have a(#,) ZF' Z a(#,), because (P\P)n(G (Po)+H+2)
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is a set consisting of at most one point for each ze G. There is a compact
set PyeF, such that a(P,) = P, ([6]). Let # be the symmetric Raikov
system generated by P, and H, then «(¥F) =& and F1 5 F SF,.
The rest of the proof is to show that M(F) # M(G(z)) for any =
F(G(-ro)). Tt is enough to show that M(F') # M((G/K)(z)) for any
Te T (GH7) /K) ([71, p. B4). If P, is a t-discrete set, then M (PN
NM((G/K) (7)) = {0}, where M,(P,) is the subspace of MG (7q) /K) con-
sisting of all continuous measures whose supports are contained in P,
go that in this case we have M (#') # M((G/K) (v)). It P, has a v-cluster
point, by Lemma 1.5, we obtain that o(H)-+G(P,) is locally z-negligible.
Thus, it follows that M(F') # M((G/E)(z)). m
2. Independent power measures with respect to M (%), If f is a poly-
nomial in elements of M (G(z,)), with coefficients  a,,,...e M(G(zy)), We
write |f| for the polynomial with scalar coefficients |a,,. ..l Let M(F)
be a given Raikov system. A set X of non-zero measures {x;} has indepen-
dent powers with respect to M(F) if for each polynomial f with coefficients
in M(#), we have

0FCetas ey paadll = 1F1(ially <o o5 Tl

for all gy, ..., ppe X (cf. [117]).
Throughout this section we shall assume that G(v,) is metrizable.

Levma 2.1 ([8], [12]) Let F be a proper symmetric Raikov system
which is generated by a o-compact group H. Let {P}3_, be a disjoint collection

of subsets of G(v,), with P = UP semi-H-independent, and for each

n=1
i let u; be a contimuous measure concentrated on @; = P;u(—P). If a, be

e M(F) and (r1y ...y Ty) F(817+--ySy), where 711, ..., Ty, 81y ..., 8y aT€
non-negative integers, then
axin . R Lbrpde L owuly
Given a subset F of G, we say (as in [12]) that a subset X of & is

(B, 2)-independent if the relation

M@yt + NGl
where 74, ..., n, are integers satisfying

nl <2 (A<i<r)

and @, ..., %, are distinct elements of X, is possible only if 7@ =...
. = n,%, = 0. For a given subset ¥ of G, we put

2xHB = {20: ze<B}. .

The proof of the following proposition is essentially the same as that
of Proposition 2 in [12].
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PROPOSITION 2.2. Let & be a proper symmetric Raikov system generated
by a o-compact group H. Let p, (1 =1,...,7) be mutually singular con-
tinuous measures which are comcentrated on PU(—P). If Pis (H, 2)-inde-
pendent, then the set of measures {u;};_, has independent powers with
respect to M (F).

TEEOREM 2.3. Let &, be a Raikov system generated by a o-compact
group H, and F, a sirictly larger symmetric Raikov system. Then 2 X H = H
implies that there is a compact perfect (H,2)-independent set P in &F,, so
that the set of continuous measures {u}r., in M(F,), which are concentrated
on PU(—P) and are mutually singular, has independent powers with respect
to M (F,).

Proof. Let & be the family consisting of all compact perfect semi-H-
independent sets which belong to &#,, then 2 is non-empty (cf. [8], [12]).
If 2 xP' & H for each P’'< 2, then it is easy to show the existence of com-
pact perfect (H, 2)-independent sets (cf. [12]). We consider the case that
2XxPy < H for some Pye 2. Let G, = {#<G(7,): 22 = 0}. Since 2 xP,
< 2XH = H, for each peP, there exists he H such that p—he@,. Then
we have that (Py—H)NG,eF,\NF,. In fact, suppose (Py—H)NEG, <

\(H+w®,) for some countable set {#,};. For any peP, there is an

n==1 ]

element & of H such that p—he@,, so that p—he | J(H +a,). Since H
" o oo M=l

is a group, pe J(H +a,), that is, Py = | J(H +a,). On the other hand,

n=1 n=1

by Lemma 2.1, Pye#,\%,, this is a contradiction. Choose a compact
perfect semi-H-independent subset P of (Pyb—H)NG, (cf. [12]). Since
2 X @, = {0}, every semi-H-independent subset.P of &, is (H, 2)-independent.
Thus P is a compact perfect (H » 2)-independent subset in &,. By Prop-
osition 2.2, if {u;}7, is & set of continuous measures which are concentrated
on PU(—P), then {u}, has independent powers with respect to
M(F,). »

BExawprm. There is an example of a locally compact abelian group
G(7,) such that the statement of Proposition 2.2 is not established, that is,
there is a Raikov system # of G(r,) generated by a ¢-compact group
H such that for any compact perfect semi-H-independent set P every
non-zero continuous Hermitian measure u concentrated on Pu(~DP)
does not have independent powers with respect to M (F).

Let {Z{"}., be the family of cyclic groups of order 4 and Z™ the
subgroup of Z&‘_") of order 2. We shall ‘define the groups as follows G(r,)
= [1Z{ and H = []Z(. Let P be any compact perfect semi-H-inde-

n=2 n=2

(=]
pendent set of G(v,). Then we can assume that P {a®} x []2{", where
' ne=l

af? iy an element of Z® of order 4. Let af’ is a non-zero element of Z®.
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If m, is the normalized Haar measure on H, = {a{’} X []Z{”, where
n=2
af? is a unit element of ZQ, then it is clear that

My L M 609)!

* where 84 is the probability measure concentrated at the point ofY). Let 4

be any continuous probability measure which is concentrated on P. We
shall show that

Mo* g NON. | Mok SafDk u*.

If B, and #, are any Borel sets on which Mok g and myx Ba{D* p* are
concentrated respectively, then we have

moru(Bo) = [mo(By—a)du(o) =1.
Write A, = {#eP: my(By—=) = 1}; it follows that

u(do) =1
and
mo(H:\(By—)) = 0 for each med,.

Similarly, we get
Mk 8o ((Hy+ a’)\(B,+a)) =0 for each wed,,

where A; = {#eP: my* O (B +a) =1}. From p(d,) = u(4d,) =1, it
follows that 4,NA, is non-empty. Given @ye 4,MnA4,, then we have

Hy+a, = Hy+ o) -,
and so

Mgk 6‘”0 = Mg* 6agl)* 5_% .
Thus, we have

Mg *6z0((E1 + m0)\1'-"0) = My * 611.9)* 5720 ((-Hl +af) —a,) \El) =0.

Hence, it follows that By, +@. This shows that mg+u non | mg* oD p*.
Thus, it follows that

llomgk g — Mgk Bal s ¥ < [l poll + [lningx Sl 4 p*|) = 2 imol] lull.
Define the polynomial f in elements of M (G (z,)) as follows

J0) = (my—mox 8a)xr  (ve U (6(xy).
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From m, | mye+ 6, and u being non-negative,

1N+ p*l) = 4lmollllall -
On the other hand,

[If (22 + p*)| = llmvgse o — g Safld s || Itrg o — Mgk 8o i
< 21mgll sl Nl w4 llmg Sa{ poll = 4 flmo|l sl
Therefore, it follows that

IF (a2l << 1F1 Qe+ w11)

that is, every non-zero continuous Hermitian measure concentrated on
PuyU(—P) does not have independent powers with respect to M (&), where
& is the Raikov system generated by H = []Z{™.

n=1

Next we shall show the following theorem.

THEOREM 2.4. Let F, be a symmetric Raikov system generated by a com-
pact independent set Py, and F, a strictly larger symmetric Raikov system.

- If there ewists a compact set A eF N\F, such that 2 XA <= Py, then there

ewists a compact perfect set P im F, such that any non-zero continuous
‘measure p concentrated on PuU(—P) has independent powers with respect
o M(F,).

‘We shall prove the next lemma to show this theorem.

LuMMA 2.5. For a o-compact subgroup H of G(v,), let P be a compact
semi-H-independent set such that 2 xP < H. Suppose that a; and a, are
concentrated on H—z and H, respectively; then (H—z2)NH =@ implies
that .

apep” Laxp™  (m=1,2,..)
Jor any continuous measure p which is concentrated on Pu(—P).

Proof. The measures a,xu" and a,u™ are concentrated on H —z--
+n(PU(—P)) and H-+n(PU(—P)), respectively. Evidently, if ‘the
sets are not disjoint, we have

hita+ oo —2 = kY by,

for some g, hye H and @y, ..., "%, Yu, ..., Yue PU(—P).
Denote by § the set of points (@, ..., @,)ePU(—P) X... xPU(—P)
such that for some he H we have

hta . A e HAn(PU(—P)) +2.

Since H-is a group, § is the set of points (@y,..., #,)e PU(—P)X...
- X PU(—P) such that

@+ ...+ o e H-n(PU(—P))+e.
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1f we can show that u x ... X u(8) = 0, then it will follows that a, X p X .
X u((H—2) x8) =0, which implies that ayx (H—l—n(Pu(-—P) ) —o.

LeL 2=h4y+...+y,—~z — ... —a, with #'< H and yl, ey Yy By eee
ey We PU(—=P). If (&, ..., 5,)e 8, then
g=hto+ ...+ 8,—Y— ... —Y,

for some he H and yy, ..., y,e PU(—P). Thus we have that
Byt oo+ — Y — o~y E ., —Y — ... —yheH.

Since the set P is semi-H-independent and 2 X P < H and z¢ H, the set
8 is contained in a finite union of sets of the form

A= U {@,...,%,): & =2; or —g},
I<i#isn

A, = {(y, ..., @) w, == or —af},
1<, i<n

Ay = U {(#1y...,3): 3, =y; or —y;}.

1<i,j<n
Since x is continuous, these sets are of (uX ... X p)-measure zero. It
follows that al*,u"(H—i—n(PU(——P))) =0, and $0 a;*#u"® and a.ku® are
mutually singular. m
For a given compact subset @ of G(z,) and non-negative integer =,
we call a measure p of order nQ provided that y is concentrated on 7@ and
wEkQ) =0 0g<E<n—1.

Proof of Theorem 2.4. Let ¢, = P,u(—P;) and H = Uan1

‘We can choose a compact perfect semi-H-independent subset P of A.
Let u be a non-zero continuous measure concentrated on Pu(—P). Take
mutually singular measures o, and o, which are concentrated on H. We
have to show that
oykp” Lok (n=1,2,..).

‘Without loss of generality we may assume that o; have order r,Q, (1 =1,
2), with 7, >7r,. Let 4" and A® be mutually disjoint Borel sets
on which o, and ®, are concentrated, respectively. For any ze A®,
denote by 8@ the set of points (g, ..., g,)€@ X ... X such that for some
e A® and ¢,...,q,cQ, we have

s+qit o+ =Y+ a0+ o

‘We may assume that ¢y, ..., ¢, are all different, and so are g, ..., ¢,
sinee g is continuous. We can write the elements 2 and ¥ as follows:

@ = mpP+ ..+l
and

y = mPp®+ ... +mf v,
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‘where .
]’f"y . 5p§c(ac)a _'pl PEREY) p%)l)e-Ply
m@| 4L Imk(a:)l =7, and Img”)l + .+ [m%);)] = ¥a.
Then we get
Gt ot G
= m{p + ...+ mfl iy —m® pf — ... —mfy Py 0.
From P being semi-H-independent, it follows that
2q1 _l_r)q _ m(v)p(ﬂ) R ms:())_p 1/)
+ m@p@ + o mypfly =0,

with {¢1", ..., ¢} = {q1, ..., ¢,}. Then, since 2xP = Py, 7, >r, and P,
is independent, §® is contained in a finite union of sets of the form

88 = {(d1y -y Gn) e 8- £pP) (=1, ..,m,r =1,..., k().

I u({ge@: 2q = :[;p(w)} 5 0, then there is & compact perfect (H, 2)-
independent subset in {ge@: 2¢ = p®}—q,, with 2¢, = £p®. Thus,
in this case, the statement of this proposition is established. If u{(geQW:
2¢ = p)} = 0 for all se AY, then

f 24D 10Q)E) (4D 4 n@)e0r* U ()

= [r{f - 1500, - ) (). . dps(g)} oy (2) = 0,

and 80 wy*p” | wy+u™. Thus, on the basis of Lemma 2.1 and Lemma
2.3, the rest of the proof is quite similar to that of the analogous part of
Proposition 2 in [12]. m ’

3. Independent sets and certain measures. In [9]J. L. Taylor showed
that there exists a compact commutative topological semigroup S with
identity and an order preserving isometric isomorphism 6 of M (@ (o))
infio M (8), where M (S) is the Banach algebra consisting of all bounded
regular Borel measures on §, such that

(1) the image of M (G (7)) in M(S) is weak*-dense;

(2) each non—zero multiplicative linear functional % on M (G( )}
has theé form A(u f fa@bu for some non-zero continuous semicharacter
+ fon §;

(3) there are enough non-zero continuous semicharacters on § to
separate points; and

(4) if pe M(G),ve M(S) and » < 8y, then there is a measure we M ()
sueh that o < p and fw = 9.
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We call § the structure semigroup of M (G ( (z )) The space of all non-

zero semicharacters on § is denoted by §. We may consider § to be the
maximal ideal space of M (G(z,)).

Given an idempotent p of §, let K, denote the maximal group of
8 with p as unit, and N, the set of those measures u in M (G(ro)) for which
fp are concentrated on K. In [10] Taylor showed that if ¥, is non-trivial
then there is a topology e 7 (6 (v,)) such that ¥, coincides with the radical
LM (@ (7)) of L'(G(7)) in M(G()), the intersection of all maximal ideals
confaining the ideal L*(G(v)). Let K stand for the union of all X, where
p runs over the set of idempotents of §. We shall denote by Mg(G(z,))
the set of all those measures u in M (G (z,)) for which 0x are concentrated
on K but vanish on K, for every idemnpotent p.

The purpose of this section is to show that under suitable restriction
M (G(7,)) is not trivial. This will give an affirmative answer to the prob-

- lem raised by Taylor in [10]. It should be remarked that K. Izuchi ([5])

also proved independently the non-triviality of Mg (G (z,) for the case
of the Bohr compactification of the real line group.
Let us introduce several notations. Let

A, = {(ay, &5y 05, ...): g =1, =1 or 2 for 1<j<n and o; =0 for
n-+1 < j}

and 4 = 4,. For aed we write |a| =n if a belongs to 4,,. Let a
=0

e
= (a9, @y ...) and § = (B, f1,...) be elements of 4. If a; = §; (0 < j < m)
and a,.; # f,.1, then we denote by aap the element (apy Azy vivy Oy,
0, 0,...). The notation a> # will mean the relation aaf = 8. If a £ 8,
then a’'A " = an f whenever a<<a’ and §<< g

Let G(z,) be the complete direct sum of a family {H },.4 of infinite
compact groups, in particular, H, is uncountable. Bach #¢ @ (r,) may be
thought of as a string & = (..., @,, ...), the group operating being compo-
nentwise addition. For each a,e A let

o = ey @py ) e G Tg): B =0 if f<<ap}.

Let m, be the normalized Haar measure on &,. We define the measure
sy (m=1,2,...) as follows,
1
S

aedy,
LemmA 3.1. The countable set {u,}o, has the unique weak-* cluster
point.

Proof. Since G(7,) is compact, by the uniqueness of Fourier-Stieltjes
transform, if {f,(p)}ou1, where 4, is the Fourier-Stieltjes transform of
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lin, is convergent for each continuous character y of G(z,), then {u,}> ,
has the unique weak-* cluster point. If a, fc 4 and < a, then G, = G,.
Since 7, (y) =1if y =1 on &, and 1h,(y) = 0 if y %1 on @, ([7], p. 10),
B < a implies

thg(y) < g(y).

Thus, if 1< %< m, then

. S
/tm(y) = Z 2 Z g (7)
fed,, ﬁ<ulAm
=g 2 2 gy Z titg(¥) = fn (),
fedy, fadty,

§0 that {,, ()}52., is & non-decreasing sequence. Thus {#, (y)}3., is convergent
for each continuous character y of G(z,). This completes the proof. m

Let 4 be the weak-* limit of {u,}5,, then clearly u is a probability
measure. Given ae 4 and an integer » > |a|, we put

=g

ﬁeA;
where A7 = {fed,: a<<f}. Then {ug}r.,, has the unique weak-* cluster

point u® with the norm

1
o whose support is contained in @,. Further-

more, we obtain

‘u=2,u“ (n=1,2,...).

ac/ln
LemmaA 3.2. If a # B and |a| = ||, then
o, 1
b ps = o2l Mogpp-
Proof. Since a’' > o and g’ > B implies

aAp =anB and Mgk Mg == Mg p e = Mappy

it follows that

= In s 3]

a‘edy . ﬂc/la
1 1
=g 2 2 Mg %My = Salar Maps- W
aeAaﬂeAﬂ
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Lemma 3.3. The measure Ou is concentrated on K.
Proof. It is enough to prove

Ou(d;) =0 for each fe 8,

where A, is the set of those points s of § for which 0 < |f(s)] <1 ([10]).
If a,fed, and a B, then the inequality, which is a consequence of
multiplicativity of f,

X4y (w) XA,W) XA,(‘U?/)
holds and Lemma 3.2 implies

< 0p*(4y) 04 (4y)

= ff x-Af(m)ZA,(y) da#a(w)dﬂlup(y)

< [ 74y (wy) a0 (2) 804 (9)

= O 008 () = O(u"w) (A7) = 55 Oy

Here the multiplicativity of the map 6 is important. Since the measure
Mgpp 18 concentrated on K ([10]), it follows that

(')Au“’(A,) 6pf(dy) = 0.
hence 6u®(4;) =0 or Ou’(4,) = 0. Then, since u = Y p°, for each m,

aed,
there is ae 4, such that i

Ou(dy) = 04" (4) < o
This leads to Ou(A4,) = 0. m

LEMMA 3.4. For each idempotent p eS8, 0u(K,) = 0.

Proof. If 6u(K,) = 6> 0 for some idempotent pe §, then there is
topology ve T (((7,)) such that N, = L**(@ (7)) ([10]). Let » be an integer
with 2:_ < 4. Sinee | = —él— for all ae 4, and u = %’ u°, there exists
at least three distinet elements a, a,, a; of 4, such that ,u"f(@ =1,2,3)
are not singular to L'*(G(r)). Let w; be non-zero positive measure of
L*(@(7)), with o; < u%(¢ =1, 2, 3). Then, for some integer k, (v;*®,)*
is not singular to L‘(G(-::)) ([10], p. 112) On the other hand, from (wy* w,)*
€ (U1 p2)* € (Mg pg,)" = My pq, 16 follows that (ml*wa)"eL‘ (6 (Taynap)s
where 7, ,,, is the weakest locally compa,ct group topology on G such
that G, ,,, is open. Since IL'(&(z))nL* (G(Ta]/\az)) #= {0}, 7= T"-l/\“z

On the other hand, since (w;*w,*ws)* is not singular to I*(G(v))
and (wp g% 05 € Mogpoppes We haVe T = Ty 000 But, from H,,
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being an uncountable compact group, it follows that =
Thus we have reached a contradiction. m
Since 4 is a countable set, we can get the following theorem.
THEOREM 3.5. If G(v,) is the complete direct sum of am imfinite Sfamily
of infinite compact abelian groups, then M K(G(ro)) 18 non-trivial.

aAag #* T"lf\azAﬂs'

COROLLARY. If G (7,) is a compact group such that the dual group ¢ (79)
of G(v,) has an infinite independent set P, then My (G(vy)  {0).

Proof. Let {P,};.; be a disjoint collection of infinite subsets of
"~ L )
G(7p), with P = Uan. Let H be the annihilator of the group generated
by P. Then G () /H is the complete direct sum of a countable family {H,}®
of infinite compact groups, where H, are dual groups of infinite discrete
groups generated by P, ([7], p. 37). Let §; and 8, be the structure semi-
groups of M (G(z,)) and M(6(v,)/H), respectively. Let 0, and 6, be the
homomorphistms of M (G (z,)) into M (8,) and of M(G(zo)/H) into M (8,)
with properties (1)-(4) in this section, respectively. By Theorem 3.5,
Mz (G(zo)/H) is non-trivial. '

Let us denote by @ the canonical homomorphism of G(z,) o G(v,) |H
and by & the induced Banach algebra homomorphism from M (@ (7o)
onto M (G(ro) /H) ([7], p- 54). There exists a non-zero positive measure
pe M(G (7)) such that @y is a measure of My (@(v0)/H). Since &(my)
Is the unit of M(G(v))/H), we may assume that uxrmgy = u.

At first we shall show for any fe 871

IF12(s) = If1(s) for se 8y, Biu ae,
if |f(my) = 0, then
JIF186, 5 = 1£1p) = 1F 1 xmpg) = IF1()1f1(m) = 0,

so that |fi(s) =0 6,4 ae If |fl(mg) # 0, then |[f|(s) =1 for se S,
le,zz a.e. ([10], P 112). Thus, by Lemmsa 3.2 in [1], there is a pogitive
semicharacter ge¢ S, such that

IfI(») = g(d»)  for each ve M (G (7).

Put 4, = {:S‘E 8 0 < Ifi(s) <1} It O,u(4y) >0, then there is
& non-zero positive measure we M (G (z,)} such that 6, is the restriction
measure to 4, of 0,4 (cf. [9]). From the inequality

J 930,90 = [ (f136,0 = [1fl(®)a0,0(s) < 6,0 = |Pwl,
Ay

it follows that 8,Pw({se 8,: g(s) < 1}) > 0. Since 0,90 < 0,du, we have
Dywe Mg (G(z,)/H), so that 0:Pw ({se 8,:g(s) = 0}) > 0. Let » be the
measure on G(v,)/H such that 6,y is the restriction to {s€8p: g(s) = 0}
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of Pw, then »is a non-zero positive measure and g(») = 0. Let »' be a non-
zero positive measure on G(7,) such that »' € w and Py’ = ». From »' <€ w,
it follows that 6, < 6w, thus

g(») = g(®) = IfI() = [If1d6,»' > o.
47

This is a contradiction.

Finally, we shall show x| LM (@ (7)) for every ve 7 (G(v,)). It is enough
to show gb(LI/2 (G(r))) < I'(@(7)/H). Let h be any multiplicative linear
functional of M|(@(r)/H) such that h(») =0 for every veL'(G(z)/H).
Since @(Ll (G(r))) = I'(G(%)/H) ([7], p. B5), h o @ is a multiplicative linear
functional of M (6 (7)) such that & o ®(L* (¢ () = 0. Thus h(Pw) = & o B(w)
= 0for every weL**(G(z)). This shows that QS(L”2 (G('z:)}) o I (G(v)/H). m
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