

STUDIA MATHEMATICA, T. LIX. (1977)

A rigid topological vector space

bу

L. WAELBROECK (Bruxelles)

Abstract. A topological vector space is rigid if its only continuous endomorphisms are multiples of the identity mapping. We give here an example of such a rigid space, it is metrisable, separable, and p-normable for all p < 1.

The space we describe is not complete. It is a dense subspace of a Fréchet space that we describe first. This Fréchet space E has few continuous endomorphisms. The algebra $\mathscr{L}(E)$ of all these endomorphisms is isomorphic to $L_{\infty}(I)$.

Our construction will use a result of P. Turpin (cf. [3], or [4], paragraph 3.4, Theorem 3.4.8, p. 95). Assume that ϱ_1 and ϱ_2 are two increasing, concave mappings $\mathbf{R}_+ \rightarrow \mathbf{R}_+$, continuous and vanishing at the origin. Let L_{ϱ_1} be the space of measurable functions on a diffuse probability space, defined modulo null sets, and such that

$$v_{o_i}(u) = \int \varrho_i(|u|) dm < \infty$$

with the topology defined by the \mathfrak{F} -norm $r_{e_{\ell}}$. Turpin then shows that a non-zero continuous linear mapping $L_{e_1}{\to}L_{e_2}$ can only exist if $L_{\varrho}\subseteq L_{\varrho}$, i.e. if

$$\limsup_{t\to\infty}\varrho_2(t)/\varrho_1(t)<\infty.$$

1. Γ will be a compact metrisable space with a diffuse probability measure, $\varrho(x,t)$ will be a continuous mapping $\Gamma \times \mathbf{R}_+ \to \mathbf{R}_+$ which is increasing and concave as a function of t for each constant x, and such that $\varrho(x,0)=0$. And $L_\varrho(\Gamma)$ will be the space of measurable functions u on Γ , defined modulo null sets, such that

(1)
$$v_{\varrho}(u) = \int \varrho \langle x, |u(x)| \rangle dm < \infty$$

with the \mathfrak{F} -norm ν_e . The situation is thus a little bit more general than the one described in the introduction, where ρ was independent of x.

It is clear that $L_{\rho}(\Gamma)$ is a separable F-space.

 L_o is a p-normable space if some t_o exists such that

(2)
$$\varrho(x,t') \geqslant \varrho(x,t) \cdot \left(\frac{t'}{t}\right)^{x}$$

when $t' \ge t \ge t_0$. This is easy. We let $\varrho_1(x,t) = \varrho(x,t)$ when $t \ge t_0$, $\varrho_1(x,t) = \varrho(x,t_0)(t/t_0)^p$ when $t < t_0$. The function ϱ_1 satisfies relation (2) but is not concave in t for constant x. We next let ϱ_2 be the smallest concave function of t which is larger than ϱ_1 . Then ϱ_2 is concave, clearly satisfies relation (2), for $t' \ge t > 0$, and is less than

$$\varrho(x,t) + \varrho(x,t_0) \left(\frac{t}{t_0}\right)^p$$

when $t > t_0$, which shows that ν_e and ν_{e_0} are equivalent F-norms.

Now, if $\varepsilon > 0$, if

From the spin of
$$B_s=\{f|\ v_{e_2}(f)< s\},$$

we see that

$$B_s + B_s \subseteq B_{2s}$$

because ϱ_2 is concave, also that

$$B_{2s} \subseteq 2^{1/p}B_s$$

because ϱ_2 satisfies relation (2) for $t' \geqslant t \geqslant 0$, therefore $L_{\varrho_2} = L_{\varrho}$ is *p*-normable by the Rolewicz theorem ([2]; or [1], p. 165).

2. $\Gamma = \{0, 1\}^N$ will be the Cantor set, with its usual probability measure, i.e. the countable direct product of the measure we obtain when we put on $\{0, 1\}$ that measure for which $\{0\}$ and $\{1\}$ each have measure 1/2.

To fix the notations, if $q \in \mathbb{N}$, if $k = 0, 1, ..., 2^q - 1$, we let

$$\gamma_{qk} = \left\{ (a_n)_{n \in \mathbb{N}} \epsilon \ \Gamma | \ \sum_{n=1}^{q-1} a_n 2^n = k \right\}.$$

The sets γ_{qk} (q constant) are the 2^q elements of the obvious partition of T "of order q". The measure of each γ_{qk} is 2^{-q} .

We shall later prove the existence of a function $\varrho(x,t)$, and of functions $\varrho_{q+}(x,t)$, $\varrho_{q-}(x,t)$, defined for $x \in I$ and $t \in \mathbf{R}_{+}$, taking their values in \mathbf{R}_{+} , and having several properties:

- a. The functions ϱ , ϱ_{q^+} , ϱ_{q^-} are continuous, $\varrho_{q^-} \leqslant \varrho \leqslant \varrho_{q^+}$;
- b. For x constant, each of these functions is an increasing concave function of t which vanishes when t=0;
- c. $\varrho_{q+}(x,t) = \varrho_{q+}(x',t)$, $\varrho_{q-}(x,t) = \varrho_{q-}(x',t)$ when x and x' belong to the same element γ_{qk} of the partition of order q of Γ ;
- d. $\limsup_{t\to\infty} \varrho_{q^-}(x',t)/\varrho_{q^+}(x,t) = \infty$ when x and x' belong to different elements γ_{qk} , γ_{qk} ($k\neq k'$) of that partition of Γ .

The aim of Sections 3 and 4 will be the proof of

PROPOSITION 1. If ϱ is the function whose existence is postulated above, the only continuous endomorphisms of $L_{\varrho}(\Gamma)$ are multiplications by the measurable functions t such that $tL_{\varrho}(\Gamma) \subseteq L_{\varrho}(\Gamma)$.

3. Let $A \subseteq \Gamma$ be a measurable subset. We shall call $L_{\varrho}(A)$ the set of $u \in L_{\varrho}(\Gamma)$ which vanish on the complement of A.

Lemma. $L_{\varrho}(A)$ is an invariant subspace of $L_{\varrho}(\Gamma)$ under endomorphisms, this for all measurable subsets A of Γ .

The proof of this lemma will be done in a few steps. Let $\mathscr A$ be the set of measurable subsets of Γ such that $L_\varrho(A)$ is invariant under continuous endomorphisms. We must prove that all measurable sets belong to $\mathscr A$.

a. The sets γ_{qk} belong to \mathscr{A} . A continuous endomorphism of $L_{\varrho}(\Gamma)$ has a restriction to $L_{\varrho}(\gamma_{qk})$ which is a continuous linear mapping

$$L_{\varrho}(\gamma_{\varrho k}) {
ightarrow} L_{\varrho}(\Gamma) = \bigoplus_{k'} L_{\varrho}(\gamma_{\varrho k'}).$$

We must show that a continuous linear $T\colon L_{\varrho}(\gamma_{\varrho k}) \to L_{\varrho}(\gamma_{\varrho k'})$ vanishes if $k \neq k'$.

We have

$$L_{\varrho_{\boldsymbol{q}^+}}(\gamma_{qk})\subseteq L_{\varrho}(\gamma_{qk})\overset{T}{\to}L_{\varrho}(\gamma_{qk'})\subseteq L_{\varrho_{\boldsymbol{q}^-}}(\gamma_{qk'}).$$

The first imbedding is dense and continuous. The last imbedding is continuous, and of course, injective. The composition is a continuous linear mapping $L_{e_{q^+}}(\gamma_{qk}) \rightarrow L_{e_{q^-}}(\gamma_{qk'})$. And if T were different from zero, this composition would also be different from zero.

But Turpin's result, quoted in the introduction, implies that every continuous linear map $L_{e_{q^{+}}}(\gamma_{qk}) \to L_{e_{q^{-}}}(\gamma_{qk})$ vanishes. As a matter of fact, $\varrho_{q^{+}}(x,t)$ and $\varrho_{q^{-}}(x',t)$ are independent of x or x' when $x \in \gamma_{qk}, \ x' \in \gamma_{qk'}, \$ we can put $\varrho_{qk^{+}}(t) = \varrho_{q^{+}}(x,t), \ \varrho_{qk'^{-}}(x,t) = \varrho_{q^{-}}(x',t)$ when $x \in \gamma_{qk}, \ \ x' \in \gamma_{qk'}, \ \ L_{e_{q^{+}}}(\gamma_{pk}) = L_{e_{qk^{+}}}(\gamma_{pk}), \ \ L_{e_{q^{-}}}(\gamma_{pk'}) = L_{e_{pk'^{-}}}(\gamma_{pk'})$ and limsup $\varrho_{qk'^{-}}/\varrho_{qk^{+}} = \infty$.

b. A is stable under finite unions. Let $A_1 \in \mathcal{A}$, $A_2 \in \mathcal{A}$, and $A = A_1 \cup \cup A_2$. Then $L_\varrho(A) = L_\varrho(A_1) + L_\varrho(A_2)$. A continuous endomorphism of $L_\varrho(\Gamma)$ leaves both terms of the right-hand side invariant, and leaves therefore $L_\varrho(A)$ invariant.

c. \mathscr{A} is stable under countable unions. Let $A = \bigcup_{1}^{\infty} A_n$, where each $A_n \in \mathscr{A}$. We may assume $A_n \subseteq A_{n+1}$. Then $\bigcup_{1}^{\infty} L_{\varrho}(A_n)$ is a vector space, is invariant, and is dense in $L_{\varrho}(A)$.

e. $A \in \mathcal{A}$ if $A = A' \Delta N$, where N is a null set and $A' \in \mathcal{A}$. (Here, Δ designates the symmetric difference.) Of course, since $L_{\varrho}(A) = L_{\varrho}(A')$.

The lemma, i.e. the fact that all measurable sets belong to \mathscr{A} , follows from the results a, b, c, d, e, above.

4. It is now easy to prove Proposition 1. Let I be the constant function equal to unity, let $t=T\cdot I$, where $T\colon L_\varrho(\Gamma)\to L_\varrho(\Gamma)$ is a continuous linear mapping. Then $T(u)=t\cdot u$ for all $u\in L_\varrho(\Gamma)$ $(t\cdot u)$ is the pointwise product of t and u).

We first observe that $T \cdot I_A = t \cdot I_A$ if I_A is the characteristic function of the measurable set A. As a matter of fact, if A' is the complement of A, $I_A + I_{A'} = I$, $T \cdot I_A + T \cdot I_{A'} = t$, but $T \cdot I_A$ vanishes on the complement of A (by Proposition 1) and $T \cdot I_{A'}$ vanishes on A. This proves the result.

Let next $f = \sum s_n I_{A_n}$ be a step function. Then Tf = tf by linearity. If f is a positive real-valued function, $f \in L_\varrho(\Gamma)$, we choose an increasing sequence of step functions f_n , tending pointwise to f. Then $f_n \to f$ in $L_\varrho(\Gamma)$. Also $tf_n = Tf_n \to Tf$, but tf_n cannot have any limit in $L_\varrho(\Gamma)$ other than tf, hence $tf \in L_\varrho(\Gamma)$ and tf = tf.

Proposition 1 is proved by writing a general $f \in L_{\varrho}(\Gamma)$ as a linear combination of positive real-valued functions.

5. We have used, but have not constructed, the function $\varrho(x,t)$ whose existence was postulated in Section 2. The construction of ϱ will involve two functions σ_+ , σ_- , $R_+ \to R_+$, both continuous, concave, increasing, vanishing at the origin, such that $\sigma_-(t) \leqslant \sigma_+(t)$ for all t, such that a sequence $t_n \to \infty$ exists with $\sigma_+(t_n) = \sigma_-(t_n)$ and

$$\lim_{n\to\infty} \sup_{t_n \leq t \leq t_{n+1}} \sigma_+(t)/\sigma_-(t) = \infty.$$

We shall prove the existence of such functions in Section 7, and construct σ_+ , σ_- in such a way that

$$\sigma_+(t') \geqslant \left(\frac{t'}{t}\right)^{1-1/n} \sigma_+(t),$$

$$\sigma_{-}(t') \geqslant \left(\frac{t'}{t}\right)^{1-1/n} \sigma_{-}(t),$$

when $t' > t \geqslant t_n$.

Let σ_+ and σ_- be two functions with the properties described above. Let $\varepsilon \in \Gamma$, then $\varepsilon = (\varepsilon_n)_{n \in \mathbb{N}}$, where for each n, $\varepsilon_n = 0$ or $\varepsilon_n = 1$. We define $\sigma_r(t)$ by the relations

$$\sigma_{\rm e}(t) = \sigma_+(t) \quad \text{ if } t_n \leqslant t \leqslant t_{n+1}, \ \varepsilon_n = \ +1,$$

$$\sigma_{\varepsilon}(t) = \sigma_{-}(t)$$
 if $t_n \leqslant t \leqslant t_{n+1}$, $\varepsilon_n = 0$.

Clearly, the mapping $(\varepsilon,t)\mapsto \sigma_{\varepsilon}(t)$ is a continuous mapping $\Gamma\times \mathbf{R}_{+}\to \mathbf{R}_{+}$, and for each constant ε , $t\mapsto \sigma_{\varepsilon}(t)$ is concave, increasing, and vanishes at the origin. For each p<1, we can find t_{p} such that $\sigma_{\varepsilon}(t')\geqslant \sigma_{\varepsilon}(t)(t'/t)^{p}$. Also,

$$\limsup_{t\to\infty}\frac{\sigma_{\varepsilon}(t)}{\sigma_{\varepsilon'}(t)}=\infty$$

if an infinite number of indices n_k exist such that $\varepsilon_{n_k} = 1$, $\varepsilon'_{n_k} = 0$.

We define mappings $f, f_{q^+}, f_{q^-} \colon \Gamma \to \Gamma$ in the following way. Let first $N = X_1 \cup \ldots \cup X_n \cup \ldots$ be an infinite partition of N into infinite sets. Let also $X_n = X'_n \cup X''_n$ be a partition of X_n into two infinite subsets. For each $x = (x_k)_{k \in N}$, let $f(x) = (\varepsilon_k)_{k \in N}$, where

$$egin{aligned} arepsilon_k = 0 & ext{if } k \in X_n' ext{ and } x_n = 0 ext{ or } k \in X_n'' ext{ and } x_n = 1, \\ arepsilon_k = 1 & ext{if } k \in X_n' ext{ and } x_n = 1 ext{ or } k \in X_n'' ext{ and } x_n = 0. \end{aligned}$$

We also let $f_{q^+}(x)=\delta', f_{q^-}(x)=\delta'',$ where $\delta'_k=\delta''_k=\varepsilon_k$, when $k\in\bigcup_{n\geqslant q-1}X_n$, while $\delta'_k=1$ and $\delta''_k=0$ when $k\in\bigcup_{n\geqslant q}X_n$. These mappings are such that $f_{q^+}(x)\geqslant f(x)\geqslant f_{q^-}(x)$ when we put on Γ its natural order. Also, f_{q^+} and f_{q^-} remain constant on each element of the partition $\Gamma=\bigcup_{q \in I} \gamma_{qk}$ of order q of Γ , and, if x and x' are in two different elements of this partition, i.e. if there is an $n\leqslant q-1$ such that $x_n\neq x'_n$, an infinite set of indices m can be found such that $[f_{q^-}(x)]_m=1$, $[f_{q^+}(x)]_m=0$.

The functions

$$egin{aligned} arrho(x,t) &= \sigma_{f(x)}(t)\,, \ arrho_{q+}(x,t) &= \sigma_{f_{q+}}(x,t)\,, \ arrho_{q-}(x,t) &= \sigma_{f_{q-}}(x,t) \end{aligned}$$

have all the properties announced in Section 2.

6. Proposition 2. The function ϱ being constructed as in Section 5, $L_{\varrho}(\Gamma)$ is a p-normable for all p < 1. The only endomorphisms of $L_{\varrho}(\Gamma)$ are multiplications by elements of $L_{\infty}(\Gamma)$.

We know that $\varrho(x,t') \geqslant \varrho(x,t)(t'/t)^{1-1/n}$ when $t' \geqslant t \geqslant t_n$. This has been shown in Section 1 to be sufficient for p-normability when p = 1 - 1/n.

The endomorphisms of $L_\varrho(\varGamma)$ are multiplications by functions τ such that $\tau L_\varrho \subseteq L_\varrho$. The mapping $u \mapsto \tau u$ is then continuous. We shall show that τu does not depend continuously on u when τ is unbounded.

Let $E_n = \{x | \tau(x) \geqslant n\}$; choose $a_n(\varepsilon)$ in such a way that

$$\int_{E_n} \varphi(x, a_n(\varepsilon)) dm = \varepsilon.$$

We notice that $a_n(\varepsilon) \to \infty$ for ε constant when $n \to \infty$, hence $a_n(\varepsilon) > t_2$ when $n \geqslant N(\varepsilon)$ for some constant $N(\varepsilon)$. But, for $t \geqslant t_2$, we know that $\varphi(x, \tau t) \geqslant \tau^{1/2} \varphi(x, t)$. Also $\tau(x) \geqslant n$ for $x \in E_n$; hence

$$\int\limits_{E_n} \varphi\left(x, \, \tau(x) \, a_n(\varepsilon)\right) \geqslant n^{1/2} \varepsilon.$$

We choose $\varepsilon_n=n^{-1/2}$, then $\varepsilon_n I_{E_n}\to 0$ but $\tau\cdot \varepsilon_n I_{E_n}$ does not tend to zero in L_o .

7. We must still construct the functions σ_+ and σ_- that were used in Section 5. The sequence of real numbers t_n will be constructed by induction, along with the functions σ_+ , σ_- on the interval $(0, t_n)$. To start the induction, we let $t_1 = 1$, $\sigma_+(t) = \sigma_-(t) = t$ for $0 \le t \le 1$.

We now assume that t_n has been constructed, along with σ_+ and σ_- on the interval $(0, t_n)$, in such a way that these functions are continuous, concave, increasing, vanishing at the origin, that $\sigma_+(t_n) = \sigma_-(t_n)$, and that $\sigma_+ \geqslant \sigma_-$ on the interval $(0, t_n)$. We shall extend σ_+ and σ_- to the right of t_n in such a way that σ_+ remains concave, that $\sigma_-(t) = \sigma_-(t_n)(t/t_n)^{1-1/n}$ for values of t larger than t_n but near to t_n , and that $\sigma_+(t) \geqslant \sigma_-(t)$. This is only possible if the left-hand derivative of σ_+ at t_n is larger than

$$\frac{d}{dt} \left[\sigma_{-}(t_n) \left(\frac{t}{t_n} \right)^{1-1/n} \right]_{t=t_n} = \left(1 - \frac{1}{n} \right) \frac{\sigma_{+}(t_n)}{t_n}$$

so we assume that we have the required inequality.

On an interval (t_n, t'_n) , we let thus

$$\begin{split} \sigma_{+}(t) &= \sigma_{+}(t_{n}) + (t - t_{n}) \left(1 - \frac{1}{n}\right) \frac{\sigma_{+}(t_{n})}{t_{n}}, \\ \sigma_{-}(t) &= \sigma_{-}(t_{n}) \left(\frac{t}{t_{n}}\right)^{1 - 1/n}, \end{split}$$

and we choose t'_n in such a way that $\sigma_+(t'_n)/\sigma_-(t'_n) \geqslant n$. We next extend σ_+ and σ_- to an interval (t'_n, t'_n) , letting on this interval

$$\begin{split} \sigma_{+}(t) &= \sigma_{+}(t'_n) \left(\frac{t}{t'_n}\right)^{1-1/n}, \\ \sigma_{-}(t) &= \sigma_{-}(t'_n) + (t - t'_n) \left(1 - \frac{1}{n}\right) \frac{\sigma_{-}(t'_n)}{t'_n}, \end{split}$$

and choose t''_n in such a way that $\sigma_+(t''_n) = \sigma_-(t''_n)$.

On the interval (t''_n, t_{n+1}) we let

$$\sigma_{+}(t) = \sigma_{-}(t) = \sigma_{+}(t''_{n}) + (t - t''_{n}) \left(1 - \frac{1}{n}\right) \frac{\sigma_{+}(t''_{n})}{t''_{n}}$$

and choose t_{n+1} in such a way that

$$\left(1-\frac{1}{n}\right)\frac{\sigma_+(t_n'')}{t_n''}\geqslant \left(1-\frac{1}{n+1}\right)\frac{\sigma_+(t_{n+1})}{t_{n+1}},$$

i.e. the left-hand derivative of σ_+ at the point t_{n+1} must be larger than the derivative of $\sigma_-(t)$ in the interval (t_{n+1}, t'_{n+1}) .

We must check that the successive choices of t'_n , t''_n , t_{n+1} are possible. The proof is easy as far as t'_n and t''_n are concerned. The expression of σ_+ in the interval (t_n, t_n) has a larger order of magnitude than the expression of σ_- on the interval, so the ratio must become larger than n somewhere. On (t'_n, t'_n) , the expression of σ_- has a larger order of magnitude than that of σ_+ , but $\sigma_-(t'_n) < \sigma_+(t'_n)$, so some t''_n must exists where these two expressions become equal.

On (t'_n, t_{n+1}) , the common expression of σ_+ and σ_- has the form a+bt with a>0, b>0 (it is the tangent to a strictly increasing concave functions which vanishes at the origin). Of course,

$$b = \left(1 - \frac{1}{n}\right) \frac{\sigma_+(t_n'')}{t_n''}.$$

Further $(a+bt)/t \rightarrow b$ as $t \rightarrow \infty$, for t_{n+1} large enough we have

$$b \geqslant \left(1 - \frac{1}{n+1}\right) \frac{a + bt_{n+1}}{t_{n+1}}$$

as required.

8. Proposition 3. The space $L_{\varrho}(\varGamma)$ has a dense rigid subspace.

If E is a topological vector space and E_0 a dense subspace, a continuous endomorphism of E_0 extends to E. In other words, the algebra of endomorphisms of E_0 can be identified with the algebra of endomorphisms of E which leave E_0 invariant.

All we need, therefore, is to find a dense subspace E_0 of $L_{\varrho}(\Gamma)$ such that τ is constant if τ is a measurable function such that $\tau E_0 \subseteq E_0$.

We identify, as usual, I with the unit interval and the Lebesgue measure, mapping $(x_n)_{n\in\mathbb{N}}$ onto $\sum x_n\ 2^{-n-1}$. This is injective on the complement of a countable set and is measure preserving. We obtain in this way an Orlicz space of functions on the interval whose only endomorphisms are multiplications by elements of $L_{\infty}(I)$.

234

STUDIA MATHEMATICA, T. LIX. (1977)

The space E_0 of continuous piecewise linear functions on I is a vector lattice, is dense in C(I) by the Stone-Weierstrass theorem, but C(I) is dense in $L_{\varrho}(I)$, so E_0 is dense in $L_{\varrho}(I)$. And clearly, τ is constant if τ is a function and $\tau E_0 \subseteq E_0$.

References

- G. Köthe, Topologische lineare Räume I, Springer Verlag, Berlin-Heidelberg-New York 1960.
- [2] S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Pol. Cl. III 5 (1957), pp. 471-473.
- [3] P. Turpin, Opérateurs linéaires entre espaces d'Orlicz non localement convexes, Studia Math. 46 (1973), pp. 153-165.
- [4] Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. (Rozprawy Mat.) 131 (1976), pp. 1-224.

FACULTÉ DES SCIENCES, DEPARTEMENT DE MATHÉMATIQUE, CP 214 UNIVERSITÉ LIBRE DE BRUXELLES, BRUXELLES, BELGIUM

Received May 6, 1975

(1012)

Multipliers of L_E^p , Π^*

bу

DANIEL M. OBERLIN (Tallahassee, Fla.)

Abstract. Let X be an abelian group, the character group of a compact group G. For a subset E of X let L^p_E be the subspace of E-spectral functions in $L^p(G)$. We show that if X is infinite and p>2 is an even integer, then E can be chosen so that not every multiplier of \widehat{L}^p_E extends to a multiplier of $\widehat{L}^p(G)$.

- 1. Let G be a compact abelian group with character group X. For $1 \leqslant p \leqslant \infty$, let $L^p(G)$ be the usual Lebesgue space with respect to normalized Haar measure on G, and for $E \subseteq X$, let L^p_E be the translation invariant subspace of $L^p(G)$ consisting of those functions whose Fourier transforms vanish off of E. Let M^p_E denote the set of functions in $l^\infty(E)$ which are multipliers for the Fourier transform space of L^p_E . Thus $\varphi \in M^p_E$ if and only if for every $f \in L^p_E$ there exists $g \in L^p_E$ with $\hat{g}(x) = \varphi(x)\hat{f}(x)$ for each $x \in E$. For $1 \leqslant p < \infty$, M^p_E can be identified with the space of operators on L^p_E which commute with translation by elements of G. Let $M^p|_E$ denote the set of restrictions to E of functions in $M^p(=M^p_X)$. Then, clearly, $M^p|_E \subseteq M^p_E$. We are interested in the following questions:
 - (i) Does $M^p|_E = M_E^p$?
- (ii) For $1\leqslant p_1 < p_2 < 2$ or $2< p_2 < p_1 \leqslant \infty$, is $M_E^{p_1} \subseteq M_E^{p_2}$? (If $M_E^{p_i}$ is replaced by $M^{p_i}|_E$, i=1,2, the answer is yes, by the Riesz–Thorin theorem.)

Question (i) is posed for the circle group T in [3], pp. 280–281, and has an affirmative answer for any G if p=2 (trivially) or if $p=\infty$ (see Proposition 1.2 below). On the other hand, in [12] the following theorem is proved.

THEOREM 1.1. If G is infinite and $1 \leq p < 2$, there exists $E \subseteq X$ for which $M^p|_E$ is a proper subset of M_E^p .

The present paper is a sequel to [12], and our main result here, Theorem 4.1, will be an analogue of Theorem 1.1 for the case when p>2 is an even integer. In Section 5 we will show that question (ii) sometimes has a negative answer.

^{*} The results contained in this paper, together with those of [12], were announced in [11].