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A rigid topological vector space

by
L. WAELBROECK (Bruxelles)

Abstract. A topological vector space is rigid if its only continuous endomorphisms
are multiples of the identity mapping. We give here an example of such a rigid space,
it is metrisable, separable, and p-normable for all p < 1.

The space we describe is not complete. It is a dense subspace of
a Fréchet space that we describe first. This Fréchet space X has few
continuous endomorphisms. The algebra. & (¥) of all these endomorphisms
is isomorphie to L. (I).

Our construction will use a result of P. Turpin (cf. [3], or [4], para-
graph 3.4, Theorem 3.4.8, . 95). Assume that o, and g, are two increasing,
coneave mappings R, —R,, continuous and vanishing at the origin. Let
L,, be the space of measurable functions on a diffuse probability space,
defined modulo null sets, and such that

v, (). = [ es(lul)dm < oo

with the topology defined by the §-norm Vosr Turpin then shows that a non-
zero continuous linear mapping I, —L, can only exist if L, = L, ,
ie. if .

limggp 02(t)/0:(2) < oo.

1. I' will be a compact metrisable space with a diffuse probability
measure, ¢(#,?) will be a continuous mapping I'x R, —R, which is in-
creasing and concave as a function of ¢ for each constant @, and such that
o(®,0) = 0. And I,(I'") will be the space of measurable functions % on I',
defined modulo null sets, such that

) vo(u) = [ o (@, lu(@)])dm < oo

with the §-norm »,. The situation is thus a little bit more general than the
one described in the introduction, where ¢ was independent of .

It is clear that L,(I") is a separable %-space.

L, is a p-normable space if some %, exists such that

t'\P
@) o(@,1)> (o, ) (%)
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g,

when ¢ >t > t,. This is easy. We let o, (2, %) = o(#, ) When ¢ = ¢,, g, (w, 1)
= o(@, t,)(t/t,)? when ¢ < #,. The function g, satisfies relation (2) but is
not concave in t for constant . We next let g, be the smallest concave
function of ¢ which is larger than g;. Then g, is concave, clearly satisfiee
relation (2), for ¢’ > > 0, and is less than

P

E R Y
olo 0+ elo, ) )
E 0
when ? > 1, which showk that »,'and »,dre equivalent F-norms.
Now, if ¢> 0, if
el Lo TR . R Lo L N
o "B, = {f] veé(‘f) <&}, - : S
we see that : ] ‘ )
’ B, 4+ B,< B,
because o, is concave, also that | ‘ )
B,, < 2'7p,

because g, satisties relation (2) for #’ > 1> 0, therefore L, = 1}‘P is p-nor-
mable by the Rolewicz theorem ([2]; or [1], p. 165).

2. I' = {0,1}" will be the Cantor set, with its usual probability;
measure, ie. the countable direct product of the measure we obtain when
we put on {0, 1} that measure for which {0} and {1} each have measure 1 /2.

To fix the notations, if ge N, it & =0,1,...,29—1, we let

Yar = {(a'n)1;e£v€ f] 571 ané” = k}
0

The sets yg, (¢ constant) are the 2¢ elements of the obvious partition of
T “of.order ¢”. The measure of each Vi I8 274 ‘

. We shall later prove the existence of a funetion o(w,t), and of fune-
fuons Qg+ (@, 1), 00~ (#,t), defined for e I and ¢ eR, , taking their values
in R, and having several properties: ‘

- a. The fuhctions ¢, g.+, g, are continuous, g,- < ¢ < gg+;
b‘. For # constant, each of these functions is an increasing coneave
function of ¢ which vanishes when ¢ = 0;
. 0+ {2, 1) = gg+ (4, B), 0, (3, 1) = 0~ (@', t) when @ and &' Delong
to the same element y, of the partition of order g of I';
d. fim ts-l»lo%) 0~ (25 8)[0g+(#, 1) = oo when # and &’ beiong to different
elements y, v, (k  §') of that partition of I B

”i::m

©
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The aim of Sections 3 and 4 will be the proot of
PROPOSITION 1. If g is the function whose ewistence is postulated above,
the only continuous endomorphisms of L (I") are multiplications by the
measurable functions t such that tL(I') = L,(I).

3. Let A = I be a measurable subset. We shall call L,(4) the set
of weL,(I'") which vanish on the complement of A.

Immwma. L(A) is an invariant subspace of Ly(I") under endomorphisms,
this for all measurable subsets A of I'. \

The proof of this lemma will be done in a few steps. Let & be the
set of measurable subsets of I' such that L,(.4) is invariant under conti-
nuous endomorphisms. We must prove that all measurable sets belong to <.

a. The sels yy, belong to o/. A continuous endomorphism of L,(I")
has a restriction to IL,(y,) which is a continuous linear mapping

Lo (v) > To(T) = @p Loy -

We must show that a continuous linear T': L,(ygu)-»L,(yg) vanishes
if k#E.
‘We have

Lo va) € Lora) > Lo(var) € Lo, (var)-

The first imbedding is dense and continuous. The last imbedding is con-
tinuous, and of course, injective. The composition is a continuous linear
mapping I,qq + (qu)—>Leq_ (Yg). And if T were different from zero, this com-
position would also be different from zero.

But Turpin’s result; quoted in the introduction, implies that every
continuous linear map L‘,q +(yq,c)—>1}eq_(qu) vanishes. As a matter
of fact, g,+(w,t) and g,(#',%) are independent of z or o’ when
Te Yoy T € Pge, WE AL PUL gt (8) = 0p+ (@, 1), 0= (@, 1) = @ (¢, t) when
Le Yakr z'e Yar's Ll’q+ (yj,lc) = L@qk+ ('ypk), Leq_(y_'pk') = Lepk"‘ (yplc‘) and
li::nsup Oqr— [0t = 0. :

—>00

b. & is stable under finite unions. Let A e of, Aye o/, and 4 = 4,0
UA,. Then L,(4) = L,(4,)+L,(4,). A continuous endomorphism of
L,(I') leaves both terms of the right-hand side invariant, and leaves
therefore I,(A) invariant.

’ )
¢. of is stable under coumtable unions. Let A = (JA4,, where each
5] 1
A,co/. We may assume A, = 4,,,. Then JL,(4,) is a vector space,
i

iy invariant, and is dense in L,(4).
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d. < is stable under countable intersections. Let 4 = (1} 4,,, where each
1

ML, (4

Anesf. Then L,(4)= ), and an intersection of invariant sub-
spaces is invariant.
e. Aest if A = A AN, where N is a null set and A'e o. (Here, A
designates the symmetric difference.) Of course, since L,(A) = Ly( 4.
The lemma, i.e. the fact that all measurable sets belong to .mf fol-

lows from the results a, b, ¢, d, e, above.

4. It is now easy to pi'ove Proposition 1. Let I be the constant func-
tion equal to unity, lett = T- 1, where T': L,(I") - L,(I') is a continuous
linear mapping. Then T (u) = ¢-4 for all we L,(I") (¢-# is the pointwise
product of ¢ and ).

We first observe that T-1, = i- 1, if 1, is the characteristic function
of the measurable set A. As a matter of fact, if A’ is the complement of

"4, 1,414 =1, T-1,+T-1, =1, but T-1, vanishes on the comple-
ment of A (by Proposition 1) and T'- 1, vanishes on 4. This proves the
result.

Let next f = s, 1,, be a step function. Then Tf = tf by linearity.

If f is a positive real-valued function, fe L,(I"), we choose an increas-
ing sequence of step functions f,, tending pomtwme to f. Then f, —f
in L(I'). Also #f, = Tfn—>’_l’f, but tf, cannot have any limit in L, (I")
other than tf, hence tfe L (I") and If = tf.

Proposition 1 is proved by writing a general feI, (T) ag a linear
combination of positive real-valued functions.

5. We have used, but have not constructed, the function p(a, 1)
whose existence was postulated in Section 2. The construction of ¢ will
involve two functions o, o_, R, R, both continunous, concave, increas-
ing, vanishing at the origin, such that o_(f) < ¢,.(t) for all #, such that
2 sequence t,—oco exists with o (4,) = o¢_(3,) and

lim sup o (f)/o_(t) = oo.
R0 LSl 4

‘We shall prove the existence of such functions in Section 7, and construct
o,,0_ in such a way that

when ' >t t,.
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Let o, and o_ be two functions with the properties described above.
Let ¢e I, then & = (&,) v, Where for each n, &, =0 ore, =1. We define
o,(t) by the relations

oe(t) = 0,.(?)
0,(t) = o_()

Clearly, the mapping (e, t)->0,(f) is a continuous mapping I'x B, R, , and
for each constant e, t+»o0,(t) is concave, ihcreasing, and vanishes at the
origin. For each p <1, we can find #, such that o,(i') > o,(3) (t'[£)?. Also,

oty
G'r(t)

if an infinite number of indices my, exist such that s, =1, &, =0.

We define mappings f,f,+,f,—: I'—I" in the following way. Let
first N = X;U... UX,U ... be an infinite partition of N into infinite
sets. Let also X, = X, U X, be a partition of X, into two infinite subsets.
For each 2 = (B)pen, let f(®) = (g)pen, Where

if ke X, and @, =0 or ke X, and @, = 1,
g =1 if keX, and 5, =1 or ke X,

We also let f+(#) = o', f—(2) = 0", where 6, = 8, =¢,, when

ke | X,, while 6, =1 and &, = 0 when ke (J X,. These mappings
n<g—-1 nzq

are such that f + () > f(«) > f,~ () when we put on I' its natural order.
Also, f,+ and f,- remain constant on each element, of the partition I = Uyg
of order ¢ of I', and, if @ and %’ aré in two different elements of this par-
tition, i.e. if there iz an # < ¢~1 such that @, s &, an infinite set of
indices m can be found such that [f,-(2)], =1, [fq+( Vm = 0.

The functions

i b, <ty & = +1,

it , <t <tpp, & = 0.

limsup ——

t—>c0

g =0

and #, =-0.

"Q(myiy:b'f(m)(t)s ‘
. Qg+(m7 t) = ”j‘q,,_(m, %),
0p-(®, 1) =07 _(@,1)
have all the properties announced in Section 2.

6. PROPOSITION 2. The function g being constructed as in Section b,
L,(I') is a p-normable for all p << 1. The only endomorphisms of Ly(I') are
multiplications by elements of L (I').

We know that g(x,t)> o(®, t)(t /)" when ¢'>¢>1{,. This has
been shown in Section 1 to be sufficient for p-normability whenp = 1—1/n.

The endomorphisms of L,(I") are multiplications by functions = such
that L, < L,. The mapping u—>ru is then continuous. We shall show
that 7 does not depend continuously on % when v is unbounded.
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Let B, = {&| v(») > n}; choose a,(e) in such a way that

fq;(m, ap () dm = s.
. I
We notice that a,(¢)—>co for & constant when n-—-oco, hence a,(e) >4,
when n>> N(e) for some constant N(e). But, for ¢>>1{,, we know that
@ (@, ) = ¢ (=, 1). Also 7(2) = n for ze E,; hence

fq) (@, 7(@) ay(e) = n'le.
Ey

We choose ¢, = n~"% then &,z —0 but v &,1y, does not tend to zero
in L,.

7. We must still construct the functions o, and o_ that were used
in Section 5. The sequence of real numbers #, will be constructed by
induetion, along with the functions ¢, o_ on the interval (0, %,). To start
the induction, we let &, =1, o, (f) = o_(f) =% for 0Kt 1.

‘We now assume that ¢, has been constructed, along with o, and o_
on the interval (0, f,), in such a way that these functions are continuous,
concave, increasing, vanishing at the origin, that ¢.(4,) = o_(%,), and
that o, > o.. on the interval (0, ?,). We shall extend ¢, and o__ to theright
of ¢, in such a way that ¢, remains concave, that o. (f) = o_(4,)(¢/t,)" """

icm

for values of ¢ larger than 7, but near to {,, and that o, (¢) = o_(¢). This -

is only possible if the left-hand derivative of ¢, at 1, i3 larger than

a £\ _ 1\ o, (4,)
a [@_ (f) (Tn) ]t=t,, B (1 B W) +tn

so we assume that we have the required inequality.
On an interval (,,t,), we let thus

a+(t) = o, () +(t—1;) (1_ %) F+t(t,.) ’

t 1-1/n
o_(t) = o_(t,) (T) ,

and we choose #, in such a way that o, (i;)/o_(£,) > n. We next extend

- o, and o_ to an interval (4, #,), letting on this interval

i 1-1/n
ot =0t ()

n

o_ () = o_(t)+(t—1,) (1_%) o_(t)

and choose f, in such a way that o, () = o_(1}).
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On the interval (t, , t,,1) Wwe let

Oy (t;nl )
“

04 (1) = o (1) = 04 (6)+(1—1)) (1— %)

and choose t,,; in such a way that

(1__1_ “+$f;:) >(1— 1 04 (tyy1) ,
n 1, n-+1 2951

n

ie. the left-hand derivative of ¢ at the point £,,, must be larger than
-the derivative of ¢_(f) in the interval (f,,1, tni1)-

We must check that the successive choices of f,, t, , ,,,, are possible.

“The proof is easy as far as ¥, and #,, are concerned. The expression of o,

in the interval (4,, t;,) has a larger order of magnitude than the expression
of o_ on the interval, so the ratio must become larger than n somewhere.
On (i, ), the expression of o_ has a larger order of magnitude than that
of o, but o_(%,) < o4 (1), s0 some t, must exists where these two expres-
sions become equal.

On (t, , t,,,), the common expression of o, and o_ has the form a -+ bt
with a > 0, b > 0 (it is the tangent to a strictly increasing concave fune-
tions which vanishes at the origin). Of course, '

b =(1__:E_) 0’+(t;:) .

n|

Further (a -+ bt) [t—b as oo, for 1, large enough we have

b>(1— 1 a+bi,
n+1 [

as required.

8. ProrosrrioN 3. The space L,(I") has & dense rigid subspace.

If B is a topological vector space and F, a dense subspace, a continu-
ous endomorphism of F, extends to E. In other words, the algebra of
endomorphisms of F, can be identified with the algebra of endomorphisms
of # which leave F, invariant.

All we need, therefore, is to find a dense subspace H, of L,(I') such
that 7 is constant if T is a measurable function such that H, < H,.

We identity, as usual, I' with the unit interval and the Lebesgue
measure, Mapping (#,),av onto > @, 271, This is injective on the comp-
Jement of a countable set and is measure preserving. We obtain in this way
an Orlicz space of functions on the interval whose only endomorphisms
are multiplications by elements of L (I).
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The space B, of continuous piecewise linear functions on I is a veetor
lattice, is dense in C(I) by the Stone~Weierstrass theorem, but O(I) is
dense in L,(I), so B, is dense in L,(I). And clearly, v is constant if v is
a function and =H, < F,.

f
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Multipliers of L%, IT*
by .
DANIEL M. OBERLIN (Tallahassee, Fla.)

2

Abstract. Let X be an abelian group, the character group of a compact group &.
Tor a subset E of X let L be the subspace of E-spectral functions in I” (). We show
that if X is infinite and p> 2 is an even integer, then ¥ can be chosen so that not

2 A
every multiplier of L% extends to a multiplier of LP (G).

1. Let @ be a compact abelian group with character group X. For
1< p < oo, let I?(@) be the usual Lebesgue space with respect to normal-
ized Haar measure on G, and for ¥ < X, let L} be the translation in-.
variant subspace of L7 (G) consisting of those functions whose Fourier trans-
forms vanish off of B. Let M% denote the set of functions in I*(#) which
are multipliers for the Fourier transform space of L. Thus ¢ ¢ M% if and only
if for every fe L% there exists ge L% with §(#) = p(a)f (2) for each w<E.
For 1< p < oo, M% can be identified with the space of operators on
L% which commute with translation by elements of G. Let M”{E denote
the set of restrictions to F of functions in M? (= M%). Then, clearly, M? | 7
< M%. We are interested in the following questions:

(i) Does MP|z = M%?

(i) For 1< p,<p,<2 OF 2<p,<p,< o0, is My < My % (If
M’}}i is replaced by M ]E, 4 =1, 2, the answer is yes, by the Riesz-Thorin
theorem.) .

Question (i) is posed for the circle group T in [3], pp. 280-281, and
has an affirmative answer for any @ if p = 2 (trivially) or if p = oo (see
Proposition 1.2 below). On the other hand, in [12] the following theorem
is proved.

THrorEM 1.1. If G is infinite and 1< p <2, there emisis B € X
for which MP|g is a proper subset of M%.

The present paper is a sequel to [12], and our main result here, The-
orem 4.1, will be an analogue of Theorem 1.1 for the case when p > 2
is an even integer. In Section 5 we will show that question (ii) sometimes
has a negative answer.

* The results contained in this paper, together with those of [12], were announ-
ced in [11].
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