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The space B, of continuous piecewise linear functions on I is a veetor
lattice, is dense in C(I) by the Stone~Weierstrass theorem, but O(I) is
dense in L,(I), so B, is dense in L,(I). And clearly, v is constant if v is
a function and =H, < F,.
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2

Abstract. Let X be an abelian group, the character group of a compact group &.
Tor a subset E of X let L be the subspace of E-spectral functions in I” (). We show
that if X is infinite and p> 2 is an even integer, then ¥ can be chosen so that not

2 A
every multiplier of L% extends to a multiplier of LP (G).

1. Let @ be a compact abelian group with character group X. For
1< p < oo, let I?(@) be the usual Lebesgue space with respect to normal-
ized Haar measure on G, and for ¥ < X, let L} be the translation in-.
variant subspace of L7 (G) consisting of those functions whose Fourier trans-
forms vanish off of B. Let M% denote the set of functions in I*(#) which
are multipliers for the Fourier transform space of L. Thus ¢ ¢ M% if and only
if for every fe L% there exists ge L% with §(#) = p(a)f (2) for each w<E.
For 1< p < oo, M% can be identified with the space of operators on
L% which commute with translation by elements of G. Let M”{E denote
the set of restrictions to F of functions in M? (= M%). Then, clearly, M? | 7
< M%. We are interested in the following questions:

(i) Does MP|z = M%?

(i) For 1< p,<p,<2 OF 2<p,<p,< o0, is My < My % (If
M’}}i is replaced by M ]E, 4 =1, 2, the answer is yes, by the Riesz-Thorin
theorem.) .

Question (i) is posed for the circle group T in [3], pp. 280-281, and
has an affirmative answer for any @ if p = 2 (trivially) or if p = oo (see
Proposition 1.2 below). On the other hand, in [12] the following theorem
is proved.

THrorEM 1.1. If G is infinite and 1< p <2, there emisis B € X
for which MP|g is a proper subset of M%.

The present paper is a sequel to [12], and our main result here, The-
orem 4.1, will be an analogue of Theorem 1.1 for the case when p > 2
is an even integer. In Section 5 we will show that question (ii) sometimes
has a negative answer.

* The results contained in this paper, together with those of [12], were announ-
ced in [11].
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We start with an easy proposition which establishes a positive answer
for question (i) when p = oo. For unexplained definitions and notation,
the reader may consult [8].

PROPOSITION 1.2. Let @ and X be as above. Fiw B < X and pe M3.

A\
There exists & multiplier @ of L®(Q) such that D |z = .

Proof. By [8], Theorem 35.9, it is enough to show that there exists
e M(@) with 2 (#) = (») if ¢ T. Since the translation invariant oper-

ator T induced on L§ by the multiplier ¢ is a bounded operator, it follows

from the Hahn-Banach theorem that there exists ue M (@) satisfying

() [flg™dulg) = TrQ)
G

for E-polynomials f. (The symbol 1 stands for the identity element of §.) -

But for such f, Tf(1) = 3 f (#)@(#), so (1) implies that () = p(z) if
zell .

we E.

This proposition can easily be deduced from the more general re-
sults of [2], [7], or [13], but the proof for compact @ is so simple that we
have included it for the sake of completeness.

We outline the rest of the paper: Sections 2 and 3 contain some pré-
liminary results, Section 4 contains the proof of the main theorem (The-
orem 4.1), and Section 5, as we have said, is concerned with our question
(id).

2. Let G, X, and  be as in Section 1. We start by introducing & num-
ber which measures the difficulty of interpolating functions in M% by
functions in M?|y.

DEFINITION 2.1. Let K,(E) be the infimum (possibly o) of the seb
{K > 0: for every pe M% there exists ®e M2 with @ly = ¢ and |P|ye
< Elgll,p}- :

B

The usefulness for our purposes of the numbers K,(H) derives from
Lemmas 2.5 and 2.7 below. In order to prove these lemmas, we introduce
the spaces A%. Fix p with 1<p< oo and ¢ with p~+¢~' = 1.

DEFINITION 2.2. Let 4% be the subspace of O(@) consisting of those
functions f which have a representation

0

D Ifillzellgillze < oo.

i=1

(1) f= D fogs where fieI%, g;cLf, and
=1

i=

For such a function f, define |f ”,41’ to be the infimum of the numbers
B

g,; Ifilzollgsllza, where the inf is taken over all representations of f as in (1).

=

icm
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: Wi:];y: the norm i1l o, A%is & Banach space We write A? for A%

and recall that the spaces 4® were originally defined in [6]. Our definition
for A% is, of course, modelled after the one given for 4%4n [6].
The spaces A% are importanf becansé they are preduals of the spaces
Lmyva 2.3. If M% is given the operator novm, then MZ ?L’s'isomemcallgj
isomorphic to the dual space of A%. For trigonometric 'p‘olynOmia,ls—fs A2
and multipliers g Mg, the duality is given by <f,gdrs 3' f (@) (). g
: : : zel .

Proof. The proof given for A2 in v[é] works here is well:

To prove Lemma 2.5 we need the following slight variation of a re-\
sult from [1]. : e : i

IevmA 2.4, For ¢ =1, 2, let G bea compact abelian group with’
character group X;, fiz B; < X;; and et @; be an element of M% Theh;‘
@192, considered as a function on By x B, < X,xX,, is an element of
M% g, Further, ' ‘

lips- ‘Pz”M%

emy llpx ) a2, l" llps

Mﬁ,ﬂ

Proof. See the proofs for [1], Chapitre III, Théoréme 2, Lemme 1.

LevvaA 2.5. With notations as in Lemma 2.4 K, (B, xB,) >
Kﬂ(El)Kp(Ea), . ] p( 1 ) =

Proof. From Lemma 2.3 and an elementary duality argument it
follows that for any & : ‘

71

T i
J#0 ¥d
J an E-polynomial 4

KP(E) =

Fix ¢ > 0 and, for ¢ =1, 2, let f; be an E-polynomial with Ifiller =1,
llf.'llA% > K, (B,;) — e Let us show first that
i

Wl z, =~ Vrllag, WFellgg -

By Lemma 2.3, there exist ¢;e M, with ”%”Mﬂ = 1 and with
By ) .
2 1 @ete) =11l , - :
zyely By

By Lemma 2.4, ]l(plqazllM% =1, and so by Lemma 2.3 again

1% Hy
= 0) =
”f1fz”A§,1 By Fufor P20 Y‘
(@1, %0)e By X Fy

= 1fily Il -

N

fl(ml) Az () @1 (#1) o (25)
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On the other hand, A? is 2 Banach a,lgebra [9], and so ”f ifaller < llf 1l 42 | foll a2
= 1. Thus

Ififall 5

Elez
Z fifollee
Since £ > 0 was arbitrary, this estabhshes the lemma.

We shall need the next result to apply Lemma 2.6 to the 1ntege1
group Z.

LEMMA 2.6. Let F be a finite subset of Z* and fiw e > 0. Let ¢ be an
element of 1°(F). For each m =1,2, ..., set .
= {n1—|-m/n2eZ- (B, M) € B}

KB, xHy) > = Ifl s HlelA,, (7, (8, —-e)(K (By) —a)"

and define gp on Ty by gy +15) = (s, 1a). (The function @y, is well

defined for all large enough m.) Then there ewists an mteger M such that for
m>= M,

llomlg —lolp| <o

Proof. It suffices to show that for any & > 0 there exists M, such
that if m > M, and f is any F-polynomial on T*, then
M) A—e)lflgey < || Y Flmym

(ng, no)eF

But it follows from [4]. Lemmas 3.3 and 3.4, that, if 4,, is the Haar measure
of the cloged subgroup {(¢”, ¢™): ¢®e T} of T, then the sequence {A,}m-,
converges weak-* to the Haar measure A of 72 Since then 1,,—2 uniformly
on compact subsets of O(T?), and since the set {[fI”: fe L%, |fllze =1}
is compact in C(T?), we see that M, can be chosen so that (1) holds for
each m > M,. ’

LemmA 2.7. Let E be a finite subset of Z and iz &> 0 There ewists
an integer M such that for m = M we have

K,(B)*
146 '
Proof. Let ¢el®(H xFE) be such that |jp[ .

2) P oy < (L 82) I Ny -

K, (E+mB) >

=1 and

® IlwllMjD >K,(BxE) it ye Mp Sﬁhﬁlﬁﬁeﬂ 'P|1c><E =g

Let M be as in the conclusion of Lemma 2.6 when in that lemma we
take F = E X F and the present ¢ and z. Then, using notation from Lemma

2.6, for m > M we have
(2) ”(pm”M%-i-'mE' < 1'}"5'

Fix such an m and let kh: Z2—>Z Dbe the homomorphism h(%,, %)
=+ mny. Suppose that O ML is such that Oy .,z = @, Then

icm
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Pohlgxr =@, 80 @0kl , > K, (BExE) by (1). But (Bl ,=> [Goh]
22 Mz Mo
by [10], Théoréme 3, and K,,(E x H) = K*(B)*by Lemma 2.5. Thus if @ |z, z
= @, then ||P| P; K, (E )2. Since [lg,ll e <1+e by (2), it follows
E+mE

that K, (B4 E)>K »(8)

. Since m > M was arbitrary, this proves
&
the lemma.

3. In this section we establish that for certain values of p and certain
abelian groups X, one can choose finite sets ¥ < X havmg K,(B)> 1.
‘We begin by adopting some notation from [5].

Let 8> 0 be an integer. For an abelian group X and for F c X,
C(E, s) will denote the set of functions a defined on B with values in N
such that Ea(m) = . For #,¢ X, O(®, s, ©,) will be the set of ac O(H, s)

for which H 2 = g,. The symbol B(E,s, #,) will denote the union

U C(B, t, z,). For an integer p > 2, C,(¥, s) will be the set of functions

m O(E s)whose valuesliein {0,1, ..., p—1},and Cp, (¥, s, %,), B,(E, 8, @,)
are defined similarly.

For the remainder of this section ¢ will denote a fixed prime > 2
For m =1, 2, ..., X, will be the group Z(¢)™, and a subset & of some
X,, will be called gs-independent if B,(H, gs,1) = {0}.

Lemwa 38.1. For m =1,2,..., if B <X,
cand if @el®(E) is a function such that ¢*(x)
we B, then Iltp}[ s = 1.

Proof. Foreachae C(E, s),1et C(a) —s'(Ha(m )7L Let f = Zf (@)@

be an arbitrary F-polynomial. Acecording to [8], 29.5, we ean erte
£=1 Y o [[t@ar@= Yy 3 0@]]F @)
xel

aeO(E,5) veX,, aeC(B,s,¥) zelE
Similarly, if T denotes the translation invariant operator induced by the

multiplier ¢,
=Dyl X o H [f (@) 9(2)1%).
: yeX,, acC(E,s,v)
Since [lgl3% = llg°lz2 for any g, in order to prove that T' is actually am

1sometry, it is only necessary to show that [] ¢(x)*® is, for fixed y, inde-
xeld

pendent of ae C(E, s, y). But we can write ae C(E, s, y) as b-+¢, where
be B(E,s,1); ce B,(H,s,y), and b(x) is a multiple of ¢ for each ze¢ B.
Since ¢%(z) = 1 if we B, it follows that H @(2)%® = ]'[ o (@)@, However,

the gs-independence of  implies that there is at most one ce By(H,s,y)

is  gs-independent for
= 1 for each
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(see the proof of [5], Corollary 4.6), and this shows that [[e
xell]

(w)a(m) is

indeed independent of ae C(X, s,‘y).
LevMs 3.2, Fiw s = 2, 3, ...

K, (E)> 1.
Proof. Let X

There ewists B <= X,,_3 such that

= X,,_3. We will exhibit a gs-independent set # < X,

icm

afunction e I°(H) such that ¢¥(s) = 1if zc I, and an element x,¢ X\7 -

guch that the following holds: if B = Bu {#,} and if $el®(H') satisties
Dz = p, then 1|(D]|M28 > 1. By Lemma 3.1 and a compactness argument,
i

this will establish the lemma.
We realize X as the set {0,1,...

» y g—1}*% with coordinatewise
addition modulo g. We define

@ =(,1,...,1, ¢—-1,¢—1,...,4—1),
28-1 28—2

@, =(1,0,0,...,0),
@ =(0,1,0,0,..,0),

m43—-2 - (07 07 b 707 1)7
®% =(1,1,...,1,0,0,...,0, ¢g—1,9—1,...,¢—1, 0,0, ..., 0).

8 &1 8=1 81
Let B = {®;, ..., #Byy_o}. It is easily checked that F is ¢s-independent.

Let w = 1 be a complex gth root of unity. Define p<I°(E) by ¢(s,) = ,
@) =1if § =2,...,48—2. With B = Bu {,} asswme that <I®(F)
sa,tlsﬁes Dy =0p, ]|¢|I w2 =1. We will derive a contradiction.

Let T be the trans]atlon invariant operator on the .set of I'-poly-
nomials corresponding to the multiplier funetion ®. Consider the E'-poly-
nomial f = f (@)@, #. As in the proof of Lemma 3.1,

el

r=3o 3 [t =3 (e 3 ow[]1@)
yeX  aC(F,s,v) xehi’ YeX  Jm=i) ae(i’gv;‘)’),n,w) wel]
=Y (Siar 3 o) = D(3F @)
yeX g=0 ‘as%gjﬁol;fj,y) yeX f=0
Similarly,
%’C (M @(monfw ; )0<a) I;[ ¢ (2))
—Z(Z[fwo (@) ¥ 8;(y ))
yeX j=0
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The assumption ][@]]M28 =1 yields 1832,
%,

NTFE e < which leads to

@)

0< (3 F s W) S @rsm)-

yeX  j=0

- (2 I (@0)® (20) V859 Z I (@)@ (@) IS} (3)}

8 s

= %{j},’ (@) P18,y +2Re D' f (@o)'f (20)"8; () Bx () —
Ye. 0 i, k=0
i<k

"2|f (#,) @

=0

(@0) 18} (y)12—2Re 2 (f (o)
]yiko

B(@0))'(F (o) (@) 8;(9)81(9)}

= Z{E(y)},

yeX
and this lolds for any choice of f (a,).
As in the proof of Lemma 3.1, it follows that ] ¢(#)*® is indepen-

= |8, (y)] and so

81(1) +0 (1f (@) ).

2eH
dent of aeC(E', s, y) so long as a(z,) = 0. Thus |Sy(y)|

B(y) = 2Ref(a,) (So() Sl(y)_ ®(ay) )85 (y) 8,
Hence (1) yields

0 < 2Re{ fla)] X (S0(4) 81 (4) — @ (@) 84 (1) S59)) [} +0 (f(an)l)-

yeX

Since f(m.,) is arbitrary, this implies that

@ 0= 3 (8(y)81(5) — B (@) 8 (4) (7))

yeX

—s 0(a) o))~
VX " aC(@5,0) )(beC’(E,gl: eyl )
)
el 2 o [Te™) [ S om ][] owr),
8,1) beC(Bs—1,y77°Y) o<t
Since ngﬂ(a? )o@ i 1ndependent of acC(H,s,y), and since []g(x) is
ZE.

el
independent of be C(H, s—1, yx;"), (2) beecomes ’

® o= X ow) X 0<b))(1—5mg¢(w)3@~3w)];

veX  acC(E,s,y) bfo(E,B—l,vzo_l)

3 — Studia Mathematica LIX.3


GUEST


242 D. M. Oberlin

where, for a given y, @ and b are any fixed elements of C(®,s,y) and
C(H,s—1,ya;"), respectively. Since |®(w,)] < 1, the real part of each
summand in the RES of (3) is > 0. Thus, to violate (3) and obtain our
contradiction, we need only show that one of these summands has a
strictly positive real part. There are two cases to consider, @(wo) =1 and

D(wy) # 1. )
Tt & (w,) = 1, we examine the term of (3) corresponding to

y=(1,1,...,1, ¢—1,9—1, <oy g1, 0,0,...,0).

251 §—1 §—1

Then 4 = @ % Bser1 -+ Pas—s and Yo" = Wyp Bypg «. Boge Le‘t__.ae 0B,

$,4) be defined by a:(aai) =1if i =1, 3s, 3s-+1,...,45—-2, a(x;) =0
othervnse, and let be (B, s —1, yo;") be defmed by b (mi) =1 11". i =842,
§+3,...,2s, B(a;) =0 otherwise. The term corresponding to y is

@ cw) Y om)r—o@ ﬂqﬂ(w)a”‘””””‘”’)-

asCiB,s,v) beO(Z, 51,55 %)

The first two factors are strictly positive, since ae C(H,s, y) be 0B
—1, yzy?). Since P(w,) =1, if we use the definitions of ¢, a,b, we see
thaﬁn the last factor is (L —w). Thus (4) hag strietly posmve real part,
a contradiction.
If ®(x,) # 1, then we examine the term corresponding to

y=(1,1,...,1, 0,0,...,0).

8 88—3

. USIDE Y = @y &y ... Boyqy Yo == Bygyy Bagrs - - By b0 define @e O(H, s, 9),
be<C(E,s—1, ya;), respectively, we reach a similar contradiction. This
concludes the proof of the lemma.

Next we prove an analogue of Lemma 3.2 for the group Z

Levmva 3.3, Fiw 8 = 2,3, ... There exists o finite set B < Z such
that K, (H) > 1.

Proof. Let E = {0,1,s+1}. For each neZ, the set B(H,s,n)
contains at most one element, so an argument like that in the proof of

Lemma 3.1 shows that if ¢« 1°(H) has |p(n)] = 1 for each ne X, then Hq)[!M“

=1..Thus, as in the proof of Lemma 3.2, it suffices to exhibit ¢eI®(H)
with |p| = 1 and a finite B’ = F such that if @eI®(H') satisfies @y = ¢,
then |]<I>||M28 >1.

28,

Let B = {—1,0,1, s+1} and define ¢(0) =1, p(1) =1, p(s+1) = —1.

Suppose, to get a contradiction, that there exists @ e I™(H') with Py = ®

=f(—— e~ z gimo

mel

and @], = 1. Considering the E'-polynomial f(e*)
2,

icm
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and bearing in mind the fact that card (B(Z, s,n))
we find that the argument of Lemma 3.2 yields

(8) 0= > C(a)C(B)(1 —B(—1) [ [ p(myzemr+om),
neZ meE
C(B,8,n)#¢, C(E,s~1,n+1)#g¢

where, for a given #, a and b are the unique elements of C(H,s, n),
C(B, s —1,n-+1),respectively. Since |&(—1)| < 1, it again suffices to show
that one of the summands of the RHS of (3') has strietly positive real
part. If &(—1) = 1, the term corresponding to # = s will do: take a(0)
=0,a(l) =s, a(s+1) =0 and b(0) =s—2, b(l) =0, b(s+1) =1.
If &(—1) #1, choose n =1 and take a(0) = s—1,a(l) =1, a(s-+1)
=0,b(0) =5-3, b(1) =2, b(s+1) = 0.

4. Our object now is to prove the following theorem.

THEOREM 4.1. Let G be an infinite compact abelian group with character
group X. Fiz s =2, 3, ... There exists B < X for which M* [E 8 @& proper
subset of M%.

We begin by observing that it is enough to find B < X of the form
E = | E;, where

=1

(a) Kqu(B,

)00,

<1 for each neZ,

(b) sup lxzyll, s = 8 < co. (yg, is the characteristic function of #;.)
i B .

(If (a) holds, then for every large positive number M there exists

some 4 and some @;e M% such that ”(Pi”Mzs <1 and
By

) 1Pillyze > M it Pylg, = ¢
Since || /fE@”M% < 8 by (b) and since [l || 28 < 1, it follows that |lp]l a2 <
where g, is extended to B by ¢;|z\z, = 0 Thus (1) implies K, (%) > M /S
Since this holds for every M, K, (H) = co and so M”[ # M%E).

Next we note that in view of [5], Theorems 2.1 and 2.3, it is sufficient

to carry t]iis out for the cases X = P*Z(g) for some prime ¢, X = Z,
=1

X = Z(g%) for some prime ¢, and X = P* Z(g,), where {g,}2>, is an
n=1
increasing sequence of primes.

Let ¢>>2 be afixed prime. We will consider first the case of X = P*Z (q)-
n=1

3.2 and 2.5 it follows that there exists an increas-
sequence of integers {n}2, and a sequence {F}X, with

B, = Z(g)™ and K,,(B,;)—>co. Then X = P* Z(g)™ and we can consider
=1

From = Lemmas
ing
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each H,; ag a subset of X and define B = UE, Now (a) is already sat-

isfied (by, say, [6], Theorem 2.1), and (b ) follow& from the fact that
B, = BEnZ (g™, since |xz,™] = 1 in any space MP(1 < p < oo).

Next we consider the case X = Z. From Lemmas 3.3 and 2.7 we
can deduce the existence of an increasing sequence {n;};=; of integers and
a sequence {H}2, with B, = [0, ny,—1] and K, (B;)-oco. Letting
B = JE,;, we have B, = Bn [n;, ny,—1]. Thus (b) follows from the

i=1
uniform boundedness of the norms of the Lngumy g y=1] in M.

To treat the cages X = Z(¢*), X = P Z(q,), we need two lemmas on
cyclic groups.

LEMMA 4.2 Let {ng}r-; be an increasing sequence of positive imtegers.
Let Gy, be the character growp of Z(ny,), considered as a subgroup of T, and
fizp (1< p < o), a positive integer N, and ¢ > 0. Then there exists a posi-
tive integer K such that for k> XK and any tmgonometmc polynomial of

the form f(6) = 2 F (m)e™,

(1"“ ellfllcon < (1+e) ”f“LP(_’[') .

Proof. Let 1, -be the normalized Haar measure on G, and let A be
Haar measure on T. Then 4,24 weak-*, 3o 4,1 uniformly on compact

N
subsets of O(T). Since the set {|f|?: f(¢*) = 3 f(n)e™, |flzoay = 1}
n=0

we have

I1f |, llzoy <

is compact in O(T), the lemma follows.

Our next lemma requires some additional notation. et F < Z
be a finite set of nonnegative integers, and let m be a nonnegative integer
so large that B < [0, m—1]. Then, for 1 <p < oo, K, (¥, m) will denote
the number K, (F) when F is considered as a subset of the group Z(m)
={1,2,...,m—1}, while K,,(E, Z) will denote K,,(E) when # is considered
as a subset of the group Z.

LemMA 4.3. For 1 < p < oo, there ewists a constamt 8y, > 0 such that

the following holds: for every increasing sequence {ny}e., of pomtwe integers,
there ewists K such that for k> K,

8, K, (B, 2) < K (B, ny).
Proof. Let 0, < co be such that [y, N]H <0, for N =1,2,...
Fix N such that B < [0, N] and let K be as in the conclusion of Lemma 4.2

{where we take & = } and the present N). Let pe M% be such that llqo]l
=1 and |9P| 1,/ K,(E,Z) it Qﬁ]E =g@. For k> K it follows from the

icm®
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conclusion of Lemma 4.2 that the norm of ¢ in M% when E is considered
as a subset of Z(ny), is <3. But if Oec M, is such that &)z =g,
then

K, (B, Z
9, »222
Z("k) »
(It ”(DHMP x denotes the norm of & I[D,N] in M%, »p with [0, N'] considered
[0.N)
as a subset of the group X (X = Z, Z(n;)), then the inequality
19p oy > $1hgp

follows from the conclusion of Lemma 4.2. But C,, ]|¢5|| (z) = P, Nl"]ll”

since HX[O,N]"M%\OQN and l[dix[o,N]]] > K,(¥, Z), smce Dyl e = 9-)

1
Thus we may take d, = Win the conclusion of the present lemma.
D

Now it is easy to treat the cases X = Z (
4.1. We start by recalling that for s = 2, 3, .

®), X = P* Z(q,) of Theorem .

(2)  there exists a sequence {¥,}3>, of finite sets of nonnegative integers
such that K,,(E,)—occ.

Fix a prime ¢. The group Z(¢™) is an increasing union of finite eyclic
groups, say Z(9*) = U H,.By (2) and Lemma 4.3, there exists an increas-
=1

ing sequence {n;}32, of positive integers and a sequence {H;}{2, of sets
with B;= H, ,,\H, such that K,, (Ei)-»oo and such that F;is c‘qntained

inH,, HF= UE“lt follows from E; = En0;
that Hin” os =1. Tha.t is, the B, ean be picked so that (a) and (b) at

in a coset O, of H

the begmnmg of the section are satisfied. This proves Theorem 4.1 when
X =Z(¢™).

" Now suppose that {g,}°, is an increasing sequence of primes.
Reasoning as above, there exist subsequences {g,}i2; and {E}{, with
K o(F;)—>o00 and with E, CZ (4,,). Gonsidering each E,; as a subset of

P Z(q,) and letting B = U E,, we see that (a) and (b) are again satisfied,

for B; = En Z(q,,). This completes the proof of Theorem 4.1.
‘We note tha.t the only ingredients of the above proof which depend
on the assumption that p > 2 is an even integer are Lemmas 3.2 and 3.3,

which constitute the computational part of the proof.
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5. In this section we establish the following theorem.
TEROREM B.L. Fiw n = 3,4, ... There emists a subset B of the group
P* Z(n) and a function g« Ma~2 such that ¢ is in MY for only a finite num-

j=1

ber of pe (2, 2n—2). Thus ¢ is in no space MI’,E Sfor p 2.
We will need the following lemma.

- LeMMA 5.2. Fiz n =3,4,... Let w be a primitive n-th root of unity
and choose a complex number A with |A| =1, 14 B, and [14-2] > 14 Aw?],

j=1,...,n—1 The function of a real variable
-1
= DL+ w
J=0
can have %Fp (0)]omo = 0 for only a finite number of pe(2,2n-3),

Sy P =P1; .-y Pr-
Proof: Smce distinet multlphcatwe functions on a group are llne'urly
independent ([8], Lemma- 29.41), it is not the cage that

1) L+APImA+ 1+ 26" Im(Aw) + ... + |1+ 10" [® Im (o™ ) =0

holds for each ®e¢R. But the LHS of (1) defines an entire function of
@, 50 (1) can hold for only a finite number of # in any finite interval. Since
d

¥ 6)|D=0 = 0 implies that (1) holds for #= p —2, this proves the lemma.
Now fix » =3,4,... and regard Z(n) = {0,1,...,n—1} as the
character group of the subgroup &, of T consisting of the nth roots of
unity. Let B, < Z(n) be the set {0,1}. A computation shows that if
the Haar measure on &, is normalized, then for any El-polynomml on

@, we have

I g0 = 100" inf (0" WP+ 28 0" P+
o F @R
Thus ||f{gm-2 depends only on |f (0 l, If (1)], and so each function ¢,

defined on B, by ¢,(0) =1, gy(1) = ¢ (0 R) has ol aip-r = 1.

If, on the other hand, ”qagllmﬁ < 1 for some value oJ’ p, then it must
By

be the case that for any number f (0), f(1), we have the inequality

-1 1/p =1 1/p

® 23+ ool) < (3 Sifo)+fwerr]
J=0

=0
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where o is a primitive nth root of unity. This is so because the RHS of
(2) i% the norm in Z*(&,,) of the B -polynomial having Fourier coefficients
F(0) and F(1). Let {6}, ({6;}2,) be a sequence of positive (negative)
numbers such that 6;—> 0 (6;->0). Taking f(0) = 1, f(1) =2 in (2), it
follows -from Lemma 5.2 that if pe (2, 2n—2) \{p,}1_1, then ﬁhere exists
some 0 = 6; or 6 = 6; such thatb |lgll s, > 1.

Now let B < P* Z(n) be the seb P* B,. That is, E is the set of

i=1 4==1

Je P* Let {6;}32,
=1

be a sequence in Whlch each 6; and each 61 occur infinitely often, and
define @< 1®(F) by the formula

all @ = (@, @y, .. (n) such that e B, i=1,2, ...

@By, Bgy ..2) = _P Do, (%) -
=1

(This makes sense because #; = 0 for all large i and @4(0) =1.) Then
it follows easily from Lemma 2.4 and the equalities II% I :,n ., =1,1 =1,
., that |l(p“Mm s =1. Butif pe (2, 2n—2) \{p,}m_], then |](pein >1-+te
for some ¢ > 0 and an infinite number of indices 4 together Wlth Lemma
2.4 imply that ¢¢ M%. This completes the proof of Theorem 5.1.
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Gaussian measures on L, spaces 0 <p <
by

T. BYCZKOWSKI (Wroctaw)

Abstract. Using the correspondence between measures on L, spaces, 0 < p < oo,
and measurable processes with pathsin Ly, given in [2], we prove that the independence
of random elements with values in L, as well as their distributions are determined
by finite-dimensional distributions of the corresponding measurable processes. This
regult is applied to the investigation of G ian random el ts with values in
Ly, 0<p< oo,

It is 'well known that if X;, X, are independent real random variables
such that X, + X, and X, — X, are independent, then X,, X, are Gaussian.
This property of real Gaussian random variables, proved already by Bern-
stein, has been used by Fréchet as one of two (equivalent) definitions of
Gaussian random elements with values in a Banach space [5]. This defi-
nition allows us to consider Gaussian random elements in metric linear
spaces which admit no nontrivial continuous linear functionals. The best
known examples of such spaces are L, = L,(m) spaces, where m is the
Lebesgue measure on [0, 1] and 0 < p <1. Of course, in such spaces the
classical definition of Gaussian elements cannot be used. In this paper we
investigate Gaussian random elements on L, spaces, 0 <p < co. Forp>1
these results were proved by Rajput [9].

Section 1 is preliminary. In Section 2 we prove two results. In The-
orem 2.1 we prove that the support of a symmetric Gaussian measure
defined on a linear metric space is a closed linear subspace. In Theorem
2.2 we give a short proof of the 0-1 law for Gaussian measures defined
on complete separable metric linear spaces.

In Section 3 we consider measurable processes with paths in L,.
Theorem 1.1 proved in [2] gives the correspondence between measures
on L, and measurable processes with paths in L,. We prove that the
independence of random elements with values in I, as well as their dis-
tributions are -determined by finite-dimensional dlstrlbutlons of the
corresponding measurable processes.

In Section 4 we apply the results of the preceding sections to prove
results analogous to those obtained by Rajput [9] for p > 1. Theorem
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