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Gaussian measures on L, spaces 0 <p <
by

T. BYCZKOWSKI (Wroctaw)

Abstract. Using the correspondence between measures on L, spaces, 0 < p < oo,
and measurable processes with pathsin Ly, given in [2], we prove that the independence
of random elements with values in L, as well as their distributions are determined
by finite-dimensional distributions of the corresponding measurable processes. This
regult is applied to the investigation of G ian random el ts with values in
Ly, 0<p< oo,

It is 'well known that if X;, X, are independent real random variables
such that X, + X, and X, — X, are independent, then X,, X, are Gaussian.
This property of real Gaussian random variables, proved already by Bern-
stein, has been used by Fréchet as one of two (equivalent) definitions of
Gaussian random elements with values in a Banach space [5]. This defi-
nition allows us to consider Gaussian random elements in metric linear
spaces which admit no nontrivial continuous linear functionals. The best
known examples of such spaces are L, = L,(m) spaces, where m is the
Lebesgue measure on [0, 1] and 0 < p <1. Of course, in such spaces the
classical definition of Gaussian elements cannot be used. In this paper we
investigate Gaussian random elements on L, spaces, 0 <p < co. Forp>1
these results were proved by Rajput [9].

Section 1 is preliminary. In Section 2 we prove two results. In The-
orem 2.1 we prove that the support of a symmetric Gaussian measure
defined on a linear metric space is a closed linear subspace. In Theorem
2.2 we give a short proof of the 0-1 law for Gaussian measures defined
on complete separable metric linear spaces.

In Section 3 we consider measurable processes with paths in L,.
Theorem 1.1 proved in [2] gives the correspondence between measures
on L, and measurable processes with paths in L,. We prove that the
independence of random elements with values in I, as well as their dis-
tributions are -determined by finite-dimensional dlstrlbutlons of the
corresponding measurable processes.

In Section 4 we apply the results of the preceding sections to prove
results analogous to those obtained by Rajput [9] for p > 1. Theorem
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4.1 has been proved in [2] (for p = 0 and the measure assumed to be
finite) but this proof depends on a result of Rajput ([9], Theorem 3.2),
The proof presented here is based on Theorem 3.1 in Section 3.

1. Preliminaries. Let F be a real separable metric linear space. By
2(E) we denote the Borel s-algebra in H. A mapping X defined on a prob-
ability space (2, Z, P) with values in H is called. a random element (r.e.)
if it is measurable relative to the o-algebras £ () and X.

DEFINITION 1.1. We say that an r.e. X is Gaussian if for any indepen-
dent r.e.’s X,, X, with the same distribution ag X, the r.e.’s X, X,
and X;—X, are independent. . ‘

A probability measure u is Qaussian it it is the distribution of a
Gaussian 1.e. X If 9 is a mapping from & X H into B ><E deime(l as

,@) ’ p(m,y) =
then we eem equwalently state:

m+hw Y)s

icm®

i Gaussian if and only if there are some proba;blhty measures .

7., 7, Such that

() CopXplT
for every Ade B(H x H).

If #(E)is generated by all continuous linear functionals on %, theén
this definition. is consistent with the usual one: an r.e. X is Gausswn iff
for ever'y continuous linear functional f on B f(X) is a Gaussian real ran-
dom variable.

A)) = xm(4)

(T'; #, m) will denote throughout this paper an arbitrary o¢-finite
measure space. Let S be the space of equivalence classes of all real-valued #-
measurable functions with convergence in measure m. Let §, be the sub-
space of S consisting of elements equivalent to all functions of the
form 1y, where He# and m(B) < oo. In the sequel we always assume
that 8, is separable with respect to the topology induced from 8. Let I,

= Ly(m) be the closed linear subspace in & gonerated by 8,. If we Ly,
then we say that # is strongly measurable. By Ly, = L, (m) we shall denote
the set of all z¢ 8 whose pth power is m- 111Legmb]e with the norm

lal, = ( [ (P m @),

where r = 1if 0<p<<1and 7 =1/p if p > 1. It is clear that L, e Ly,
for 0 <p < oo.

When no confusion seems possible, we use the same notation for
2 function ¢ I, and the corresponding equivalence class. It is well known
that L,, 0 <p < oo, is a real metric linear | space (if p = 1 it iy even a
Banach space). By the assumption it follows that L, is separable for 0 < p
< oo,
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Let {&(t); te T} be a stochastic process defined on a probability
space (2, X, P); it is said to be measurable if the mapping £ from (2x T,
XX F,Pxm) into R defined by (o, t)—E&(w,t) is strongly measurable.
It is not hard to prove that if {£(f); ¢te1'} is measurable then &é(w, +)e L,
a.8. [P]. Now, let us suppose that Z(w,-Je L, a.s. [P]. Let £: Q-T,
be a mapping defined as follows:

- E(w, ) if &, ')ELG
£(o) = "
0 if  E(w,)é¢L,.
By the measurability of & and separability of L, it follows that £is a ran-
dom element. The probability distribution of £ is denoted by u. ancl called
the measure induced by the process &.

For the sake of brevity and convenience we use throughout this paper
the following terminology, somewhat different from the classical one:
a stochastic process {£(?); te T} is called Gaussian if there is a T e,
m(Ty) = 0 such that, for every ft,...,%eT\T,, <{&({),..., E(t)) is
Gaussian random vector.

The following theorem will be useful in the sequel:

TarorEM 1.1. Let u be a probability measure on (L, B(Ly)), 0 < p < oo.
Then there exists a measurable process {£(t); te T} defined on (2, X, P)
= (Ly, B(Ly), ) and such that &(v) =« as. [Pl In particular, pg = p
and E(w, e L, a.s. (P). Moreover, if u is Gaussian then & is Gaussian.

This theorem has been proved in [2]if p = 0 and m is assumed to
be finite. However, the proof remains valid for eur general situation,
with only inessential modifications. We shall also need the following
“two-dimensional” version of this theorem: '

TeworEM 1.1°. Let ube a measure on (L, X Ly B(Ly, X L)), 0 < p < oo,
Then there exists a pair & = (&, &) of measurable processes defined

n (2, %, P) = (L X Ly, B(LyX L ),,u) and such that E(z) = x a.s. [P],
WhG"e f = (fu fz)

‘We need also

DEFINITION 1.2. Let {&(¢); t« T} bé a second-order process; then the
mean funciion 6 and the covariance funmction K of & are defined by 0(1)
= BE(t) and K(s, 1) = B(E(t) — () (6(s)— 0(s)).

2. Gaussian measures on metric linear spaces. Let F be a real separable
metric linear space. By IM(F) we shall denote the set of all probability
measures on B with the topology of weak convergence and with the oper-
ation of convolution.

By Definition 1.1 it 1mmer11ate1y follows that the set; of all Gaussian
measures on B forms a closed (convolution) subsemigroup of M(E).


GUEST


252 T. Byezkowski

Now, let C(x) denote the support of u. We prove the following
THEOREM 2.1. Let u be a symmetric Gaussian measure. Then the sup-
port of p is a closed linear subspace of B.

Proof. Since x is symmetrie, we have in (2) », = v, = ». Let &,
yeO(p) and let Wy, W, be some arbitrary open neighbourhoods of #--y
and #—y, respectively. By the continuity of v there are open neighbour-
hoods Uand V of # and y, respectively, such that w(UX V) = W, xW,.
Hence

yxv(Wy X Wo) = o xXo(p(UxV)) = uxpu(UxV)> 0.
So, we have '
@,y O(p) > a+y,a~ye O(»).

#+y a—y
2 7 2

Next, since p~ (2, ¥) =( ), we obtain in the same way
the reversed implication '

' oty a—y
&, Ye O(V) :>—é———7 5

e0(p).

Thus, if @,yeC(u) then, from the first implication we infer that 2,
2yeC(v), and from the second that %+ y,#—ye 0(u). Further, 0¢C (g),
and 80 if @e O(u) then @< C(v) and, since 0e O(v), #/2¢ O (u). Since C'(u)
is closed, this proves that O(u) is a closed linear subspace of E.

Next, we give a short proof of the 0—1 law for Gaussian measures.
We say that F is a rational subspace of B if ra+sye F for any rational
r, 8, whenever %, ye F.

TEROREM 2.2. Let u be o Gaussian measure on a complete separable
meiric linear space B. Let F be a completion measurable rational subspace
of B. Then u(F) =0 or u(F) =1.

Proof. First, let us observe that it suffices to prove our theorem if
F is Borel-meagurable. For, if u(F) > 0 then there exists a compact subset
XK of F of positive measure u. Then, the rational subspace generated by I
is Borel-measurable and of positive measure u.

Thus, let us suppose that F is a Borel-measurable rational subspace
of B such that u(F) > 0. Let = be the natural mapping from ¥ onto B/F
and let {x,; acA} be a fixed selector of {#*(y); y< B/F}. Since I~ ,
and F — g4 for a # B are Borel-measurable and disjoint, we infer that
there is an at most countable number of a,, @, = B,y Sueh that w(F —a;)
> 0. Let H be the subgroup of B generated by {F—wy;i=1,2,..}
Then «(H) is countable and torsion-free, since F is a rational subspace.
Let u’ be the relativisation of u to H. If we endow =(H) with the discrete
topology, then #': H— w(H) is Borel-measurable. Hence u'ox’ (u/on’ (A)
= u(az‘lA)) is a Gaussian measure on % (H) in the sense of Parthasarathy

icm
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{8] (up to a multiplicative positive constant — see [6], Korollar 6.7)
and therefore it must be degenerate ([8], p. 101). Hence, u(F—=x) = 0,
for m¢ F.
The rest of the proof is almost the same as in [4], p. 251; it is included
here only for completeness. .
By (2) it follows that », = p*pu, v, = u*i, where @(4) = u(—A4).
Thus, again from (2) we obtain u(F)? = (uku(F))(uxi(F)). Since
pei(F) = [@(F—a)dp(@) = [ p(F +o)dp(@) = p(F)?
and also uku(F) = u(F)2 we have u(F)* = u(F)%. Thus, u(F) =1.
Remark 2.1. (i). One can also consider Gaussian measures (in the
sense of Definition 1.1) on Polish groups (see [3] and [6]). The proof of
Theorem 2.2 then yields the following result: if G is a Polish group such
that the mapping #—>22 is a surjection and ¥ is a Borel-measurable sub-
group of G such that G/F is torsion-free, then u(F) =0 or u(F) = 1.
(ii) Theorem 2.2 is proved (by a different method) in [4] fpr stable
measures. However, if # does not have a sufficient number of continuous

linear functionals, then it is not known whether any Gaussian measure
is stable in the sense of [4].

3. Stochastic processes with paths in L,,0<p < co. In this sec-
tion we shall prove the following

THEOREM 3.1. Let & be some measurable processes with paths in L,
i =1,2, and let u, denote the measure induced by &; on L,, i =1, 2. Then
Hy = By if and only if there is a Tye F, m(T,) = O such that the correspond-
ing finite-dimensional distributions of & and &, based on points e T\T,
are equal. ‘ :

THREOREM 3.2. Let &; be some measurable processes with paths in L,
4 =1,2. Let & denote the random element with values in L, induced by
£iy% =1, 2. Then £, and E, are independent if and only if there exisis a Tye £,
m (T, = 0 such that the random vectors

Gty ooy E8Ds  (Ealt)sons &)
are independent for all 1,,1%,, ..., e I\T,.

For the sake of clarity and convenience we divide the proofs into two
lemmas.

LeMMA 3.1. Let & = (&1, &), n = (11, 72} be two pairs of measurable pro-
cesses with paths in L,. Let us assume that ps = w, = u. Then there ewists
a TyeF, m(T,) = 0 such that the random vectors

CEa(ta)y ey E1(l); Ealteya)s - os Ealtm))
alta)s -y T (Be)s Ma(brga)y «- oy Maltn)d
have the same distribution, if t;e TNTy, ¢ =1, ..., m.
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Proof. (i) Let & = (&, &), L = ({4, ,) be two pairs of measurable
processes such that & = £ a.s. [P]. Then there exists a T, <& y m(Ty) =0
"such that £(-,1) =£(-, 1) as. [P, for every te T\T,. In particular, the
corresponding finite-dimensional distributions of & and { based on points
«I\T, are equal.
Indeed, P{w; #(w)  {(w)} = 0. Thus, there exists an N3, P(X)
= 0 such that

Eilw, ) = Lo, ) a8, [m] if we Q\N, { =1, 2.

Then
Pxm{(w,t); &lo,?) # [(w,1); i =1,2} = 0.
By Fubini’s theorem there exists a Tye#, m(T,) = 0, such that
Plo; &(o,1) # Lo, 1),i =1,2} =0

for every te T\I,, which proves (i).

(ii)"Let X,, X, be two random elements with values in L,. Let
@ = (@1, s} be a pair of measurable processes with the. properties as
described in Theorem 1.1', constructed for the measme u = lx, where
X = (X, X,).

Let {(0,?) = ¢(X (), t). Then it is easy to observe that £ = X with
probability one and that { has the same finite-dimensional distributions
as .

(iil) Let &, 7 be two pairs of processes as described in this lemma.
Let ¢ be a pair of processes constructed asin (i). Let £P(w, 1) = g, (E(w), 9);
{P(0,1) = pi(7(0),1),5 =1, 2. Then, by (il), {9 = £ and & = 7 a.s. [P].
By (i) it follows that there is a T;¢#, m(T;) = 0 such that (@ and &
have the same finite-dimensional distributions based on points € T\T,,
and Ty «#, m(Ty) =0, and such that @ has the corresponding finite-
dimensional distributions based on points « I\T| equal to the distri-
butions of 4. Since (¥, { =1, 2, has the same finite-dimensional distri-
butions as ¢, £ and 5 have the same finite-dimensional digtributions based
on points «T\T,, where Ty = T, U T, .

Lmama 3.2. Let {&;,m5 4 =1,2,...,k} be a Sinite collection of non-
negative measurable processes. Suppose that the random wvectors

a0 ooy GO0 &), ..oy £,089); ., £,0), .., £,(109)),
() ooy ()5 ma (), oy (955 (D), <., i (809

are independent [have the same distribution] for every finite subset {he
=1, 054 =1,..., %} of T. Let

X = [&Om@), ¥, = [n0)ma).

icm
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Suppose that L, (P) is separable. Then the random vectors

Xy Xy ooy Xyy (X Xy oo, ¥p

are independent [have the same distribution].
Proof. (a) We first prove our lemma under some additional assump-
tions. Namely, suppose that
JIgC0lm(@) <o, [ln(, Olim(@) < oo, fori=1,..., k.
By these assumptions it follows that &;(-,1), (-, ) e Iy(P) 2.8, [m] so
that £;, »; can be considered as Bochner’s integrable mapping from T
into L,(P), 4 =1,..., k. The Bochner integral of &;, n; will be _denoted
by (B)-f&(t) m(df), (B)-fn;(t) m(df) and the sample path 1}1tegrals
by [&(t)m(dt) and S md), ¢ =1,..., % It is easy to verify that

(B)-[ &(t) m(at) = [ &(1) m(at)
(B)-[ ms(t) m(dt) = [ns(t) m(at)  as. [P],

a.s. [P],

4 =1,..., k. Using these equalities and the property of Bochner’s in-
tegral, we shall construct sequences of m-simple functions ¢fM, y{” such
that it X = (B)- [¢(5) m(dt), X = (B)-[¢{"(®)m(dt), i =1,..., %
then X »X;, Y » ¥, in L,(P), ¢ =1, ..., k, and the random vectors

EP, . X, TP, T

are independent [have the same distribution]. The above will immedi-
ately imply the theorem. .
. Let {t;} be a sequence of elements of T' such that

{51(" tj)};l = {fi('; t); te T};

{771'(': tj)};il = {"71‘(': t); te T}) ,
fori =1,...,% (4 denotes the L,(P) — closure of A = L,(P)). Let B
= {we L (P); lla— &, 4)l<1/n}, D} = {we Ly(P); lla—n(, il <

A}, §=1,2,.00y 4 =1,..,k, n=1,2,...
Let

=1 -1
7 = BN U B, 6 = DN U D
Py =

and :
MY = {te T5 &(-, t)e Fi}
_le;) = {te T; n;(vy t)e G;-':”f]}
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Now, let
(”)(t) — &(p ) tE‘Mﬁ) and (1&(-, %) < 2018, ),
P o otherwise,
(n)( ) 771‘('7 tj) if te Ng":? and “"h‘(" tj)”1 < 2”77{('; 1) ”17
& 0 otherwise,

for 4 =1,...,kand n=1,2,... i

It is easy to check that |lgf™ (£)— &(t)ll,—0, [[w{ (&) —n;(t)]—0 as.
[m] i nso0, ¢ =1,...,k and that [p{ @)l <20E&(, O, W @),
<21+, Ol for ¢ =1,...,% n=1,2,... Thus, by the property of
Bochner’s integral,

(B)- [ &(, tym(d) = s-lim {(B)— [ 9 (tym (an)},
(B)- [, ym(@) = s-Lim {(B)— [ o (t)m (ar)},

where “s-lim” denotes the IL,(P)-convergence. Let us write X{™ = (B)-
J &M (@)m(dt), T = (B)- [y (t)m(dt). By the assumptions, it follows
_ that the random vectors

KXY,y Xy, (TP, Y,

are -independent [have the same distribution]. Sinee X, = s-lim X,
Y, = s-imY{, the proof iz completed.

(b) We complete the proof by dropping the assumption that
f”f«c('; B)ll;m(dt) < oo, f“"?i('g Dlhm(dt) < ooy ¢ =1,..., k.

Let fbe an element of I,(m) such that f>0. Let £M(w,t) =
min (£(e, ©), nf(t)), 9 (, 1) = min (5;(w, 1), nf(t)). It is easy to see that £,
7" satisty the assumptions described in (a). Moreover, £ ( w,+), 1" (w,.) are
nondecreasing sequences convergent m-a.e. to Ew, ), ni(w, +), Tespect-
ively, for every fixed w ¢ 2. By the monotone convergence theorem, we have

[ & @, hm(dt)~ [ &o, tym(a),
J @, ymdt) > [ (e, 4m(ar

P-ae. for i =1,..., %k By part (a), it follows that the lemma is valid
for £, ™. Thus, the lemma is valid-also for &, mg. Thus the proof is
complete.

Proof of Theorem 3.1. The necessity imniediately follows from
Lemma 3.1. Weprove the sufficiency. Let & = (&, £,) be a pair of measur-

able processes with paths in L,. Let us assume that there exists ToeF,’

m(Ty) = 0 such that the corresponding finite-dimensional distributions
based on points < T\T, are the same. Using Theorem 1.1', we can find

, .
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a pair &, & of measurable processes defined on (2,2, P) = (LyxLy,
B(Ly, % Ly), pg) such that Mg, = ey © =1,2. By the separability of I,
it follows that I,(£2) is also separable, where = L, x L,. Moreover,
by Lemma 3.1, it follows that the corresponding finite-dimensional dis-
tributions of &; and &; based on pointsc I'\T; are the same, where TyeF
and m(Ty) =0, ¢ =1, 2. So, without loss of generality, we can assume
that &, ¢ =1,2,ave defined on (2,2, P) = (L,x L, B(Lyp X Ly), pe).
Of course, we can also assume that 7, = @. Now, let ¢; be an arbitrary
real positive number and let x; be an arbitrary element of Ly, i =1,..., k.
Let us write

& = & —a" 7 = |&—myf? if 0<p< oo,
Li=1g(b—m), o= lp(&—a) i p =0 B, ={y >¢},

i=1,..,k Let K, ={a; |lo—al,<e},¢=1,..., % where llzll, is the
usual L,norm if 0 <p < co and |all, = inf{a > 0; m{t; l2(t)| > a} < a)
(it is well known that ||, induces convergence in meagure m). Then,
by Lemma 3.2, we obtain

k &
P{gls QK’} =P{§2eﬂKi},

which means that
k k
M(QK{) = Mz(_ﬂl Ki)-

Since L, is separable, we obtain s, = u,, which completes the proof.
Proof of Theorem 3.2. The necessity. Suppose that & = (&, &)

_Is a pair of measurable processes with paths in L, such that the induced

random elements & and , are independent. Using Theorem 1.1, we can
construet a pair = (7, 7,) of measurable processes: defined on (1}10 X Ly,
B(Ly X Ly), pe) and such that pe = p, = u and (9, (2), ny(2)) = & a.8.[u].
By Lemma 3.1, it follows that there exists a The#, m(T,) = 0 such that
if 4, ..., 4, e I\T, then the random vectors )
CErlh)s ooy E100)5 Ea(tra)s oovy & (8D,
() s voey ()5 M2 (Bega)y +- oy o (F))
have the same distribution. Now, let £y, ..., fe T\T, and let

Zy = Lny(t)y ey m(G)>, ¢ =1,2.
Let Ay, 4y,¢ #(R¥) and let
B; = {mi€I’zJ§ <'i7,;((991, @), tl}ﬂ ceey "7’1((”17 Ty) 4 tlc)> sAi}7 1=1,2.
By the construction, it follows that the random elements 7, 7, are inde-

- pendent. Hence

P(@; 73(@) e By, fis(@)e By} = P{a; fla(@)e B} P{w; fa(w)e By}

4 — Studia Mathematica LIX.3
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On the other hand, .

Pla; 7, ()€ By, 7a(®) € By} =P (By X By) = P{w; Z,(%)¢ Ay, Z,(0) e 4,)
and

Piw; fy(@)e B} = P{(@;, 4,); ;¢ B} = P{w; Zy(w)e A},

These equalities show that Z,, Z, are independent, which completes the
proof of necessity.

The proof of sufficiency is similar to the proof of sufficiency in The-
orem 3.1 and therefore it is omitted.

i=1,2.

4. Gaussian measures on L, spaces. Now let & be a measurable

Gaussian process. Let us write () = HF&(f) and
(8, 5) = B(£(t)— 0(8))(£(s)— 6(s)).-

TEBOREM 4.1. Let {£(1); te T} be a measurable Gaussian process with
paths in L,. Let £ denote the random element induced on L, by & Then £
is & Gaussian random element.

Proof. Let X;, X, be two independent random elements defined
‘on (2, X, P) with values in I, with the same distributions as . Let &, &,
be two Gaussian measurable processes such that &; = X, a.5. [P],¢ =1, 2,
constructed as in part (ii) of the proof of Lemma 3.1. By Theorem 3.2
it follows that there exists a Tye&F, m(T,) = 0, such that

Gty e Gty <Galb)soves LG

are independent Gaussian random vectors if ¢, ..., fe T\T,. So, if we
define

&1 (w0, 1) = §i(w, )+ 5w, B),
then the random vectors

CEalta)y -oes Ea(t)yy  <&alti)y oy EalBe))

are independent if 7, ..., i, \T,. Since, by the construction, & = X,
a.8.[P], ¢ =1,2, we have & = X;+X,, §, = X,— X, a.5. [P]. By The-
orem 3.2, it follows that &, £, are independent and hence also X+ X,
and X;— X, are independent. The proof is complete.

Remark 4.1. Let X,, X, be independent symmetric Gaussian random
elements with values in I, with the same distribution. If s, ¢ are arbitrary
nonnegative reals such that s2--¢% = 1, then sX,--tX, and tX;,—sX,
are independent and have the same distribution as X,. For, let (&, &)

- be a pair of measurable processes inducing on I, x I, the same distri-
bution as (X;, X,). Then, by Theorem 3.1 and 3.2, there exists a TyeZF,
m(T,) = 0 such that

Z, = (51“1): [ERS) 51(tk)>a

Sy, 1) = Li(w, 1) —La(w, 1),

Ziy = LE(l)ye ey Ea(ty)

icm

Gaussian measures on Ly spaces 259

are independent symmetric Gaussian random vectors with the same
distribution for every %), ..., % e I\T,. Thus, sZ,-tZ, and tZ,—sZ, are
independent and have the same distribution as Z,. Using Theorem 3.1
and 3.2 again, we obtain the desired conclusion.

Now, we need a simple lemma (see [9], Lemma 3.1).

LeMMA 4.1. Let £ be a symmetric Gaussian random variable. Then,
Jor alla > 0 and b > 0, we have

B(§1%) = O(a, b) B(1EP)*,

where

2

THEOREM 4.2. Let {£(1); te T} be a measurable Gaussian process.
Let 0 and K be the mean and the covariance function of &, respectively. Then
E(w,)el, as.[P], 0 <p < oo, if and only if 0c L, and Ke Ly,.

Proof. Let us suppose that 6(f)e L, and K (, t)e Ly,. Then {£(f)—
— 8(t); teX} is 2 symmetric Gaunssian process with the covariance fune-
tion belonging to L,,. Using Lemma 4.1 and Fubini’s Theorem, we can
easily obtain &(w, -)—0(:)eL, a.s.[P] (see [9], Proposition 3.4). Since
be L,, we have £(w, *)e L, a.s. [P].

Conversely, let &(w,-)e L, a.s. [P]. Let 5y, n, be two copies of &
defined on (2 x 2, XXX, P xP): n;(w) = &(w;), where 0 = (w,;, w,)e 2 X
X 2. Then, for every f,...,%eT,

)y ooey m(B)Ds Ma(B) s oeey M (B>

are independent. I;et {{w,t) = (nl(w,t)—nz(w,t))/l@. Then ¢ is a sym-
metric Gaussian measurable process with pathse L, a.s. [P].

Let u be the distribution of £ in L,. Then, by Theorem 1 in [7], we
have

—(ajbyn—{(a—b}/2b)
C(a, b) =1‘(“;Ll)r(b+1) )

[ @l () < oo
for every r > 0. Hence, by Fubini’s Theorem and Lemma 4.1, we obtain
[BCapEmat) = 02, p) [ BIE@Pmnd) = 0@, p) Bl o)l
=0(2,p) [ ol (),
where r =1if 0 <p<<landr =1/pif 1 <p < oo. Let us observe that
BZ(ty = 0 and that K(i,s) = BL(t){(s). Now, sinee {Z(f)—0(t); t< T}
is a symmetric Gaussian measurable process having the covariance func-
tion in L,,, by the first part of the proof we have &(w,:)—6()ely
a.s. [P]. So, by the equality
6(t) = £(t)— (£(t)—0(2),

we obtain e .L,.
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Remark 4.2. Let X be a Gaussian random element with values in
L,. Then there exists a symmetric Gaussian random element ¥ and
Yy e L, such that X = ¥ -y a.5,[P]. For, let £ be a Gaussian measurable
process such that § = X a.s.[P]. Let 6() = H&(t). Then, by Theorem 4.2,
y =0cL, and Y = f— 0 is a symmetric Gaussian random element sat-
isfying the above statement.

COROLLARY 4.1. Let u be a Gaussian measure on L,. Then the support
of i 48 the algebraic sum of an element of L, and a closed linear subspace
of Ly,.

Proof. This follows immediately from the above remark and Theorem
2.1,

By Theorem 2.2, we. obtain

TrmOREM 4.3. Let u be a Gaussian measure on Ly, 0 < p < oo, and
let F be a completion measurable rational subspace of L,. Then p(F) =0
or u(F) = 1. '

By the same arguments as in [9],  Corollary 4.1, we obtain

COROLLARY 4.2. Let {£(t); teT} be o measurable Qaussian nrocess
with the mean 0 and the covariance function K and let f be o real -

measurable function defined on T. Then either f|&(w, )e L, a.s. [P] or’

Flé(o, )P ¢ Ly as. [P], 0<p< oo, according to whether f|0” and fEP?
belong to L, or at least.one of f|6|° and fEP* does not belong to L, .

Remark 4.3. Let u be a Gaussian measure on' L,. Then, by a similar
method as in [2], Example, we can construct a linear Borel-measurable
and one-to-one mapping ®: D—L,(m) defined on a linear subspace D,
#(D) = 1. Then the measure » induced on L, by @: v(A) = (Pt 4),
A ¢ B(L,), is Gaussian. Using this construction, the zero-one law for Gaus-
sian measures on Banach spaces [1] and the fact that L, is a Borel subset
of Ly, we obtain the following result: let x be a Gaussian measure on L,
and let ¢ be a completion measurable subgroup of L,; then u(@) =0
or u(@) = 1.

Acknowledgment. The author wishes to thank Professor O. Ryll-
Nardzewski for suggesting this problem and for his helpful comments.

Remark 4.4. It is easy to observe that the results of Section 3 ag well
a8 Theorem 1.1 and Theorem 4.1 remain valid for spaces N (L(Q, z, u)
(see [10], Chapter I, § 3), in particular, for all Orlicz spaces.
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