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A two-sided operational calcnlus
by
RAIMOND A. STRUBLE (Raleigh, N. c.)

Abstract. A two-sided operational caleulus on the real line is constructed using
the algebraic method introduced by Mikusifski. A field of two-sided operators is
obtained which contains a large subspace of distributions, including the Laplace
transformable distributions of Schwartz. The operator field is shown to be isomorphic
with a field of meromorphie functions. The isomorphism is an extension of the classical
(and distributional) Fourier transform, and is expressed by an integral of the classical
form which is defined relative to a type I-convergence notion. A similar expression
for the inverse Fourier transform is obtained, and the two are also expressed by se-
quential limits relative to-a. type Il-convergence notion. The representation of distri- -
butions by these operators is discussed.

1. Introduction. As is well known, Mikusitiski obtained ([7]) certain
generalized functions by considering an algebraic field of fractions for
the convolution ring of continuous functions on the half-line [0, co).
The result is a one-sided operational calculus which possesses all the advan-
tages of rigor supplied by the Laplace transform method and mone of
the limitations imposed by the underlying analysis.

Recently, Boehme and Wygant introduced ([11) a two-sided oper-
ational caleulus on the unit circle which is equivalent to a periodic oper-
ational calculus on the real line R. They constructed from the ring # of
continuous 2x-periodic functions on R, under convolution and addition,
the ring . of fractions f/g, where g has all of its Fourier coefficients nonzero,
The latter are the nondivisors of zero in %. These fractions are called oper-
ators (following Mikusifski’s example), and the ring # of operators is
found. to contain (isomoirphically) the ring 2’ of 2z-periodic distributions,
under convolution. They showed that this ring of operators is isomorphic
with the (convolution) ring of formal trigonometric series (equivalently,
the ring of doubly infinite series of complex numbers under coordinate
addition and multiplication), and that every operator can be expressed
a3 a Fourier series. For the latter, a convergence notion is introduced
into . which is analogous to that given by Mikusitiski, and is called
type I.

In this paper we introduce still ancther example of a two-sided oper-
ational caleulus on R which results in a field My of operators similar
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to the 011g1na1 Mikusinski field. #yg,, containy (isomorphically) a large
subspace Py, of two-sided distributions, including all of the Laplace
transformable distributions of Schwartz [9] (the distributions with Laplace
transforms which are analytic and are bounded by polynomials in vertical
strips of the complex plane). It is shown that this field of two-sided oper-
ators ig isomorphic with a field J;m of meromorphic functions in neighbor-
hoods of the real axis in C. The isomorphism is an extension to gy,
of the classical Fourier transform and agrees in the subspace Dy, with
the distributional Fourier transform. It is found that these latter have
Fourier transforms which are actually analytic functions in neighborhoods
of the real axis. The Fourier transform on .y, is expressed by an integral
of the classical form which is defined relative to a type I-convergence
notion. A. similar expression for the inverse Fourier transform is obtained.
Algo the Fourier and inverse Fourier transforms are expressed by sequen-
tial limits (analogous to those in [2], [8], [11]) relative to a type II-con-
vergence notion.

TFor our construction (§ 2) we use a convolution ring Exp of * {fune-
tions @(f) on R which (along with all derivates) decay exponentially as
|t|—>oo. The ring has no divisors of zero, and so its field of fractions exists
and becomes (§3) our field gy, of two-sided operators. Each function
@ (1)« Bxp has a classical Fourier transform ¢ (2) which is analytic in a neigh-
borhood of the real axis Im# = 0 and rapidly decays there as Rez—>o-co.
The ring Zgy, of such analytic functions is isomorphic with Bxp, and its
field of fractions becomes our field ./ZExP of meromorphic functions. Types
I and II-convergences are then introduced (§4) in the field of operators
Mgy, in analogy with those in the Mikusinski field. These are employed
to obtain expressions for the Fourier and inverse Fourier transformis
between 4y, and J;E,p. Finally in § 5 we discuss the representation of
general distributions by the two-sided operators of the field A'gy,. The
theory of such representations was introduced earlier in [12] and further
developed in [3]. Operational solutions in .#y,, of differential equations
(ordinary and partial) are found to represent all distributional solutions
of the same differential equations, and distributions (in general) which
are represented by operators in .#g,, are found to have Fourier transforms
represented by certain special meromorphic functions in. ‘//;Exp‘

2. Some commutative rings without zero divisors. Let Hxp e the space
of C* functions ¢ on the real line B which satisfy families of inequalities
of the form

) ™ ()] < ¢ 6"

where ¢,,; and b, are positive constants (depending upon ¢, & and ¢, re-
spectively) and where ¢® is the ordinary kth derivative of ¢. We shall

(teR, &k =1,2,...),
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say that these functions decay exponentially. Because they do, their Fourier
transforms

@) o) = [ eHp(tyat
are analytic in strip-type 'neighborhoods Ny, = {#: [Imz| < b,} of the real
axis # = {z: Im#z = 0}in C, and decay there more rapidly than any power
of 1/lz| as Rez— 4 oco. The latter property is called rapid descent and is
obtained upon integration by parts in (2), using (1).

Conversely, if @(z) is analytic.in a neighborhood ¥, for some b > 0,
and if $(z) is of rapid descent there, then its inverse Fourier transform

@ . pl) = o

&G (w)dow  (weR)

is 0 on R and satisfies a family of equalities of the form (1) for any b, < b
One sees this by shifting the path of integration in (3) to a line above
and a line below the real axis #, within N,. Let us denote this space of
analytic functions by Zg.,. Then the Fourier transform becomes a one-
to-one mapping from Exp onto Zg,,. Moreover, if we denote the convo-
lution of two elements ¢, v of Exp by p*p, Where

@yt ftp (t—uyp(u)ydu = f(p u)p(t —u)du,
then one has
(4) p*y(2) = §(2)P(2) for |Ime| < min{b,, b,}.

Thus with convolution ag the product and with the usual addition
of functions, Exp becomes a commutative ring (algebra) without zero
divisors (since the right-hand member in (4) cannot vanish identically
unless one of the factors does) and is isomorphic (via the Fourier transform)
with the ring Zpy, of analytic functions under the usual multiplication
and addition of functions.

Let 2 denote (as usual) the test function space of all (% functions
on R with compact supports, and let Z denote the space of Fourier trans-
forms of elements of 2. We recall ([15]) that the latter are entire functions
#(2) which satisfy families of inequalities of the form

) [ 5(2)] < opae®™ (k=1,2,...).

We consider 2 and Z also as subrings of Exp and Zyg,,, respectively, and
endow them with their usual topologies ([15]) for which their topological
duals are 9" = 2’ (R) (the space of all distributions on R) and 2’ = Z’ (%)
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(the space of all ultradistributions on £). Recall also that the Fourier
transform can be extended to a topological isomorphism from 2’ onto
7, relative to the weak topologies of these spaces, by the Parseval equation
i 6> =2ndf, ¢), where g(t) = p(—1).

We shall need topologies (convergences) for Exp and Zgy, and these
ave defined in the usual way: A sequence {p,},n =1,2, ..., of elements
of Exp will be said to converge in Exp if the sequence, and all of its derived
sequences, converge uniformly on compact subsets of R, and if there
exist positive constants ¢, and b such that |p (1) < ¢,e™" holds for all
teRand k,n =1, 2, ... A sequence {f,} of elements of Zyy, will be said
to converge in Zyy, if there exist positive constants ¢, and b such that each
%, is analytic in N, and satisfies

() <o dor fol <b, T =0,1,2,...

and such that the sequence converges uniformly on compact subsets
of N. With respect to these convergences, the Fourier transform becomes
a topological isomorphism from Exp onto Zge,. Also the convergences
in 2 and in Z become stronger than those in Bxp and Zyy,-

ExavmpLE. Let

o

LN T
and ¢n(t,1)=22137!(——>—17-

=0

2
() = —m-r = gecht
theorem, @(i-+2) = ¢,(t, 2) +

1, with 0 < 6 < 1. Now ¢ is analytic along the real axis

Then ¢, ¢,c Bxp,
(p("+1)(t+ A0)
(n+1)!
R, and at each te R its power series expansion has a radius of convergence
greater than 1.-Thus it follows that for || <1, and all ¢,¢, (¢, A)—»@(t+2)
(1) (¢ 20
. . PmOEA0)
ay m—>oco. Moreover, since ¢(i+'A)—q,(t, 1) = ———(mT———A , We
conclude from the Cauchy inequalities that the convergence ix in Hxp

and by Tayloxr’s

St
for |1 < &, le. pt+2) = 2—997—_('—[27 for |A] < 4 and this series conver-
j=o "
ges in Exp. Observe that 1 need not be real here.

3. Some fields of operators and meromorphic functions. Associated
with each of the rings (integral domains) mentioned in the previous section
is its ordinary field of fractions. We recall that these are formal fractions
of elements of the rings which are identified, added and multiplied, as
ordinary numerical fractions .are, but with operations corresponding
to those in the rings. The fields of fractions for the convolution rings 2
and Exp ave denoted by 4, and #g,,, respectively, and are called oper-
ator fields. #, can be considered as a subfield of Mypxp, and its elements
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are called compact operators. The elements  — - (0 # @, pe Exp) of
?

My We shall call emponential operators. As is customary, we shall consider
each of these convolution rings as subrings of their respective operator

tields.

It is easy to imbed the space & of distributions with compact supports
as a.subring, under convolution and addition, in .# o- For if fe &', then the

. *
fraction %, for any nonzero pe 2, identifies f uniquely in .#,. Moreover,

if fis any distribution such that fxpe Exp for every g 2, then the fraction
« .

;’)—‘E, for any nonzero pe 2, identifies f uniquely in .#yg,,. Let us denote

DY Dy, the subspace of those distributions which Possess this property,

ie. fe Duy, iff, frpe Bxp for every pe 9. :

The fields of fractions for the rings Z and Zpxp, of analytic func-
tions, are denoted by .#, and Myxp; Tespectively, and are fields of certain
meromorphic functions, which consist of ordinary fractions with denomi-
nators and numerators coming from these rings. Thus ./;Exp is the field
of functions H(z) which are meromorphic in (various) neighborhoods
Ny, of # and are expressible in the form H(z) — 1/1_((% with §,:fe Zg,,.

~ w z
#, is the subfield of sueh meromorphic functions which are expressible
in this form with §, $e Z. Again we shall consider each of these rings of

analytic functions as subrings of their respective fields of meromorphic
funetions.

Now the ~ﬁe1d Agep, Of exponential operators is clearly isomorphie
to the field #gy, of meromorphic functions under the mapping which

sends an exponential operator =¥ to the meromorphic funection
14

H = % This mapping will be called the Fourier transform, and the mero-

morphic function H = l will be called the Fourier transform of the oper-
ator z, and will be denoted by &.

We observe that if fe @5, then the Fourier transform foffas an
ultradistribution can be identified with its Fourier transform as an expo-

nential‘opel‘ator, since in either sense, ]‘°-qu = f&, and thus (by (3) and
the Parseval equation),

2rfrp(t) = [ 'f(0)fo)do = (f(o), §(w))

—o0
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holds for all ®e Z. Moreover, since fPe Zygy, for all Ge Z, it follows that f

(which in J/Exp is a meromorph1c function in some Ny) is, in fact, analytic
in some N,. In particular, if f is analytic in some N, and is bounded by
a polynomial there, then it is the Fourier transform of a distribution fe @, .
These latter distributions are precisely those which possess Laplace trans-
forms in strip-type neighborhoods of the imaginary axis [16]. Thus the
field gy, of exponential operators confains a rather large subspace
Dy, of distributions, and by allowing for the shifting of distributions
via the exponential shifts ¢¥, can be considered to contain all Laplace
transformable distributions.

Many of the more familiar operators are compact; for example the
numerical operators & = aplp, the differentiation operator s = ¢®/p,
the integration operator h = 1Js = pje™® and the (real) translation operators
€™ = p(t+4 A)/p(t) are all compact, as one may choose any nonzero g in
2. In the last instance, if A is not real, then ¢ must be chosen to be an
analytic function in Exp, such as that of the example in the previous section.
Thus for nonreal 1, the translation e* is an exponential operator, but it
is not a compact operator. It is not a Mikusiiski operator either, since ¢ (t)
cannot be simultaneously, nonzero, analytic and right-sided. The Fourier
transforms of these warious opemtors are the meromorphic functions

& =0,§ =iz, h=1/iz and (“) = ¢,

The algebraic derivative D iy the transformation D: @ (t)>—1ip(t)
for all e Bxp, and can be extended (as a derivation) to the field /gy,
by the equation Dz = D(p/p) = (p* Dy —yxDy)/p*p. Since the Fourier
transform of Dy(t) = —tp(#) is just the dz-derivative of the Fourier trans-
form of (%), it follows that the Fourier transform of Dz is the iz-derivative

of the Fourier transform of @, 1i.e. f);(z) = —id@(z)/de.

Exaveres. In [13] we have speculated that no Mikusitski operator
satisties the algebraie derivative equation Dz = sz, This equation trans-
forms to the ordmamy differential equation d#/de = —2#, whose general
solution is & = co~%. Tt i easy to check that each of these entire functions
belongs to the ring Zg,, and that ity Fourier inverse is given by @ (%)
= re”zl" = gg~t2 which, of course, belongs to Bxp. IIoWwer, the (reciprocal)
entire function 2 only belongs to the field /Ilmu, while ity Tourier
inverse =% in My satisties the equation Dy = —sv. More generally,
My contains any function f which is analytic in some N, p and satisfios

limint |f(2)| > 0, there. For then we can select a nonzero Fe Zygy, with the
Rez-stoo

~ same zeros and orders of zeros as f, so that B/f gy ’Lhen, fe //Exp
We can show that the entire function & = ¢ belongs to -’”hxp In fact,
it satisties |@(2)| = ¢"™™ARe22 apd 50 we can select (an analytic) pe Exp
(as that of the example in §‘> 80 that g, (f) = @(t4b)e BExp for some
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b>0. Then §(2) = B(2)§(e)e mey, Since $(2) = FG(2) (and (2)
is of rapid descent in Ny,). Thus &(2) = §(2)/@(2)e J&’Exp , and its Fourier
inverse @ = ¢ ¢ Mgsp- More generally, J;'Em contains any func‘gion
f which is analytic in some N, and of exponential growth there, ie. [f(2)]
< ee®®e for ze N,.

4. Convergences in the fields. The following convergence notion is
the analogue for exponential operators of that defined in [7] for Mikusinski
operators.

DEFINITION. A sequence {x,},n = 1,2, ..., of operators is said to be
type I-convergent in Mgy, if there exists a nonzero pe Exp such that z,pe
« Exp for all » and @, p—» in Exp, as n—oc. The type I-limit of the sequence
{x,} is the operator # = p[p. The function ¢ is called a convergence factor
for the sequence {z,}.

It is clear what this definition means for the type I-convergence of
the corresponding sequence {#,} of Fourier transforms: the sequence {&,}
must possess & common denominator ¢ (equal to the Fourier transform
of a convergence factor) and the sequence of products {#,@} of analytic
functions must converge in Zy,,.

Type I-convergence is much weaker than distributional weak conver-
gence. For if {f,} is a sequence of distributions in P5,,, it converges weakly
in the distributional sense iff, the sequence of functions {f,*¢} converges
pointwise on R for every pe 2. It can be shown that pointwise convergence
of {f,+¢}, in this case, is equivalent to convergence of the sequence in
Exp. This is well known except for the exponential decay property (1).
But as operators, we have f,p = f,*p whenever g¢ 9, and so the sequence
{f,} of distributional operators converges in Py, iff the sequence of funec-
tions {f,®} converges in Exp for every pe 2.

We extend type I-convergence to other analytical procedures in an
analogous fashion. For example, we can formally express the Fourier
transform by the type I-integral in A'gy,,

o0

[ e aat

—00

(6 B(z) =
Equality in (6) means that for some nonzero ¢« Exp, we have

)= [ eap(i)dr,

-00

B(2)§(2

and this lagt iy certainly the case if & = p/p, 50 that §(2) = &(2)p(=) for
all z with [Tmz| sufficiently small, and y(t) = xp(?). Here, for each fixed
value of 2, e~**mp(t) is an operator in Mysp and the integral of it is inter-
preted as a numerical operator, with the numerical value &(2)$(2). Simi-
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larly, we can formally express the inverse Fourier transform by the type
T-integral in Mgy,

1 .
o alt) =5 fe“"m(w)dw,

which means that for some nonzero e Zyy,, we have

1 £
ap(t) = o= [ ¢a) (o) do.

Again for each fixed value of i, ¢ (2) $(2) is a meromorphic (analytic)
function in .ll"mp and the integral of it is interpreted as a constant mero-
morphic function, with numerical value ap(t).

Mikusingki introduced another, even weaker convergence notion
in his field of operators. It is nsually called type IT-convergence, and the
following is its analogue in #g. .

DEFINITION. A sequence {z,} of operators is said to be type II-con-
wergent in Mgy, if there exists a sequence {g,} of nonzero elements of Exp
such that #,p,¢ Bxp for all » and @, ¢ # 0, ¥,¢,—v in Exp, as n—>oo.
The type I1-limit of the sequence {,} is the operator %

It is clear what this definition means for the convergence of the cor-
responding sequence {@,} of Fourier transforms: the members of the se-
quence {#,} must be expressible in the form &, = §,/¢, with &, %0,
$n>9 In Zge.

‘We can formally express the Fourier transform as a type II-sequential
limit in A g,

(8) IL-lm U, T~%5(%) = #(2),

T=00
for all z with |Ime| sufficiently small. First we need to explain the notation.
For fixed » =1,2,... and complex p, we define two transformations
in Exp by the equations

U,o(t) = np(nt) for all ¢, TPp(l) = ®p(t) provided |Rep| < b,.
[

Then these are extended to the field 'y, by the equations
TP

U,z ___M for all », 1%z = v

U TP

It is easy to check that these are well-defined in My, and U,T" in (8)
merely denotes the composition of these two transformations. To verify
UL *p(1)
u,T ~¢‘!‘P(t)

provided |Rep|< min{b,, b,}.

the limit in (8) we let & — %, and consider U, T~*(t) =
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and in particular, U,T *y(1) = ne~*y(nt). For any nonzero oe 9,

we have
9)
: % b
UL~ %pxo(t) = [ ne ™ yp(na)o(t—o)de = | e—*'ww(u)a(t—ﬁ) du,
—o0 —oa n

and it is easily seen that the sequence in (9) converges in Exp to $(2)e(t)
as f—-oc0, provided [Ime|< b,. Similarly, U,T *pxo(t) converges to
p(#)o(t) in Bxp, provided [Imz| < b,. But

_ U, T ®ypxo
T U, T ®gxo

and thus the limit in (8) exists in the sense of type II-convergence in gy,
provided [Imz| < min{b,, b,}. For each such fixed value of 2z, the limit
w(2)o(t p(z
- “ﬁ—;gz;agt; = -:;—E;% = &(2), provided, of course,
2 18 not a pole of #(z). This is what is meant by (8).

An analogous result can be obtained for the inverse Fourier transform.
To obtain the result we need to define certain linear transformations by
employing convolution, rather than multiplication in Zygp- For fixed
n =1,2,..., te R, and nonzero ¢ Z, we define a transformation on -
by the equation

U, T *5(t) for all n,

is the numerical operator

(1)  TIEE) = [ e fme)de—o)do ,

1 F &
=5 | 5615 (1~ 2) de = pesyul0,

analogous to (9). Here o,,(l) =ne™'o(—mni), so that wTaM(E)
= §(§)d(¢—&/n). It is not too difficult to see that UnTgiﬁe Zgxps
whenever §eZyy,, and that the sequence in (10) converges in Zyep t0

p(1)5(2) as n—co. Now if § == e /Z]m,, we can consider the mero-

|

worphic function in #g,,,

292 UnTE9(2)

11 rv = g
) e T TR

b

which we would like to label U,,T?a':(z), but (in general) cannot, since it
depends upon this particular representation of # as a fraction. However,

.for any choice of representation, the type II-limit in J;Erp of the sequence
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given in (11) exists and does not depend upon the particular representation
of #. Moreover, this limit does not depend upon the particular chome
of & cither! Indeed, U,T%p(2)—>p(1)5(2) and U,TE§(2)—>p(t)G(e) i
Zgzps 88 n—oco. Hence for any fized value of ¢, the limit of the sequence
vHFE _ pll)
P p(t)’
provided, of course, ¢(f) % 0. Here we obtain the ordinary numerical
ratio of () and @(f) for each fixed value of ¢, which is mnot very
satisfactory. If we wish to identify the operator &, which is the convolution
p(t)3(2)
(1) 5(2)
.//{Exp, $0 as to identify ¢ and ¢ individually. With appropnate interpre-
tations then (see (10) and (11)), we can claim that

{12) II-lim U, T"%(2) = #(t),

given in (11) is the constant meromorphic function

quotient lp, we must retain the quotient form for the limit in

in analogy with (8).

There is another interesting interpretation which may be made of -

the XI-limit in (12). We can interpret U, and T% as transformations of
the ring Zypy, in the variable z, much as we did for the ring Exp in the
variable t: U,f(2) = nf(ne), T (2) = ¢**§(z). Then these may be ex-

tended to the field .#gy, by the equations
U9

U5’
so that U,T% becomes a well-defined transformation on gy, Actually,

it is independent of ¢, but any representation is made to depend upon ¢
in the form

U, % =

for all &,

U, T

) P

U, T%% =

Now U, T%j(2) = ne™f(ne) can be considered as & (regular) ultradis-
tribution and convexge% as an ultradistribution to 2nyw(t)8(=), where

6(»), a(=)y = &(0) for all §¢Z, as n—o0. This is becanse
(U T (2), 3(2)> = { e G (n2) & (2) de

= f e G (£) 6 ( )df A2y () F(0)  as n-voo.

—o0

Thus if the type IT-limit in (12) is interpreted to mean that the limits
in the numerator and denominator in (13) each exist in the sense of con-
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vergence in Z', then the limit is the formal ratio v(8)8(2)/e(f)6(2) of
ultradlstnbutlons For each fixed value of ¢ with ¢(t) 3 0, this ratio may
be considered to be a constant meromorphic function with numerical
value y(?)/p(t). Again, we need to obtain the limits in the numerator and
denominator separately in order to identify the convolution quotient
plp = a. : .
Following [10], we can define an interesting topology in the field gy, -
For each fixed b > 0, let M, denote the subcollection of funections in
M gep Which are meromorphic in the neighborhood ¥,. We endow M,
with the topology of uniform convergence on compact subsets of N
with respect to the chordal meétric. Thus a sequence {&,} converges
to & in M, iff,
]= 0
()12

for all compact subsets K of N;. We endow jExp with the finest topology
7 tor which all the injections M, \/JZEXD are continuous. Then a sequence
{®,} is convergent to & in ./ﬁ;mp if it is eventually in some M,, containing
#, and converges to & there. We remark that the converse is not necessarily
true since 7~ is not a strict limit topology. Indeed, the injections My / My,
(by > b,) are continuous’ mappings, but are not homeomorphlsms It
is easy to see that a type I-convergent sequence in .//lExp is eonvergent
in this topology if, in its convergent form, it has a common denominator
which does not vanish in some neighborhood N,. For its numerator se-
quence then converges in Zg,,, and so the sequence itself converges uni-
formly on compact subsets of N,. Similarly, any sequence of analytic
functions in .Afmp which converges uniformly on compact §i1bsets of
some N, to an element of J[Exp, is convergent in the topology Z. This
applies, in particular, to what is customarily considered a convergent
sequence of Laplace transforms [16]. The inverse mapping #—1/& on
JZESP—-{O} is continuous, since the chordal distance between monzero
# and ¢ is the same as the chordal distance between their inverses.
Since the inverse Fourier transform is a bijection, we can transform

Hm

>0

[ |8, (2) —&(2)]

sup
K V14 [8,(2)V1+ &

the topology 7 to an equivalent topology J for the operator field Apyy.
Then, of course, a sequence {x,} of exponential operators econverges to
the operator # in the topology 7 iff its sequence {#,} of Fourier transforms
converges to & in the topology . Again, type I-convergent sequences
in Mgy, are I-convergent if they have convergence factors whose Fourier
transforms do not vanish in some Ny, and the inverse mapping in g,
iy J-continuous. In particular, the series _Zs"l" /il is Z-convergent to
s gince its Fourier transform is 7 -convergent to ¢ Actually, this series
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of operators is type I-convergent in gy, sinece a convergence factor,
like the example in § 2, can readily be constructed. Similarly, the examples
in §3 show that the series Y'(—i)s*/j! and 3s*/j127 are type I-convergent
to ¢~ and ¢ in Mpg,,. On the other hand, the series 3 (—1)'s¥/j! is
only type II-convergent to e~ * in Mgy

We can show that these topologies are finer than the metric topology
obtained from the chordal metric restricted to the real axis 3?1 This is
defined by the family of pseudo-metrics (gy, for Mg, @ for MHg,, with
kF=1,2,...)

o
1 (e0) —

sup =
~t<ask V1+ [#(w

(o) )
)2V1 A [ ()2

(@, y) = 8(®, §) =

For suppose that Fe ./ﬂ"'Exp, e>0 and 8(&,¢) = (Je My 6:(#,F) <s}
for some fixed k. We need to show that for any b > 0, the intersection
M,n8(&, &) is open in M. It @ belongs to this intersection, then g, (%, @)
< ¢ Let

sup (7 (¢) — 0 ()]
]:EmlebIZ V141§ (2)2V1+ Jib ()2

W =gty = (s, @)

Then W is a neighborhood of % in My, and if e W, it follows that g, (@, &)
< e— (@, ®). But then §,(@,§) < & (@, ®)+ &, ) <o, and so W
< 8(&, &). Thus, M,NS(&, ¢) is open in M, for every b > 0, and the metric
topology defined by the g; is such that all the injections M, \/‘J(Exp are

continuous. But J is the finest topology for J{E,p which has this property,
and so is finer than this metric topology.

Now suppose that the sequence {,} is type II-convergent to x in
Myzp. Then if &, = §,/¢, and & = §/§, with §,~§, §,~F, we have

n(©) = P (@) § ()]
(@) 2V |§( )2+ [ (w) 2

— G, ()] + |§(@) —
Vig(0)+ [ (o)

sup 1B(w) P
o<k V|5, (@) [y (@

|$ ()

0 () 8) =

Fu()]

< sup
| —k<w<k

If the fraction ¢ (»)/p(w) is such that §(w) and F(w) do not vanish sim-
ultaneously, it follows that gy (2,, )—0 as n—>oco. Thus a type II-convergent
sequence is convergent in the metric topology if its limit, in its conver-
gence form ylp, satisties V|F(w)*+ [F(w)E 5 0 for all wedk. A similar
argument shows that a type IT-convergent sequence is 7 (or T ) conver-
gent if its limit, in its convergence form y/q, satisties V|§(2)[2 + |qu( )2 0

icm

A two-sided operational caleulus 251
for all 2 in some N,. In particular, the type II-limit in (8) can be replaced
Dby either the metric or the 7 limit, since &(2) can be chosen to satisfy this
condition. The same situation holds for (12).

5. Representation of distributions by exponential operators. A. theory
of representation of general distributions (called operator homomorphisms)
by various Mikusifiski-type operators was introduced in [12] and was
further expanded in [3]. Exponential operators furnish us with additional
interesting examples of such representations.

We recall that an operator 4 ¢ #gy, is said to represent a distribution f
whenever fxg = zpe Exp holds for some nonzero ge 2. Of course, this
requires that & = p/p with ye Exp, and such operators, which can be
expressed as fractions- with denominators from 2, are said to be semi-
compact.

In [3], it is shown that operators which represent distributions have
certain continuity properties, just as distributions have, and they - are
said to be neocontinuous. Probably the most interesting examples of
neocontinuous operators are the (Mikusifski) operational solutions of
inhomogeneous differential (specially partial differential) equations which
have been shown to represent all distributional solutions of the same dif-
ferential equations. These are significant examples of neocontinuous
Mikusiniski operators which have been discussed previously in [12] and
[3]. However, the very same considerations (applied to the higher dimen-
sional analogues of .#g.,), show that exponential operational solutions of
these differential equations also represent all distributional solutions
of the same differential equations.

Suppose an exponential operator x represents a distribution.f, and
¢ is a nonzero member of & which satisfies #p = f*pe Exp. This need not
mean that fxpe Exp holds for every pe 2, and so “representation” of
2 digtribution in A gy, is a wealker link between 2 and Mpyp than is “iden-
tification” of a distribution in .#g.,. It is only a distribution f in Daxp
which is identified with an exponential operator, and for which fxge Exp
holds for every pe 2. Operators can represent many different distributions,
but a distribution can be represented by at most one exponential operator.

Now if we My, represents fe 2', then there exists a nonzero gpe 2
such that @p = fxp ¢ Exp. This means that the Fourier transform zp
=frp = fp(fe Z', §< Z) necescarily belongs to Zypsp- Thus the Fourier
transform f of a distribution f, which is represented by an exponential
operator, can itself be represented by a meromorphie function H (2) = § (2)/

[9(2) in Mg, With § e Zgy,, $e Z. This latter then constitutes the defml’mon
ot wpresenmtwn of an ultradistribution f by a meromorphic function in

Jﬁ’Exp, i.e. for some nonzero Fe %, one has fFe Zgy,. On the other hand,
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suppose that 0 # §eZ, PpeZpy, and that the meromorphie function
H(z) = $(2)[§(2)
H(w+1ig) of the real variable  is bounded by 2 polynomial in w. Then

we can define an ultradistribution f by the equation

(14) (f(w),&(w)) = f H(w+1i0)5(o0+ig)dw (for all GeZ),
—0

and this ultradistribution satisfies

0

Flo)i(@),5 (@) =Flo),jes@d= [ Hlo-+ioio+io)io+io)do
f" (w+ig)d{w+ig)do = fnp (w)&{ew)dw,

or all GeZ. Hence f3 = {, which means that the meromorphic function
= §/p represents the ultradistribution f defined by (14). Thus a semi-

compact, exponential operator & = —z— (pe D,peBxp) represents a dis-

tribution if the restriction of its Fourier transform H(z) = §(2)/§(2)
to some horizontal line Imz = ¢ is bounded by a polynomial in Rez = «.
‘We remark that various choices of g in (14) will, in geneml, result in vari-

ous ultradistributions f. Moreover, whenever an ultradistribution fis detined
by an integral like (14) using some path of integration y which results

in f $(2)6 (2) dz = f B(w , then this ultradis-

tmbutlon fis represented by H (2). This suggests the conjecture: a meromor-
phic function of the form H(z) = §(2)/{(2), with §eZgy, and 0 # §e Z,
represents an ultradistribution 1ff there exiq’us some path y, lying in Ny,
such that the equafoxon (f ), & ) = f H(#)5 (#)dz defines an ultradis-

tribution f and pr 2)de = f Plw )dw holds for all G¢Z.

There are known cla.sqes of gemi-compact, exponential operators
(actually compact operators) which do mnot vepresent any distributions.
These are the field inverses (remprocsﬂ ) of the nonzero elements of &
[3]. The examples Pl ~and ¢™* It in §8 :.LI\O appear to he u(mneucommunm
Indeed it seems hlghly unlikely that i P (2) e Zyyp 0T € /“qa( ) € Loy TOT
any nonzero ge Z.

ExAMPLE. Suppose H(z) = Q(2)/P(2) is a rational function with
P and @ polynomials. Then it is certainly possible to choose ¢ so that no
poles of H(z) lie on the line Imz = g. Moreover, H(w+14g) is hounded
by a polynomial in e, (certainly by [Q(w +1p)|). Hence H (z) represents
an ultradistribution f, defined as in (14). It is easy to see (using Residue

w)dw holding for all GeZ
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is such that for some fixed real o(|g| << bg), the function -
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Theory) that if the path of integration is modified slightly so as to
“cross over” a pole of H(2) of order j at z = 1, then the ultradistribution.
is modified by a term proportional to 69 (1 —z), where (8D (1 —2), &(2)>
= §(2) for all §¢ Z, which is not in the field .#g,,. None- the—less the
modified ultradistribution is still represented by H(z). The inverse Fourier
transform is similarly modified by a term proportional to t/e™, which is
not in the field Agy,. Of course, H(2) = Q(2) /P (=) is the Fourier transform
of the unique operator # satisfying the equation P[s]x = Q[s], where
P{s] is the polynomial P(2) with z replaced by s. The term ¢/¢™ is just
one of the (classical) solutions of the corresponding homogeneous differ-
ential equation, which can be added to or subtracted from the so-
lutions of the inhomogeneous differential equation without invalidating
them.

The operator & = @[s]/P[s], on the other hand, represents all dis-
tributional solutions f of the differential equation P[d/d¢]f = @[J(1)].
The Fourier transforms f of the various solutions f of this inhomogeneous
differential equation are the various ultradistributions represented by

the meromorphic function H(z) 2)[P(2). In particular,

1
P(z)
represents all distributional fundamental solutions belonging to the
differential operator P[d/dt].

6. Final remarks. Working independently, Szaz [14] and Krabbe
[4]-[6] have also developed an operational calculus they call two-gided.
It is isomorphic to a direct sum of convolution rings on each of the two
half-lines ( — o0, 0] and [0, oo), and so reflects more the algebraic structure
of a one-sided calculus. Indeed, their ring operations are equivalent to
those defined pairwise for ordered pairs of functions or distributions
with supports in these two half-lines. In particular, their multiplication
for the direct sum is not convolution on the entire real line B = ( —co, c0).
Their type of operational caleulus is well suited for treating initial-value

‘problems, but is not comparable with the two-sided caleulus developed

in this paper or with the classical (i.e. Fourier and Laplace) transform
procedures on R.
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A compact convex set with no extreme points
by
JAMES W. ROBERTS (Columbia, 8. C.)

Abstract. The purpose of the paper is to show the existence of a Fréchet space
X containing a compact convex set A such that K contains no extreme points,

1. Introduction. The Krein-Milman theorem states that if K is
& compact convex subset of a Hausdorff locally convex topological vector
space X, then K is the closed convex hull of its extreme points ([2], p.70).
In this paper we shall produce a Hausdorff topological vector space X
containing a compact convex set K such that K has no extreme points.
The question of the existence of such a compact convex set is mentioned
in [1], p. 124, and [2], p. 70. The first step in the construction of the space
X will be to construct some fairly pathological paranorms on finite-di-
mensional spaces. This will be done in Section 2. In Section 3 we shall
induetively piece together the finite-dimensional spaces to obtain a linear
metric space V. The space X will be obtained by taking the completion
of V.

Lastly, the author would like to thank the referee for his very helpful
suggestions.

2. Paranorms on finite-dimensional spaces. This section will deal
almost exclusively with paranorms on finite-dimensional vector spaces.
Throughout this paper all vector spaces will be over the reals and 6§ will
always denote the zero element of the vector space. If V is a vector space,
then a nonnegative real valued function N on ¥V is ealled a paranorm if
for every x,ye V,

(1) XN =0,
) N(@) = N(—a),
B) N@+y) <N@)+N(y),
(4)  limN(az) = 0. *
a0

A paranorm N is total if N (z) 5= 0 for every ze V such that & == 0.

. NV is monotone if, for every ze V and ae [0, 1], N (az) < N () (equivalently,

if [B]< |yl, then N (fz) < N(y»)). If N is a total paranorm.on a vector

3— Studia Mathematica 60.3
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