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A property of determining sets for analytic functions

by
JAN CHMIELOWSKI and GRZEGORZ LUBCZONOK (Katowice)

Abstract. Any locally determining set at OeK”(K ‘Ror K = O) for analytic
functions (1) contains a sequence convergent to 0« K", which is itself locally determining
at 0e K".

1. In this note we prove the following theorem. ‘

TurorREM. Let B < C" be a locally determining set at 0e C™ for holo-
morphic functions. Then there is a sequence {a,} = E convergent to 0 C*
which is a locally determining set at 0e C” for holomorphic functions.

This theorem is an answer to Question 2 posed in [2]. Its proof is
based on a lemma concerning locally complete sets in separable Hilbert
spaces. The lemma seems to be interesting by itself.

The authors would like to thank Professor J. Siciak for his valuable
suggestions.

2. Let H be a separable Hilbert space with scalar product (-, ->
and the norm ||| = -, >¥. A subset 4 < H is called complete if and
only if the equations {(z, &> = 0 for each ae 4 imply x = 0.

LeMMA. Assume that A is a subset of a separable Hilbert space such
that for every constant 0 < r <1 the set A,: = {mwe A: |w| < r} is complete.
Then there is a sequence {a,} = A convergent to 0eH which is complete.

Proof. Let {¢;} be an orthonormal base in H and let #, be a positive
number. Then the set 4, is complete. Hence the closure of the linear
subspace spanned by 4, is equal to H. Thus there exist scalars 5", ..., ,5(‘)
and veetors af?, ..., af* ’e 4, —{0} such that

1B af? +... + B al) —ey)l < 277,
Put ry = min{|e’ll, ..., lal)l, 27%}. Then afd¢ 4, for k=1,...,8.

As before, we can chooqe scalars BY, ...y B and vectors a®, ..., a)

(*) A subset B of K" (n > 1) is called, a locally determining set at 0 e K™ for analytio
funetions, if for each connected neighbourhood U of 0e K™ the subset B ~ U is determin.-
ing for the analytic functions in U, i.e. if a function fis analytic in U and vanishing
on B U, the function f is identically zero ([1]).
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¢ 4, —{0} such that ;
160+ ... + B o) —eall < 27

By recurrence we choose a sequence of positive numbers 7, such that
(1) <2 for k=1,2,...,
and scalars p%,..., % and vectors af¥,...,afed, —{0} with the
property

@) NBP P+ + fRaf) — el < 27F for k1.

Consider the sequence af’, .., o, a®, ..., a®, o, ..., which we shortly
denote by a;, @y, ... Since afc 4, for j.=1y..., 8 and 70, we have
lima; = 0. We ¢laitn: that the sequence {a;} is-complete. Indeed, put

g o

—00 & :
uy, = Y [P and let be H, [b] =1, be a vector such that (b, u> =0
jm=1 oo .
for ka> 1. Then b = > a6, where oy = {b, ¢, —uz>. From the Parseval
E=1 .
equation, the Cauchy inequality and from (2) we obtain ,
00 =] 0 _I; 1
L= [pllt =" lapl2 < D Il —wel? < D) 47F =37,
k=l =1 ' k=1
a contradiction which completes the proof.

3. Put I: ={aeZ%: ay+...+a,> 0}, =" = zfl..l. o, Fo= (Fyyn
ey &) for 2, Le O™ ‘
- The vector space of complex multisequences

#yt = {(0dut Y lod? < o0}

acl
is a separable Hilbert space with the scalar product (f, g): = Z; Falas
N ad,

where f=(f), ¢ =(gde#,. Xt f={(f)edt,, then the function
f(2):= 2 f,2* is holomorphic in the open polydise P; = {ge C": |2| < 1}
ael

(Il + == max |o]). If fe oy and g : = (£%)op, where {e Py, then {f, g;> == f(£).
1<h<
If a funetit;%n f(#) 1= D] fa2"is holomorphic in a neighbourhood of the closed
— ael
polydisc Py, then f = (f,)e #7,.

4. Remark 1. If B < C"is a locally determining sob at 0e C* for
holomorphic funetions, then the et

1
—1-E : ={—z: zell, |2| < @1:
r ¢ r J

where 0 <7< ¢<1, is determining for functions holomorphic in I;.

icm

4 property of determining sets for analytio funotions 287

- Indeed, if fe O(P,) and f(z) =0 for 'ze-;-Ee, then f(%c) =0 for
' 1
{e¢ B,. Since the function C—>f (—; C) is holomorphic in a neighbourhood

of 0, we have f(%z) =0.Thusf = 0.

Remark 2. If B< C* is a locally determining set at 0e C* for
holomorphic functions, then the set

. l s .
,ﬂpm: = {g‘.: 4“7 Er’ ”gC”< Q}

where 0 <7 <1,0< o<1 and 922 = (£%qar; is complete in 57,
Indeed, the equations

1 1
gl = Do = -1

e 1SGE I

imply that g0 in #, if and only if £-0e C™. So, if fe #, is such that
F(&} =<f, 9> = 0 for every g« &,,, then there is a constant o'e(0, 7]

such that f(¢) =0 for every le —;LTE,,. Thus, according to Remark 1,
we have f = 0 (because f(z) = > ¢.#® is holomorphic in P,).
Lemma and Remark 2 yiglld immediately the following °
Remark 3. If ¥ is a locally determining set at 0 C" for holomorphic
functions, then for every constant 0 < r < 1 there is a sequence {{} = —i—E,
convergent to 0e C" with the property

fedy and  f(&) ={f 90> =0 for »>1=f = 0.

: 1
5. Proof of Theorem. Let =< and let {t"}s1 < B, be

1
a sequence such that, if fe o, and f (—;— C"'”) =0 for v > 1, then f = 0.
. k
Obviously, the origin is the only accumulation point of the countable set
D: = (b kyvz1} < H.

We claim that D is a locally determining set at 0« C™ for holomorphic
functions. Indeed, if a function f is holomorphic in & connected neighbour-
hood U of 0e C™ such that f anU = 0, then there is a positive integer
k such that the function ¢(e): = f (74#) is holomorphic in a neighbourhood
of Py, 50 e A,

5 —Studia Mathematica 60.3
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. S’ineve @ (—1— 5"") = f({®") = 0 for »>>1, we have ¢ = 0, and conse-
4" .

quently f = 0.
Remark 4. Our Theorem remains true for real analytic functions.
The above proof may be repeated without any change
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A "cb_l'ihtcrexample to seve;:il questions about Banach. spaces
‘ v . k by :
JA'M'E 8 H‘AGLER (Washington)

Abstract. There exists a sepa,rable Banach space X with nohseparable dual
such that * does not imbed jn X and such that every normalized weakly null sequence
in X has a gubsequenca eqmvalent to the usual basis of ¢,. Weak sequenmal convergence
and norm convergence in X* coincide. Other properties of X and X* are mvestxga.ted.

1. Introduction. In this paper we construct a Banach space X which
provides answers to many open questions about the isomorphic structure
of Banach spaces. Our main result is .

THEOREM 1. There exists a sepamble Banach space X satisfying the folv
lowing :

(a) Bvery sequence in X which converges weakly but mot in morm to
zero has a ¢, subsequence.

(b) There ewists o separable subspace F of X* such that X*[P is iso-
metrically isomorphic to ¢,(I), where I has oardinality c. i

(e) X is heredztamly o

(d) There exists a subspace ¥ of X with Y* separable such that ¥ does
not imbed in ¢,.

(e) X* has the Schur property; i.e., weak sequential comvergemce amd
norm convergence in X* coincide. In particular, X* is hereditarily 1.

(£) There ewists a bounded set I' in X* of cardinality ¢ such that no
sequence in I is a weak Cauchy sequence. Yet, no subspace of the closed linear
span of I' is isomorphic to 11 (A) for any -uncountable set A. -

Ot course, (b) and (¢) of Theorem 1 show that X iy another example
of a separable space with X* nonseparable such that I* does not imbed
in X, The first of these examples was given by James in [7]. Later, Lin-
denstrauss and Stegall [11] gave a second example of such a space (which
they ecalled JF) and studied the duality properties of the above mentioned
example of James (which they called JT). The space JT' is hereditarily
%, while the space JF has many subspaces isomorphic to 12 and many
isomorphic to ¢,. Both the spaces JT and JF are closely related to the
non-reflexive space J isometric to J** introduced by James in [6]. In
the gpace X of Theorem 1, ¢, plays the role that J does in JT and JH.
(The influence of the papers {7] and [11] on this paper is considerable.
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