J. Mycielski

[4] L. Nachbin, The Haar integral, Princeton 1965.

10

- [5] J. C. Oxtoby, Invariant measures in groups which are not locally compact, Trans. Amer. Math. Soc. 60 (1946), pp. 215-237.
- [6] C. A. Rogers, Hausdorff measures, Cambridge Univ. Press, Cambridge 1970.
- [7] S. Saks, Theory of the integral, Reproduction of second ed., New York 1964.
- [8] R. M. Solo vay, A model of set theory in which every set of reals is Lebesgue measurable. Annals of Math. 92 (1970), pp. 1-56.

MATHEMATICS DEPARTMENT UNIVERSITY OF COLORADO, BOULDER, COLORADO 80309

Received March 5, 1975

(970)

STUDIA MATHEMATICA, T. LX. (1977)

On a class of Banach spaces

by

M. VALDIVIA (Valencia)

Abstract. A Banach space E with E^{**}/E separable is the direct sum of a reflexive subspace and a separable one.

The Banach spaces we use here are defined over the field K of the real or complex numbers. If $\langle E, F \rangle$ is a dual pair of vector spaces, with the bilinear form $\langle x, y \rangle$, $x \in E$, $y \in F$, we represent by $\sigma(E, F)$ the locally convex topology on E such that the origin of E has as neighbourhood sub-basis $\{U_y \colon y \in F\}$, being $U_y = \{x \in E \colon |\langle x, y \rangle| \leq 1\}$. If E is a Banach space, we consider it as a subspace of its second conjugate E^{**} by means of the canonical injection. If F is a subspace of E, we denote by F^{\perp} the subspace of E^* orthogonal to F and by F^{\perp} the subspace of E^{**} orthogonal to F^{\perp} . We say that E is weakly compactly generated space, or WCG space, if there is in E a weakly compact fundamental set.

THEOREM. Let E be a Banach space such that E^{**}/E is separable. Then E is a direct sum of a reflexive subspace and a separable subspace (clearly, every separable subspace of E has its second dual separable).

We shall need the following lemmas:

LEMMA 1. Let F be a closed subspace of a Banach space X. Assume that every $x^{**} \in X^{**}$ that belongs to the $\sigma(X^{**}, X^*)$ -closure of a countable bounded subset of X is of the form $x^{**} = x + f^{\perp \perp}$ with $x \in X$ and $f^{\perp \perp} \in F^{\perp \perp}$. Then the space X/F is reflexive.

Proof. Let (\overline{x}_n) be a bounded sequence in X/F. If φ is the canonical mapping of X onto X/F, let (x_n) be a bounded sequence in X such that $\varphi(x_n) = \overline{x}_n, \quad n = 1, 2, \ldots$ If x_0^{**} is an accumulation point of (x_n) in $X^{**}[\sigma(X^{**}, X^*)]$, we set

$$x_0^{**} = x_0 + f_0^{\perp \perp}, \quad x_0 \in X, \quad f_0^{\perp \perp} \in F^{\perp \perp}.$$

If u is an element of F^{\perp} , the sequence of elements of K, $(u(x_n))$, has an accumulation point $x_0^{**}(u)$. On the other hand,

$$u(x_n) = u(\overline{x}_n), \quad x_0^{**}(u) = (x_0 + f^{\perp \perp}) (u) = u(x_0),$$

and therefore the sequence $(u(x_n))$ has as accumulation point $u(x_0) = u(\varphi(x_0))$, hence $\varphi(x_0)$ is a weakly adherent point of (\bar{x}_n) in X/F. Thus X/F is reflexive by using the theorem of Eberlein-Šmulian, ([2], p. 58).

LEMMA 2. If Y is a closed subspace of a Banach space X such that X/Y is separable, then there is a closed separable subspace $F \subseteq X$ such that Y+F = X.

Proof. Let φ be the canonical mapping from X onto X/Y. We take a dense countable set $\{\overline{x}_1, \overline{x}_3, \ldots, \overline{x}_n, \ldots\}$ in X/Y. For every positive integer n, let x_n be an element of X such that

$$\varphi(x_n) = \overline{x}_n, \quad \|x_n\| \leqslant \|\overline{x}_n\| + \frac{1}{n^2}.$$

Let F be the closed linear hull in X of $\{x_1, x_2, \ldots, x_n, \ldots\}$. Given any \overline{x} of X/Y we obtain a strictly increasing sequence (n_p) of natural numbers so that

$$\|\overline{x} - (\overline{x}_{n_1} + \overline{x}_{n_2} + \dots + \overline{x}_{n_p})\| \leqslant \frac{1}{p^2}, \quad p = 1, 2, \dots$$

Since

$$\begin{split} \|x_{n_{p+1}}\| &\leqslant \|\overline{x}_{n_{p+1}}\| + \frac{1}{n_{p+1}^2} \\ &\leqslant \|\overline{x} - (\overline{x}_{n_1} + \overline{x}_{n_2} + \ldots + \overline{x}_{n_{p+1}}) - [\overline{x} - (\overline{x}_{n_1} + \overline{x}_{n_2} + \ldots + \overline{x}_{n_p})]\| + \frac{1}{n_{p+1}^2} \\ &\leqslant \|\overline{x} - (\overline{x}_{n_1} + \overline{x}_{n_2} + \ldots + \overline{x}_{n_{p+1}})\| + \|\overline{x} - (\overline{x}_{n_1} + \overline{x}_{n_2} + \ldots + \overline{x}_{n_p})\| + \frac{1}{n_{p+1}^2} \\ &\leqslant \frac{1}{(p+1)^2} + \frac{1}{p^2} + \frac{1}{n_{p+1}^2} < \frac{3}{p^2}, \qquad p = 1, 2, \ldots, \end{split}$$

we have that the series $\sum\limits_{p=1}^{\infty}x_{n_p}$ converges in X to an element x and therefore $x \in F$ and $\varphi(x) = \overline{x}$, and thus Y + F = X.

LEMMA 3. Under the assumption of the theorem there is a separable subspace F of E^* such that E^*/F is reflexive and F is $\sigma(E^*, E)$ -closed.

Proof. Let $E^{\perp}=\{e^{***}\epsilon E^{***}: e^{***}(e)=0, \forall e \epsilon E\}$. By Lemma 2, there is a closed separable subspace H of E^{**} such that $E^{**}=E+H$. Thus

$$\sigma(E^{\perp}, E^{**}) = \sigma(E^{\perp}, E + H) = \sigma(E^{\perp}, H).$$

Therefore the weak-star topology of the unit ball B of E^{\perp} is separable and metrizable. Hence there is a countable subset $A_1 \subset E^*$ such that every $b \in B$, that is in the weak-star closure of a countable subset of E^* , belongs to the weak-star closure of A_1 . We set $F = \overline{\text{span }} A_1$ and use Lemma 1

for $X=E^*$. If G is the $\sigma(E^{***},E^{**})$ -closure of F in E^{***} , then $G+E^*=E^{***}$, since E^*/F is reflexive. On the other hand, E^\perp is $\sigma(E^{***},E^{**})$ -separable and therefore it is possible to take F so that $G\supset E^\perp$. Then the orthogonal subspace of F in E^{**} is contained in E, hence F is $\sigma(E_{\Sigma}^*,E)$ -closed.

Proof of Theorem. Let F be a subspace of E^* constructed in Lemma 3. Since, by Lemma 3, the annihilator F_{\perp} is reflexive, $F_{\perp} \subset E$, it is sufficient to show that E/F_{\perp} is separable. Indeed, this implies that E is a WCG space, hence if we write (Lemma 2) $E = F_{\perp} + G_1$ with G_1 separable, we can, by the Amir-Lindenstrauss theorem [1] (see also [2], p. 74), replace G_1 by a larger separable subspace G which is complemented in E. Since E/G is a factor space of E/F_1 , it is reflexive.

To prove that E/F_{\perp} is separable, observe that the conjugate space of E/F_{\perp} coincides with F, which is separable, and therefore E/F_{\perp} is separable.

The author wants to thank the Referee for his kindness.

References

- D. Amir and J. Lindestrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. 88 (1968), pp. 35-46.
- [2] M. Day, Normed Linear Spaces, Springer, Berlin-Heidelberg-New York 1973.

FACULTAD DE CIENCIAS, VALENCIA, SPAIN

Received May 19, 1975 (1017) New version November 25, 1975