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Inequalities for the ergodic maximal function*
by
ROGER L. JONES (Chicago)

Abstract. A decomposition introduced by Kakutani is used to give an ergodic
theory analog to the classical Calderén-Zygmund decomposition. This decom-
position. is first used to prove certain known results. These proofs show the strong
relationship between classical results on the real line, and ergodic theory results.
The decomposition is also used to study the ergodic square function. This square
function is an analogue to the martingale square funetion, and a generalization of
it in certain cases. Many properties of the square function are studied.

Introduction. On R”, the Hardy-Littlewood maximal function, M7,
is defined by

1
Uf(@) = sup o Jf Fat,  f>o.

This operator has played an important role in the study of other oper-
ators on R™ .

We consider an ergodic measure preserving transformation 7, acting
on a probability space (X, Z, m). In this setting, the ergodic maximal
function, defined by :

1 n-—1
fH@) = sw - NI, f>0,

k=0

may be expected to play the role of Mf on R™ Using a decomposition
of the space X, introduced by XKakutani, we obtain a decomposition of
functions, analogous to the Calderén-Zygmund decomposition on R™
With this decomposition, the methods used by Calderén and Zygmund
can be adapted to problems arising in ergodic theory. In particular,
proofs of the maximal ergodic theorem, and Ornstein’s L log "L theorem
on the integrability of f*, become especially clear when viewed in this
way.

* The work presented here is contained in the author’s Ph. D. thesis written,
under Professor Richard F. Gundy at Rutgers University..
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We also introduce the ergodic square function, defined by

o0
/
8(H@) = [ X fan@ —fa@)]",
n=0
where f, (%) = — 2 F(T™z), (fo = 0). This operator arose from the study
7 £=0

of certain martingales, where it has played an important role. We first
note, by example, that no pointwise inequality can occur between 8(f)
and f* We then prove that S(f) and f* are related by a & inequality.

That is,
f{D Omf‘p

We can take @(A) = 4%, showing [I8(f)l, < Cpllf*lps 0 <p < oo. The
proof uses the Kakutani construction as an analogue to the Calderén~
Zygmund decomposition. It is related to the proof by Coifman [3] that
the Hilbert transform is related to the Hardy-Littlewood maximal fune-
tion by such a @ inequality.

F) (@) dm (e (@))dm ().

These methods can also be used to study the ergodic Hilbert trans-:

form, defined as
f(T*a) T-k @)
lim
Nn-+00 2 !

and probably other operators.

Preliminaries. Let (X, 2, m) denote a nonatomic, complete prob-
ability space, and T a point transformation mapping X onto itself. In
this connection, we use the following notation. The transformation T is
measurable it AeX implies T-'(A)eZ, where T7(4) = {w]| TweA}. Here
and below, sets A and B are equal if they agree up to a set of measure
zero. The transformation is inwvertible if there is a measurable transform-
ation 8, such that TS(4) = ST(A) = A. In this case, § iz unique
and is denoted by T7'. A set A is called invariant if T(A) = 4; if the
only invariant sets are X and g, then T is said to be ergodic. Finally, T
is measure preserving if m(A) = m(T~'4). Our transformations are mea-
surable, invertible, ergodic, and measure preserving.

Some of the theorems remain true under fewer hypotheses, but the
modifications are usuaily clear. For example, let X = X,UX,, with
X, and X, disjoint invariant sets of positivé meagure, Assume 7 is evgodic
on X, and X,, separately. Then T is not ergodic on X, but the results
can be applied to X, and X,, separately. '

The following two decompositions play & major role in what follows.

icm
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THEOREM 1.1 (The Kakutani decomposition). If T is ergodic, in-

vertible, and measure preserving, and X is a probability space, then given
B, -with m(B) > 0, there ewist disjoint sets

Bl, 0<i<j-1,1<j< oo,
such that
B = U Bgv
j=1
o f-l.
=1 =0
and
T(BY) =Bl wnless i =j—1.
| B,
By,
B
B ... B?
B B B3
Bl B} B B
B} B} B} B} .. B

B
THEOREM 1.2 (The Calderén—Zygmund decomposition). Given f in

L'(R™, f>0 and 1> ||fl,, there ewisls a collection of mon- overlapping
cubes {@nty—, such that

1) for a.e. m¢ U Qu, f

(2) there ewist ¢y, ¢y, independent of f, 4, and Qy, such that

1
A< I-é-lv—lo_l[f(m)ldm <ol

The maximal function. We define the ergodic maximal funetion by

Z) < 23

n—-1

e L ®
=sup— D If(T=a)]

K=0

f*(@)
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This maximal function should be compared to the Hardy-Littlewood
maximal function, Mf defined by

Mf(o) = i;i%:m f flo) da

*, similar to the one

for > 0. We establish a decomposition, using f
given by Calderén-Zygmund using Mf.
THEOREM 2.1. Given f in IMX), f=0, and A> Ilf[]l, there ewists

a collection of dzs_)omt sets {On}RNes such that

(1) for ae. w¢ () Oy, f(@) < %
N=2

(2) for each N, A< - [ f(@)dm(@) < 24
‘Cn

1
m(GN) C
Proof. Let
= X f*(0) <1}

With this B, we form the Kakutani decomposition (Theorem 1.1). Let

N-1
N_UBN UTJBN

These C, correspond to the cubes @y of the Calderén—-Zygmund de-
composltlon (Theorem 1.2).

If ¢ U Cy, then weB so that f*(2) < A, and, in particular, f(z) < 4.

The first assertmn is proved.
LevumA 2.2. For each Cy,

1 <

Proof. If zeBY, then f*(x) < 1. Consequently,

N—-1
D' f(T%2) < N

K=0

Since f= 0, this tells us that
N~1 B
D f(T%2) < NA.
K=1
We now use this estimate to prove the lemma. Recall that

. N-1
Oy = U BY.

K=1

Inequalities for the ergodic maximal function ’ 115

Consequently,

1 o 1 =
G | = iy 2 [@an
Cn o

This proves the right-hand inequality in the second assertion of the
theorem. . -

LeMMA 2.3. For each N,

— f Flo)dm (@) >
Proof. The notation is neater if we replace f by g =f—A Then
n—1
weX | sup — (TX2) <0
— Xl g Yol <o)

K=

1
— | g(@)dm(z) >0,
m(Cy) Ci-
g(w)dm(x) = 0
4

We need to show

or equivalently,

It is sufficient to show

N1
D g(T%z)=0 for ae. weBY,
=

since then

N-1
fg z)dm (z) = fZ g(T*z)dm (x) = 0.
Oy BN £21

0
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By construction, we have the following two facts:

o ‘
(1) For @eB, we have > g(T%z) <0 for all n.

£
I

(2) For #¢B, there exists an integer I = I(z) such that 3 g(T%») > 0,
and I is the smallest such integer. K=0

We first show that if #eBY_, (the top of column Cy), then g(x) > 0
This follows from the fact that T'(x)e B and hence

Zn,’y(TK@w)) <0

K=0

for all n > 0.

If g(x) < 0, then we have

Zg T55) = g(@ —[-Zg TE ) = g(a)+ 2 (T%(Tx)) < 0.
K=0 K=0
This is a contradiction to ‘Ghe definition of I. Consequently, we must
have g(@) > 0.
More generally, for any » in the column, we see, by.a smmla,r argu-
ment, that the sum

9@ +g(To)+ ... +g(Tlw)

is positive, and T (z) is in the column.

Let zeBY, then
1

Zg(TKoo) > 0.

K=

. Bince T7(s) is in the column, it is either in the top or T (g) is also in

the column. If 7Z(z) is in the top, then we are done. Otherwise, sum

from 77+ (). Continue until we reach the top. We than have the desired
- conclusion.

TemoreEM 2.4 (The maximal ergodic theorem). If feI'(X
and 4> |fl., then

h =0,
m{f*>1}<—
Proof. By Lemma 2.3, we have

o [f@an() > 2
m(Oy) o :

or

L .
o [r@iam@) = moy).
C .
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Recalling that B = {f* <1}, we have

= Uty =>4
N=2

Consequently, by summing over N, we get

m{f* > 21} = ZmON 2 ff dm (@ .}17

p o] —2
TuEOREM 2.5 (Ornstein [4]). For feIL'(X), =0, the magimal fune-
tion f* is integrable if and only if flog *f is integrable, where

f(@)log *f(@) = f() log max (f(2), 1).

This theorem was first proved in this setting by D.S. Ornstein [4].
The proof given here is related to his, but follows an argument by Stein [5],
who proves an analogous result for Mf. (Recall Mf is the Hardy-Littlewood
maximal function.)

Proof. We first prove a distribution inequality and integrate to
obtain the result.

Lemma 2.6. For 4> |flly, we have

[ r@in@)

{32

[ r@yimia) <2mis*> 3.

{r>n
Proof. Recalling that

U Oy = {f*> 2
N=2

and that the Oy are disjoint, we have

3 [faram(e) = J t@im@) = | fla)ane).
N=20p U oy {8
N=2

and the above, we have

Z ff ) dm. (5 2227;1 (Oy) =2am{f* > 1}.

N=ady N=2

By Lemma 2.2

[ fl@)dm(a)

>
Dividing by A, we have
1
= [ r@yima)

{F*>a

<om{f*> i}
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The result now follows by replacing {f* > 1}, on the left side, by the
smaller set, {f > 1}. )

We now integrate the distribution inequality of Lemma 2.6, ob-
-taining half of Theorem 2.5:

f F* (@) dm (0) = f m{f* > 2}dA
X 0

Uf.“]_ oo
=J m{f* > 2)da+ fm{f*> 2}
0 [

¢

> Iiflh+ j%— [ r@im@az

> 04 [ f(a) og *(@)im(s).
X

To prove the other half of Theorem 2.5, we use the maximal ergodic
theorem and a truncation argument. Write

F<Fyen+ilyay,
and note

) < (fl{f>z})*+l‘
Consequently,

Im{f* > 24} < I {<f1{f>1))* > A}

< f T s ndm(a) < ff(m)dm(m).
(TP sy

7

We have obtained a distribution inequality,

m{f* > 21} < -i— [ Fl@)dm (z).
U>a

If we integrate this iﬁequality, we find that f* eIt if f belongs to I log *I.
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Remark. This theorem requires the assumption that m(X) < oo.
I M (X) = oo, then Ornstein [4] has shown that f = 0 and [ f(z)dm(z) 5= 0
imply £* is not integrable. In Stein’s paper [5] he considers the space to
be a compact subset of R™

The square function. Recall that a martingale is a sequence of func-

tions f = (fo, fi, ...), where B(f,|lfy, fi, vovy Ja—1) = fu_1- The martingale
square function, Sy f, is defined by :

oo

Saf(@) = [ X (7 —s@y]™.

=0

The martingale mawimal function, fir, is defined by
fie(@) = sup |f, ()]
n

Bwkholder and Gundy [2] have shown that these two martingale oper-
ators are closely related. They have shown that for a large class of mar-
tingales, there exist constants ¢, and C, such that )

(‘p”f;}”p \\/~ “SMf“p g Opr;.I“p7 0 < P < oo,

This result has had important implications in the theory of H, spaces
of classical function theory.
In ergodic theory we ave interested in the averages
n—1

1 "
Tala) = = > f(T%).
K=0
These averages form a martingale in the special case where T' is an in-
dependent shift. The obvious generalization of the -martingale square

function is the ergodic square function defined by

= o1/2
8 @) = [ 3 (faral0) =Ful@)],
=0
where the f, are the Cesiro averages defined above;

We would like to extend the martingale results to this setbing. Un-
fortunatly, this can only be a partial success. In particular, the inequality
Il << O 18 (f)l1, which is true in the martingale setting, is easily shown
to be false in this setting. However, many things are true about this
square function.

If we let d,() = f,.1(2)—f,(#), then it is easy to see that

1 F(T"x)
dn = ——— f, (@) 4+ ==l
' #+1 @)+ n+1
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Consequently,
sthe = [ la@p]”
n=0
S\ o L e A ”((f(T"w)
<(,§(n+1)+2w%(n+m)f"<”’f” w)) +[Zo E]
< Of () +8%f (@),
where
2 m 2712
s -[ ST
Nl

Since the operator f*

8*f(@).

TerOREM 3.1. The square function is weak type (1,1). That is, for

2> Ifll, we have
m{8(f)> 1} < —j— 1F -

Proof. First note that .

m{S(f) > 2} < m{OF*> Aj2}+m{8*F > A[2}.

Since f* is weak type (1, 1) it is enough to show that §*f is weak type

1,1).

= f(T*z). Define g(2) by

felw) i file) <
0 it fiulw) >

_ A(k+1),
Ir(@) = l ME+1).
Define b,(x) by

by(@) = fi(w)—

’I‘h_en
e =[ S]]~ [ S e
) (@) \2TH2 i by () \2]42
<[g(?ﬁl)] W,L[k-o (’“k*“wl)] '

T

is well understood, it is usually‘ enough to study

Proof that 8*f is weak type (1,1). Assume f3=> 0, and let fi(s)

icm°
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o

by (@)
k+1

We study these two pieces separately. For the first piece we have

1 [ (g (@) \ 2] N[ 96 (@) \?
m{[;(k—l-l)] 1/‘}\ ﬂzxf,;(kqtl) o)
; =*;T2(m fgk(m)zdm(m)
k=0 X
¢ - 1\ r a
—_ﬂ_g(k—-l-l)ofam{gk> a}da
. & 1 o e+
<71§(7_k+1) [ amir> e
(=] o0 1
<~§2—f a 2 (k—l—l) m{f> a}da
0 k=[]
KNNE d
\72-! (—a—)m{f>a} a
- %f m{f> ajda = —|fl;.
For the second term we have
1 [ by () )2]1/2 m} { °°'( by () )z 0}
m{[’;(k—i—l >4 <m§ k+1 -

< Dlnihe> 0) = D m{f> ak+1)

k=0 Je=0

<0f m{f > la}da = —}of m{f > a}da =—11—]|f”1.

Combining the two pieces, we obtain the desired resu't. This weak type
inequality implies that S(f) is finite a.e. for feL'(X).
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THEOREM 3.2. For 1 < p < oo there ewists a constant ¢,, depending
only on p, such that
I8 ()l << €1 1

Proof. Bxeept for a set of measure zero, we have

sure - ST < 5 (L)

k=0
oo

1 \® N
<1 > [75) = el
Je=0 h

Consequently, [8(f)lle < ¢ lIflle. Combining this with 3.1 and applying
the Marcinkiewicz interpolation theorem, we have the result.

Remark. There is no constant ¢ such that

S(f)(@) < of ()

for all f in Z*(#z). This can be seen by the following example. Choose N
very large. Find a set 4 such that 4, T4, ..., TV "4 are pairwise disjoint.
We can always do this by Rokhlin’s theorem.

We define fy(x) as follows:

or it I V(g)ed, 12" 1 < N,
ful(a) = . :
0 otherwise.
For zed, we estimate f*(@) by

n—1

1

() = ST —— k) 2k,
()= sup-- 3 f(I0) = sup Zf (T

k=0 Qn<;\r+1 Ie=

N
1 -~ 217,+1
= 5up = > %= =2,
271:

However, if 2" < ¥ < 2™, then we can estimate 8*(f)(w), for x
in 4, by

am

8(f) (@) [Z (Fnsa (@) —fu () ]]/2:}[2 Vria () =Falw )]/

n=0 =)
m m
. 1/2 21%]1 9m\ 2 1/2
> D Vw5 X (5 -5 ] =
=0 n=0 .

Therefore, the ratio S(f)/f* is unbounded.

icm
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The same example also shows that no pointwise inequality can exist
between 8*(f)(z) and f*(x)

The non-existence of a pointwise inequality still does not mean that
8*(f) is much larger than f* in some sense. Specifically, the set where
8*(f) is much larger than f* may have very small measure. For example,
consider the case of the martingale square function and maximal function.

Let @ Dbe any continuous nondecreasing real valued function on
[0, o) satisfying @(0) =0 and the growth condition @(21) < ¢P(4).
Burkholder and Gundy [2] have shown

[ @(S3f (@) dm(@) < co [ B(f3r(2) dm(@).

However, agam, it is easy to construct examples where for any given e,
Syf(@) > efyr(@
~ In their plOOf of the above fact, Burkholder and Gundy use martin-

gale stopping times as an analogue of the Calderén-Zygmund decompo-
sition. They prove a joint distribution function inequality for Spf and
far- This distribution inequality is then integrated to obfain the integral
inequalities.

We now show an analogous result for S(f) and f*.

THEOREM 3.3. For f= 0, we have

[ (8 (@) dm(») < eo [ B(F*

for all continuous nondecreasing @ with ®(0) =0 and D(21) <
particular, ®(1) =12 gives 18(F)llp < eplf -

Proof. To prove this result, we introduce a two sided maximal
function, A*f, defined by

(2)) dm ()
e®(4). In

1 n
A*f(w) = su ——————2'.’1’"&0
@) = swp o (TR
—00<N<L o0
Actually, we prove the above result with f* replaced by A* f, and then
show that

[ & (4*f(@)) am (@) < c,,,fcp 7* (@) dm(e).
Lzmma 3.4 There exislts a comtam ¢ such that for all 2> 0, all f> 2
and all 6 <1, we have

m{S*(f) > Br, A*f < 62} < D s (s

g

We note that this lemma is the basic step that leads to the theorem.
Once the lemma is proved, we can obtain the @ inequalities by using the
following extension of a method developed by Burkholder and Gundy [2].

)> 4}
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Lemma 3.5 (Burkholder [1]). Let @ be a continuous, non-decreasing
Sfunction on [0, o), with @(0) = 0 and D(24) < ¢D(A). Let f and g be non-
negative measwrable fumctions on a probability space (X, X, m). Assume
B>1, 6>0 and ¢> 0 are real numbers such that

m{g > pA, f> o} <
Let v and n be real nmumbers satisfying
DB < yB(R),  B(672)<nB(R),
Finally, suppose that ye < 1. Then

[ow ?(f).
__yg
Note that the existence of y and 7 satisfying

P(pA) <y@(2) and  D(67'A) < nP(4)

mi{g> A}, A>0.

A>0.

is assured by
D(22) < eD(A).
For example, a possible choice for y is ¢, Where k is a positive integer
. atisfying
251 < g < OF
since then
D(pA) < D(2FA) < *B(A).
Proof of Lemma 3.4. Consider the set

S <A

Use this set as the base for the Kakutani decomposition (Theorem 1.1).
Thus

S (<= ,UIB%
o
and
© j—1
X = UB.
=1 gm0
Let
F=f+f

where f, is supported on the parts of the columng where A*f is small.
That is,

f@) i weBlj> 1, and L
Sil@) = A*f(T*x) < 62 for some k, —i < k<< j—i—1,
0 elsewhere.

icm
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For o in {Support off;, A*f < 64} we have

8 (f2) (@) <

In fact, let we{Support of f,, A*f < 64}. Assume weB%, and let ae B s0
that T9(a) = . Then S*(f)(a) < 4 and A*f(x) < 61. Furthermore,

(1+¢d)A.

o ) .Tk
18" (fo)* (@) =" (f2)*(a)] = Z(fziﬂm) Z( B+l )
k=0
) , 1 9 1 2
=12 wrtor| () (e |

If we set

— 1 2 1 2

be =f(T*) ( k+1) "(k+s+1)]

the above becomes

\E’fa(f"m)bk - ]Efz(l”‘w) S,
Fe=0 k=0 i=k
o 3
- ;<b,-—bj+l>(j+1>7i—l—,;fﬂ"m)
< 4*f(z) \j (b= byl +1)|

< 61'2 (b;—b2) G +1)]-

=0
Now we show that

|3ty G+ < o1

=0
We have
oo ki i 1 \2 1 2
. _ | = i e} - — .
‘g(b"”bﬂl)(’“)‘ ‘L_Zob’l : . ”)[(Hl) (j+s+1)]
It

4= [(j—ll—l )2 _(‘j+A19+1 )2]’
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the 'ast expression may be written as

’ngl’a;

2

(T'w O — 1)

L =j
2(“” o) (k1) lc~l—1 Zf Ty ’

k=0
ﬁ
D (=) (6+1)] < 6

k=0 T

S L\ 1\
<‘”f}§(k+1) —(IG—I—SE)

Thus, we have established the fact that

< A'f(w)

< edA.

8% (f2) (@) —8™ (f2)%(a)] < ed222.
Hence we have
8*(fo)* (@) < 08222+ 8¥(f2)2(a) < 0624+ A2,
Consequently,
S*(f,) (%) (cazz~+7r)1’2 < (e641).

We now complete the proof of the lemma. I §*(f)(x
S*(f) (=) + S*(f
shown S*(f,) («

) > fA, then
(@) > pA. If we{Support of f;, A*f < 51}, then we have
< (e6+1)1 Consequently, if S*(f)(x)> 4, then

S*(fl)(m) > BA—(08+1)2> [f—(c+1)]4.
Choose § and ¢ so that ¢d+1 < 8. We then have
8*(f1) (@) > 364

 Thus,
¢
)2 Bl A< <MD > 0 < 7 [ fuwyama).
The last inequality is obtamed by an application of the weak type (1, 1)
estimate (3.1) for §*(f.).
We now need to show thatb
f fule < obim {8 () > 1}.

Recall that f; is sapported on columns where A*f iy small. That is,

{Support f,} = U U 45

=2 =0

with 4 < Bi,

icm
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and we 4] implies there is a k, —i

<k <j—1 such that T%(z)e {4*f < 82}.
‘We now have

V o F-1
[fi@im@) = [ f@)im@) = D [ 2 1Ty ama).

On each column, we can estimate the sum by 64, then obtain the final

estimate by summing up the columns. In detail, we proceed as follows:
Let

g
A%=Ul7;’c

where Dj are disjoint sets such that #eD] implies T*(x
and, if 8 <k, then T%(2)¢{A*f < 64}. Hence,

S‘ [ Dsoyam)
o

j—1

D ATy am(a)

)e{A*f < 02},

i=1 j=1

=Z [ Dsirisyam(a)

J=2 k=2 pj i=0
Dy

Zkf T*‘w)+§f(ffw)dm<x)

F=2 k=0 ‘Dl:é =0 =k
o f-1
-7 i3
Z’ (o 1)——— k+1 Zf(T y—lc)-——Zf(l"w)dm(a:)
J=2 k=0 DI];. i=k
oo f-1 )
< 2 (b+1) A™f (@) (D}) + (j —F) A*f (x) m (D)
J=2 =0
< D7 Mt+1)01m (D))
=2 k=0

< 260m{S*(f) > A}
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That is, we have shown

ffl < edm{S(f) > A},

and thereby, proved the lemma. .
To obtain the inequality for f¥, we use the following lemmas,

LemmA 3.6. For all A> 0,
m{A*f > 24} < 2om{f* > A}.

Proof. Using the maximal inequality (Theorem 2.4), we see that .

m{A*f>2/1}<—';— ff(w)dm(w).
{I>%

Whenever m{f* > 2} <1, we also have 2.6,

[ ryam(a) <2mis* > 2.

) >y
Hence the lemma is true if m{f* > 1} < 1. But, it m{f* > 1} =1, the
result is obvious. Thus we have the inequality for all A
Lemma 3.7. For ® as in 3.5, we have

f@Af dmw)/cq,fq’-’ (@) dm (@).

Prootf. Recall that @ determines a Lebesgue—Stieltjes measure. Conse-
quently, :

©0

qu A*F(w) fm{A 1> ‘?Z}d@ (24)

0

< [ 2m{f* > 1pdo( 2/1)<ofd5 F* (@) dom. ()

o

Thus the proof of Theorem 3.3 is complete.

Remarks. At this time a number of questions remain unanswered.
(I) As noted in the paper, the double inequality OIlf*[l, < I8(F)ls

< O, |If*|l, does not hold in the ergodic theory setting, but does hold in

the martingale setting. Is there another “square function” which extends
this martingale result, at least for some large class of transformations?

1| & .
(II) ¥ we replace f*(#) by Mf(x) = sup—,,—b—‘ Ef(T’”m)', then does it
L k=0 :

follow that 8(f)ll, <O Mf],. This would be a further generalization
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of the martingale result. Since Mf can be much smaller than f*, this
would be a much sharper inequality.

(ITX) The fact that 8*(f)(#) < o a.e. also implies for a.e. x that

F(T®z)r(t :
Rl k .
kzo ) exists for a.e. ¢, where 7,(f) are the Rade-

macher functions defined on [0, 1]. We can also look at
Fio,1 Z”zsf_r_ﬂf__) o
) pd P w(0).

The square function also shows that this operator exists for . a.e. (@, 1).
The ergodic Hilbert transform is defined by

F(T*@) —f(T %o ) —f(1T""w)
= lim .
Jim Z

1

It is easy to see that

Hf()%hmz"me t)dt.

n—>00

Thus, the Hilbert transform is the derivative, at 0, of F(ax,1). Can this
information be used to study the Hilbert transform? What is the rela-
tionship between the square functions and the Hilbert transform?
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