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pour toutes les décompositions h = 3 by, h; € H et si 'on remarque que

=1
(] = [M'?;@(h)-

Additif. Pour plus de détails concernant les résultats,de cet article, voir notre
livre & paraitre Propridtés specirales des algdbres de Banach. A propos de la remarque
4, C. Apostol nous & signalé un exemple d’algdbre de Banach ol le rayon spectral
est continu mais le spectre discontinu.
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Decompositions of set functions with values im a topolegical semigroup

by

'

R. URBANSKI (Poznan)

Abstract. This paper containg a generalization of Theorem 3.11 of L. Drew-
nowski [1], concerning generalized Hewitt—Yosida and Lebesgue decompositions, to
the case of Hausdorff topological semigroups.

0. Preliminaries. Throughout this paper,

8 is an abstract space,

# is a G-ring of subsets of 8,

H is comutative, Hausdorff, completely regular topologmal semi-
group with identity O under the operation -+ and topology = such
that the families {#-+ U}, where # runs through all elements of H and U
rung through all elements of % (% an open basis of O) are open basis for H.

0.1. DEFINITIONS. )
(1) Let I be any index get;

F(I) ={j:j = and j is finite}.
(2) For any J directed by < and »: J—H, y e H, "

limeg; =
1

“iff for every neighborhood U, of y there exists j, € J such that for every

jeJ with j > j, we have @, ¢ U,.
(8) Let I be any index set and »: I-~H, y € H; then

2 Py P

and J = f(I) directed by<.

ZM =y llm 8; =y where §; =

(4) YLebt w: I-H. The family (u;: ¢ € I) is summable in H iff there
exists y € A such that Y o, =y.
iel '
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For any u: #->H, )
(8) wisfinitely additive on H iff for every non-empty disjoint o ¢ f(2)

with. () 4 e Z we have
At

A) = A).
u(U) 4] g,; u(4)
(6) uis c-additive on. H iff for every non-empty countable, digjoint

A ef(#) with (U4 eZ we have
Adesd |

M(A%A) = Du(d).

Aesd

a(®,H) = {u: u: #—>H and u is finitely additive}.
(B,) < &,

limu(H,) = 0.

©(9) ea(R,H)={u: pea(®R,H) and u is exhaustive}.
(10) u (B) ={u(F): F < B and Fea).

1. s~Cauchy met and Cauchy condition.

1.1. DEFINITIONS. .

(1) For any J directed by < and #: J—>H = is an s-Cauchy net iff
for every neighborhood U of O there exists j, € J such that, for every
j, ked with j, k > j,, we have (see [4])

(s0) (2,+ U)O(@+ U) # 0.

(2) Tet I be any index set and o: I->H. Then = satisfies the Oauchy
condition iff '
(Co)  for every. neighborhood U of O there ewists j, e f(I) such that
Sor every ' e f(INj;) we have

8; €U, where

Sjl = ka.

kef’

(3) For A < H, 4 is s-complete iff every s-Cauchy net in 4 con-
verges to some point in 4.

(4) A is s-precomplete iff the closure of 4 is s-complete.
. (8) TFor u: #->H, u is s-precomplete iff the range of x (e.a. u (8)
i§ s-precomplete. .

1.2. LemMA. If J is directed by < and x: J—H is convergent, then w
s an s-Cauchy net.
A

4 is erhaustive (or s-bounded) iff for every disjoint sequence

icm
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Proof. There exists y e H such that limaz; =y. Then for every

. J .
neighborhood of O, U, there exists j, € J such that for j, k € J with j, k> o
we have

zey+U, wmey+U.
Hence
@ =y-+uy, X =4y+u, whee el (i=1,2).
Thus
Tytty =Y +Uy+ Uy = Bty
50

(w54 UyN(@,+ U) # B

1.3. COoROLLARY. If #: I—~H and the family (x;: ¢ e I) is summable
in H, then (S,: jef(I)) is an s-Cauchy net, where f(I) is directed by <.

1.4. LemMa. Definition 1.1 (1) of an s-Cauchy met is equivalent to
the following: for every j e J with j > j, we have

(@4 UV (2, + T) # 0.

1.5. LevMA. If o: I->H and if o satisfies the Cauchy condition, then
(8;: 4 e f(I)) is am s-Cauchy net, where f(I) is directed by <.

Proof. By Definition (Cc), for every neighborhood U of O, there
exists j, € f(I) such that, for every j' € f(I\jo), we have Sy € U.

Now, let j e f(I) and j > j,. Then §; = Sy, + 85,5 U j™\Jo € f(INJo)-
Thus §; € 8;,+ U, so

(8, T) (8, + U) # 9
for every j e f(I), j > jo- In view of 1.4., this completes the proof.

2. Fréchet-Nikodym topology and S-additivity.

2.1. DEFINITIONS (see [1], [2]).

(1) A topology I' on £ is called a Fréchet-Nikodym topology (shortly:
FN-topology) iff # (with the symmetric difference EAT = (BNF)U(F\EB)
as addition) is a topological group wnder I' and if, moreover, the oper-
ation, of intersection (E, F)—ENF is uniformly continuous on £.

(2) n: #—~[0, oof is a submeasure on 2 iff 17(0) =0, 4 < B=n(4)
< n(B) and n(AUB) < 7(4)+n(B).

(3) 7 is a submeasure on £, ‘ . )
I'(n) is the FN-topology on # determined by 7, that is, by the
Tréchet—Nikodym ecart (A, B)—n(AAB).

(4) uea(#®, H), I'is the FN-topology on &, u <I"iff pis I'-conti-
nuous.

(5) For uea(®,H), there exists the coarsest FN-topology, I'(u),
with respect to which u is continuous. If % is a base of neighborhood of O
in H, then the classes
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6) Uy ={BeR: u(F)eU for each F <l Feg}, Uecx,
constitute a base of neighborhoods of @ in (2, I'(s)).

(7)) For pyvea(R, H), p <vifft I'(u) < I'(»).

(8) Classes %, = {E: BedR: v (B) < ]0,¢[}, ¢> 0, form a base
" of neighborhoods of @ in (2, I'(n)), where 7 is & submeasure on 2.

2.2. LevmA. Let u € a(#, H) and n be a submeasure on &, then 1 < u
iff for every e > 0 there ewists a meighborhood of O, U e ¥ such that, for
every B € A for which u” (B) < U, we have n () < 10, e[, . .

2.3. DEPINITIONS.

(1) For 4,8 < A
ANB ={ANB: Aeo and Be B}.
(2) 9 is a class of pairwise disjoint sets from .

4 = A(R) is the set all clagses 2.

(4) 4 ={2: 24 and 2 is a finite class}.

5) d,={2: 24 and 2 is a countable class}.

6) For 2,, 9, 4,

2, < 9, iff for every D, € 9, there exists D, e 9, such that D, < D,,

(7) <is a partial order in 4.
(8) Given a set G = Z x 4(# ) let us write
' G[E] ={2¢e4: (H, 9 €G, Hea},
4 = US[H].

BeR

(9) G «@#x A(R) is additive on 2 iff the following conditions are
satistied : :

(al) 4y < 4 and U (B} xS[B] =

)
(a2) If E ez and @ D, € G[E], then .@m %GG[E]
(@3) It De#, 9 eG[E], then U2 =B’
(a4) L B, Fe®, F < ¥ and 9eS[H], then 948 FeG[F]
(aB) If ’El,EB €%, B,nB,'=0 and 2,eS[H,] (i’ =1,2), then

PUD, eG[B,UE,].

(26) Xt Bex, 9 eGS[H], and each De 2 is the umon of two
disjoint sets Dl,Dq e% then

={D;: D;e@P,i=1,2}eG[H]. .

(10) u: #—H is S-additive iff for every B E% and 2 e G[H] the tamily
(m (D): De 2) is 811mmable in H and Z‘,u = u(B), or, equivalently,

lim x(ENU2') = 0.
De)(D)

icm
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(11) FN- topology I'on # is G-continuous iff

(P) hm (ENUZ) =0
sf(m .

for each H e, 2 cG[E]
(12) = is submeasure on %. 7 iy G-continuous iff

lim 5(BENU 2')

=0 ,
D'ef(9)

Eexr, 2eC[H].

(13) wu: Z-H is G-singular iff I'(u) is S-singular.

2.4. Lemma. An FN-topology on & is S-singular iff each submeasure
both S-continuous and I'-continuous, vanishes on A.
3. Existence of 4, " and their properties.
3.1. DrrFINITIONS. For any 2 e 4, f(92) is directed by <.
(1) p(2) = lim u({J2'). For S-additivity on %, B e % and (D)
P'H(D)
directed by <=, G[H]is directed by <

(2) W (B = lim w(9).
DeB[E]
(8) w(B, 2) = lim u(E\NU D).
(2,
() w'(B)= lim u(E) 2).
¢S K]

3.2. LeMMA. p € ea(Z, H) is exhaustive iff for each @ e A the family
(u(D): D e D) satisfies the Oauchy condition (see [1]). i
3.3. PROPOSITION. Let u < ea(®, H); then the family (u(D): D.e2)

Proof. This follows from Lemmas 3.2 and 1.5.

3.4. COROLLARY. If y e ea(% H) and uis s-p'recomplete, then for every
Ged u(P) exists.

3.5. LeMMA. If uecea !/Z,H) and u 1is s-precomplete, @eA, then
for each closed neigborhood U of O in H there exisis @' e f(D) such that if
2" ef(D\2')and foreachD € 9", Dy € Aand \J Dy, < D, th(mD%” w(Dp)
eU.

Proof. Otherwise, there is a neighborhood U of O such that for

each 2’ ef(9) there exists 2" ef(2\9) and a family (Dp)p.a-,
where 2, 4 and U2, < D, for which we have 3 u(2p) ¢ U. Then
Deg

" "y guch that for each (@p)pwew, \UZp < D,

there exists 2" ef(2
Iped, and we have 3 u(Dp) =u(UU 2} ¢ U. Hence we find
Déin Dea™

. & disjoint sequence (4,) < £ such that %(4,) non— 0, but u eea (R, H).

3.6. LEMMA. If ucea(Z#,H) and u is s-precomplete \ ) 2D < B and -
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De A, B e, then for each clo@ed neighborhood U of O we have p(9)
eu (B+U.

Proof. By Proposition 3.3, /4( ) exists. Then for each U &% there
exists 9’ ef(2) such that

w(aN2')el.
Hence '
w(2) = (@) +p(2ND) eu(D)+ U,
but
= Y uD) =p(U2) = u (B)
Do -
80

p(@) en (B)+T.

3.7. PROPOSITION. If pu € ea(®, H) and p is s-precomplete, @ 4, <4
~and 4, is directed by < , then 1im p(2) ewists.

Dedy
Proof. By Proposition 3.3, u4(9) exists for every Fe 4. Suppose
that a family (u(2): 2« 4,) does not satisty (sC). Then by Lemma 1.4,
there exist a sequence (9,) < 4, and a neighborhood U of O such that
P2,< 9, <
and
(8(2)+ 0)0 (4( D)+ U) =B, n=1,2,...
Given a neighborhood U, of O such that U+ U, < U. Now let V,, be
a cloged neighborhood of O, such that
Vo4 Vot Vo €U, and Vit Vo < Vi
Applying Lemma 3.5 to the 2,, V,, there exists 2, €f(2,) such
that, if 2, ef(2,)\2,) and for each De 9", Iped and U2, < D,
then
= D w(@p) €7,
: Dea,
‘Write
n
B,=U2,=UD, F,=NHE, fonr=12,..

Deg,, k=0
Then F,,, < F, and imy (F,\F, ;) = O. Hence for some N &N,
n
M(Fn\Fn+1) e Vo,
80
' w(y) = p(Bpp) +p(FNFppn) € u(Frp)+ V.
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But

n * n

En\Fn= En\ ﬂ Ek = U (En\Ek)
k=0 k=0
= (E\NE)U(B,nB\E) U... U E,NEnN...NnE,_\EB,).
Therefore
BENE, = U2,\NU2, = U2,

where 9, €f(2,) but 9, < 92,. Hence for every D, e 97'1 there exists

Dy e 9, such that D, = D%, s0 there exists 9y e€f(2,\9;) such that

En\Ek < @;c,y

and
G =F nEo < NB,_ \E, = U2y,
ap = U azn
Degy,
Write

Dp = {G;nD,0},
by (*) we have

D w(@ND) = u(G}) e Vs,

Deg;;
80
-1
w(EBNF) e ' V.
k=0
But
() € p( D)+ Vs
and
' n—1
p(B,) = p(F) +w(BNF) < p(Fa)+ Vot D) Ve
Jee=1 .

Now, by the assumption,
Vo2 Vi+V,2 V4V, +V, >
ViVt F Vo VAV 2 Vit o Vi
hence
w(By) = u(F)+ Vot Vo € u/ o)+ Vot Vot Vo € u(Frpa) + Uny
for n> N. Now ‘ ,
w(Bypn) € p(2 W)+Vn+1,
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and similarly,
Cu(By) © p(Fop)+ Vot Vo < p(Frpa) + Usy
for n > N. Thus

pEBy) e p(Dy)+Vy,  p(Byp) € p(Dy)+ Vi

and
b (By) e p(Fyy) Uy, w(Byy) € 8 (Fyp) + Uy,
hence
(By) = p(Dx) + 05 oy €V,
#(Byya) = 0(Dyp) F 050 v Vg,
u(By) = I"(FN+1)+“}7 ui e Uy,
U(Byy) =p FN+1)+“§: uy € Uy,
80
w(Fygr) +ur = p(Dy)+vy,
B Frpn) +% = p(Dyp1) +Oxgas
and

W Fyp) Foy Uy = p(Dy) + o5+ = (D) +Onpr+ U
Write '
o =vy+u < 0+ 0, < T,
Uy =vynt+u < U+ U0, = 0.
Then

#(Dy)+uy = p(Dyyy) +4,, Where

This contradicts the assumption.

3.8. PrOPOSITION. If peea(®#,H) and u is - s-precomplete, then

W () = lim Hm gx(()\NUZ') is exhaustive.
De&() D'<f(9)

Proof. Let (B,) be a disjoint sequence in #. By Lemma 3.6, for
each 9, e G[H,], the closed neighborhood U and closed V e % such that
V+7V < U, we have

weU.

w(9D,) ep” (B,)+ 7V,
hence
KB eu (By)+V.
B}lﬁ exhaustivity of 4 implies exhaustivity of ", then for #n > N we have
k(B = V80 f(B,)eV+V < U, and 4 (B,) e U for n> N.

3.9. PropoSITION. If ueea(®,H) and p is s-precomplete, then n'
18 S-additive.

icm
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Proof. Let % be a uniformity induced by the topology = (see [5]).

Given any Ueﬂl}, there exis's V e such that VoV < U. Applying
Lernma 3.5 for Fe%, @ eG[E], there exists 9D,cf(2) such that if

2peG[D], De 2, then
(0, Suian)ev
De2’

- for every 2' < 9\ ,.

2* be such that
(w(2"), ' (@) V.
2 u(2*A D), for each 2, cf(2

(02", Y n(a*aD)ev,

DB,
Hence for 2, » 2,V%;, (v (H),

Let 2° eG[H], 2<

Since ,u( ), By = Dy, Doy D, (D),

we have
for 92, = 9,.

DZQ w(@*AD) e VoV c U.

3.10. PROPOSITION. If uecea (9];?, H) ond u s s-precomplete, B e X,
9 eG[H], then u(B, D) exists. ‘

Proof. Suppose that a family (,u (E~NU2): 2 ef(.@)) does not satisty
(s0). Then there exist a sequence (2,,) < f(92) and a neighborhood U of O
such that

Dy S Dyt © vovy

and :
((BNU 2.+ U) 0 (u(BNU 2,10) + T) =
Write 7, = E\NU 2,,,forn =1,2,... Then F,,, < ¥, s0 liPM(Fn\Fn+1)

= 0. Hence for some N ¢ N,
p(ENF ) e U,
= N. But
w(Fy)
§o for n = N

for n = ‘
= p(Fp)+p (o NFryy) < p(Fyp)) + U,

‘ w(BNU y) € u(BNU D)+ U
Thig contradicts the assumption. ‘
3.11. Remark. Analogously, u(U 2, 2)= l1m M(U@\U-‘?) ex-
(9)

ists. But u(B\NU2) = p(BNU 2)+p(U Q\U@ ), for every 2’ ef(2
Then u (B, 9) = u(ENU2)+4(U 2, 9).

3.12. PrOPOSITION. If u e ea(#, H), p 18 s-precomplete and H satis-
fies the cancellation laws (#+y = m+z=>y'= 2), then u''(H) exists for every
Hea.
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roof. By 3.10, u(E, 2) exists for every 2 e G[E] Since for every
2 e (.@) we have

p(B) = p(BNU2) +p(U @'):
then

(*)  w(® =911fr(n)ﬂ(E\U@)+ lim M(Ug) = u(B, 2)+u(2).
Now by Proposition 3.7, the family {,u ): @ e GLET}, satigfies (sC). Then
for every U e there exists 9, e G[H] such that, for every 2, 2, > 2,,
D;, 9y, € GLE] we have

(#(2) +0)n (4(2) +T) # 0.
Hence, there exist v;, v, € U such tiat

. w(Dy)+v; = p( D)+ v,
and by (*)

w(B, D)+ u(2;) = p(B, Di)+ 1 Dy).

So
w8y Dy)+ (D)) +v; = p(B, Dp)+u(Dy) + 05,
w(By D))+ p(De)+ v = p(H, D)+ p( D)+,
and by the cancellation laws,
(B, D)+, = p(B, D)+
Hence a family {u(2): 9 € S[F]} satisfies (sC).
3. 13 PROPOSITION. If ueea(R, H)u is s-precomplete and u'
then p' is an GSzngular
Proof, Let n be S-continuous and n<Lu'. Suppose that for some
B e g wehave (H) >z > 0. Let U % be such that " (F) < U implies
(@) < ¢ for every G = F, G e#. Thus 4" (B)¢ U, hence there exists
E, c B, Bye® such that u"(B,) ¢ U. So for each 2 eG[H,] there
existy 92, e S[F,] such that M(E .021) ¢ U and 2, > 9, hence for every

2, €f(2,) there exists 2 > 9;, @) ef(2,) such that ,u(H\U@ ') ¢ U.
In other words,

() Voes[B]iz >

ewists,

2, 2,eC[HIV ef(2) 12, = 2,
- 9/ €f(2,) such that u(B,\U2}) ¢ T.
Now let 2, e G[#,] have the property (). Given any @, e G[F NI,
denote 2, = 2,U9,, it is clear that 9, e S[#]. Since 7 18- G- contnmons

. and 7(B) > ¢, we can find Dy € f( Do) with 4(UJ 2¢) > & Let u'" = (4")".
Hence u”' (U2, ¢ U. But 2, = 2,U9, and 2,e€G[E,] and 9,

icm®
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e G[ENE,], then 9, = 2,U2,, where 2, e f(2,),
< B,|J92; = ENE,. Hence by (-), there exists 2| > 9,, 2, €f(9,)
such that u(B,NUJ 2]} ¢ U, this implies x” (B\NU2,) ¢ U.

Let us denote F, = (U2, G, =B \U2,. We have F,,Qq, < E,
F,nGQ, =0, and n(F) >¢, p' (F) ¢ U, o'~ (G) ¢ U. Applying the same
argument to the set F,, we shall find a set ¥, @, = F, such that FynG,
=, and n(Fy) > e u' (Fy) & U, 4" (@) ¢ U, ete. Thus there exists
a disjoint sequence of sets @, € # such that '~ (@,) ¢ Ufor n=1,2,...
This contradicts to the exhaustivity of u.

Now by Lemma 2.4, we have the following theorem.

3.14. TurnoreM. Let p cea(R, H), if u is s-precomplete and H satisfies
the cancellation laws, then u can be written in the form

2,€f(2,) and U2,

wo=p+p",
where p'y y' € ea(R, H), p’ is G-additive and u’' is S-singular.
Proof. For every B e, 2 € S[H] and 2' €f(2) we have *
u(B) =p(U2)+u(BENU 2,
but u’'(B), u''(H) exist by Propositions 3.7, 3.12 and have the above
propertics by Propositions 3.8, 3.9 and 3.13. Hence
p(E) = p'(B)+u"(B),
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