

pour toutes les décompositions $h = \sum_{i=1}^n h_i$, $h_i \in H$ et si l'on remarque que

$$|h|\geqslant |h|'\geqslant \frac{1}{\gamma}\varrho(h).$$

Additif. Pour plus de détails concernant les résultats, de cet article, voir notre livre à paraître *Propriétés spectrales des algèbres de Banach*. A propos de la remarque 4, C. Apostol nous a signalé un exemple d'algèbre de Banach où le rayon spectral est continu mais le spectre discontinu.

Bibliographie

- B. Aupetit, Continuité du spectre dans les algèbres de Banach avec involution, Pacific J. Math. 56 (1975), p. 321-324.
- [2] Uniforme continuité du spectre dans les algèbres de Banach avec involution,
 C. R. Acad. Sci. Paris 284 (1977), p. 1125-1127.
- [3] Caractérisation spectrale des algèbres de Banach commutatives, Pacific J. Math.
 63 (1976), p. 23-35.
- [4] Caracterisation spectrale des algèbres de Banach de dimension finie, J. Functional Analysis 25 (1977), à paraître.
- [5] A. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York 1973.
- [6] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton 1967.
- [7] Capacity in Banach algebras, Indiana Univ. J. 20 (1971), p. 855-863.
 [8] T. Kato. Perturbation theory for linear operators. Springer-Verlag, New York 1966.
- [8] J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), p. 165-176.
- [10] C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton 1960.
- [11] E. Vesentini, On the subharmonicity of the spectral radius, Boll. Un. Mat. Ital. 4 (1968), p. 427-429.
- [12] Maximum theorems for spectra. Essays on topology and related topics dedicated to Georges de Rham, Springer-Verlag, New York 1970.
- [13] V. S. Vladimirov, Methods of the theory of functions of many complex variables, M. I. T Press, Cambridge, Mass. 1966.
- [14] B. Yood, On axioms for B*-algebras, Bull. Amer. Math. Soc. 76 (1970), p. 80-82.

DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ LAVAL, QUÉBEC, CANADA

Decompositions of set functions with values in a topological semigroup

b

R. URBAŃSKI (Poznań)

Abstract. This paper contains a generalization of Theorem 3.11 of L. Drewnowski [1], concerning generalized Hewitt-Yosida and Lebesgue decompositions, to the case of Hausdorff topological semigroups.

0. Preliminaries. Throughout this paper,

S is an abstract space,

 \mathcal{R} is a \mathfrak{S} -ring of subsets of S,

H is comutative, Hausdorff, completely regular topological semigroup with identity O under the operation + and topology τ such that the families $\{x+U\}$, where x runs through all elements of H and Uruns through all elements of $\mathcal{U}(\mathcal{U})$ an open basis of O) are open basis for H.

- 0.1. DEFINITIONS.
- (1) Let I be any index set;

$$f(I) = \{j: j \subset I \text{ and } j \text{ is finite}\}.$$

(2) For any J directed by < and $x: J \rightarrow H$, $y \in H$,

$$\lim_{i} x_{i} = x$$

iff for every neighborhood U_y of y there exists $j_0 \in J$ such that for every $j \in J$ with $j > j_0$ we have $x_j \in U_y$.

(3) Let I be any index set and $x: I \rightarrow H$, $y \in H$; then

$$\sum_{i \in I} x_i = y$$
 iff $\lim_{j \in J(I)} S_j = y$ where $S_j = \sum_{k \in J} x_k$

and J = f(I) directed by \subseteq .

(4) Let $x: I \to H$. The family $(x_i: i \in I)$ is summable in H iff there exists $y \in H$ such that $\sum_{i \in I} x_i = y$.

For any $\mu: \mathcal{R} \rightarrow H$,

(5) μ is finitely additive on H iff for every non-empty disjoint $\mathscr{A} \in f(\mathscr{R})$ with $\bigcup A \in \mathscr{R}$ we have

$$\mu(\bigcup_{A\in\mathscr{A}}A)=\sum_{A\in\mathscr{A}}\mu(A).$$

(6) μ is σ -additive on H iff for every non-empty countable, disjoint $\mathscr{A} \in f(\mathscr{R})$ with $\bigcup A \in \mathscr{R}$ we have

$$\mu(\bigcup_{A \in \mathscr{A}} A) = \sum_{A \in \mathscr{A}} \mu(A).$$

(7) $a(\mathcal{R}, H) = \{\mu \colon \mu \colon \mathcal{R} \to H \text{ and } \mu \text{ is finitely additive}\}.$

(8) μ is exhaustive (or s-bounded) iff for every disjoint sequence $(E_n) \subset \mathcal{R}$.

$$\lim_{n}\mu(E_{n})=\mathbf{0}.$$

(9) $ea(\mathcal{R}, H) = \{\mu : \mu \in \alpha(\mathcal{R}, H) \text{ and } \mu \text{ is exhaustive}\}.$

(10) μ $(E) = {\mu(F) \colon F \subset E \text{ and } F \in \mathcal{R}}.$

1. s-Cauchy net and Cauchy condition.

1.1. Definitions.

(1) For any J directed by < and $x: J \rightarrow H$ x is an s-Cauchy net iff for every neighborhood U of O there exists $j_0 \in J$ such that, for every $j, k \in J$ with $j, k > j_0$, we have (see [4])

$$(sC) (x_j + U) \cap (x_k + U) \neq \emptyset.$$

(2) Let I be any index set and $x: I \rightarrow H$. Then x satisfies the Cauchy condition iff

(Co) for every neighborhood U of O there exists $j_0 \in f(I)$ such that for every $j' \in f(I \setminus j_0)$ we have

$$S_{j'} \in U, \quad where \quad S_{j'} = \sum_{k \neq i'} x_k.$$

- (3) For $A \subset H$, A is s-complete iff every s-Cauchy net in A converges to some point in A.
 - (4) A is s-precomplete iff the closure of A is s-complete.
- (5) For $\mu \colon \mathscr{R} \to H$, μ is s-precomplete iff the range of μ (e.a. μ (S)) is s-precomplete.
- 1.2. Lemma. If J is directed by < and x: $J \rightarrow H$ is convergent, then x is an s-Cauchy net.

Proof. There exists $y \in H$ such that $\lim_{j} x_{j} = y$. Then for every neighborhood of O, U, there exists $j_{0} \in J$ such that for j, $k \in J$ with j, $k > j_{0}$ we have

$$x_i \in y + U$$
, $x_k \in y + U$.

Hence

$$x_i = y + u_1, \quad x_k = y + u_2, \quad \text{where } u_i \in U \ (i = 1, 2).$$

Thus

$$x_1 + u_2 = y + u_2 + u_1 = x_k + u_1$$

80

$$(x_i + U) \cap (x_k + U) \neq \emptyset$$
.

1.3. COROLLARY. If $x: I \rightarrow H$ and the family $(x_i: i \in I)$ is summable in H, then $(S_i: j \in f(I))$ is an s-Cauchy net, where f(I) is directed by \subseteq .

1.4. LEMMA. Definition 1.1 (1) of an s-Cauchy net is equivalent to the following: for every $j \in J$ with $j > j_0$ we have

$$(x_j+U)\cap(x_{j_0}+U)\neq\emptyset$$
.

1.5. LEMMA. If $x: I \rightarrow H$ and if x satisfies the Cauchy condition, then $\{S_i: j \in f(I)\}$ is an s-Cauchy net, where f(I) is directed by \subseteq .

Proof. By Definition (Cc), for every neighborhood U of O, there exists $j_0 \in f(I)$ such that, for every $j' \in f(I \setminus j_0)$, we have $S_{j'} \in U$.

Now, let $j \in f(I)$ and $j > j_0$. Then $S_j = S_{j \setminus j_0} + S_{j_0}$, but $j \setminus j_0 \in f(I \setminus j_0)$. Thus $S_j \in S_{j_0} + U$, so

$$(S_j + U) \cap (S_{j_0} + U) \neq \emptyset$$

for every $j \in f(I)$, $j > j_0$. In view of 1.4., this completes the proof.

2. Fréchet-Nikodym topology and S-additivity.

2.1. DEFINITIONS (see [1], [2]).

(1) A topology Γ on $\mathcal R$ is called a Fr'echet-Nikodym topology (shortly: FN-topology) iff $\mathcal R$ (with the symmetric difference $E\triangle F=(E \setminus F)\cup (F \setminus E)$ as addition) is a topological group under Γ and if, moreover, the operation of intersection $(E,F)\mapsto E\cap F$ is uniformly continuous on $\mathcal R$.

(2) $\eta: \mathscr{R} \to [0, \infty[$ is a submeasure on \mathscr{R} iff $\eta(\emptyset) = 0, A \subset B \Rightarrow \eta(A) \leq \eta(B)$ and $\eta(A \cup B) \leq \eta(A) + \eta(B)$.

(3) η is a submeasure on \mathcal{R} ,

 $\Gamma(\eta)$ is the FN-topology on $\mathscr R$ determined by η , that is, by the Fréchet-Nikodym ecart $(A,B)\mapsto \eta(A\triangle B)$.

(4) $\mu \in a(\mathcal{R}, H)$, Γ is the FN-topology on \mathcal{R} , $\mu \ll \Gamma$ iff μ is Γ -continuous.

(5) For $\mu \in a(\mathcal{R}, H)$, there exists the coarsest FN-topology, $\Gamma(\mu)$, with respect to which μ is continuous. If \mathcal{U} is a base of neighborhood of O in H, then the classes

119

- (6) $\mathscr{U}_U = \{E \in \mathscr{R}: \ \mu(F) \in U \ \text{ for each } F \subseteq E, \ F \in \mathscr{R}\}, \ U \in \mathscr{U},$ constitute a base of neighborhoods of \varnothing in $(\mathscr{R}, \mathcal{F}(\mu))$.
 - (7) For $\mu, \nu \in a(\mathcal{R}, H)$, $\mu \ll \nu$ iff $\Gamma(\mu) \subset \Gamma(\nu)$.
- (8) Classes $\mathscr{U}_{\varepsilon} = \{E \colon E \in \mathscr{R} \colon \eta^{\check{}}(E) \subset]0, \varepsilon[\}, \varepsilon > 0, \text{ form a base of neighborhoods of }\emptyset \text{ in }(\mathscr{R}, \Gamma(\eta)), \text{ where } \eta \text{ is a submeasure on }\mathscr{R}.$
- 2.2. LEMMA. Let $\mu \in a(\mathcal{R}, H)$ and η be a submeasure on \mathcal{R} , then $\eta \leqslant \mu$ iff for every $\varepsilon > 0$ there exists a neighborhood of O, $U \in \mathcal{U}$ such that, for every $E \in \mathcal{R}$ for which $\mu^{\star}(E) \subset U$, we have $\eta^{\star}(E) \subset]0, \varepsilon[$.
 - 2.3. Definitions.
 - (1) For $\mathcal{A}, \mathcal{B} \subset \mathcal{R}$

$$\mathscr{A} \stackrel{\circ}{\cap} \mathscr{B} = \{A \cap B \colon A \in \mathscr{A} \text{ and } B \in \mathscr{B}\}.$$

- (2) \mathcal{D} is a class of pairwise disjoint sets from \mathcal{R} .
- (3) $\Delta = \Delta(\mathcal{R})$ is the set all classes \mathcal{D} .
- (4) $\Delta_f = \{ \mathcal{D} : \mathcal{D} \in \Delta \text{ and } \mathcal{D} \text{ is a finite class} \}.$
- (5) $\Delta_{c} = \{ \mathcal{D} : \mathcal{D} \in \Delta \text{ and } \mathcal{D} \text{ is a countable class} \}$.
- (6) For \mathcal{D}_1 , $\mathcal{D}_2 \in \Delta$,

 $\mathscr{D}_1 \leqslant \mathscr{D}_2$ iff for every $D_2 \in \mathscr{D}_2$ there exists $D_1 \in \mathscr{D}_1$ such that $D_2 \subset D_1$.

- (7) \leq is a partial order in Δ .
- (8) Given a set $\mathfrak{S} \subset \mathcal{R} \times \Delta(\mathcal{R})$, let us write

$$\mathfrak{S}[E] = \{ \mathscr{D} \in \Delta \colon (E, \mathscr{D}) \in \mathfrak{S}, \ E \in \mathfrak{R} \},$$

$$\Delta_{\mathfrak{S}} = \bigcup_{\mathbb{R} \cdot \mathfrak{R}} \mathfrak{S}[E].$$

- (9) $\mathfrak{S} \subset \mathcal{R} \times \Delta(\mathcal{R})$ is additive on \mathcal{R} iff the following conditions are satisfied:
 - (a1) $\Delta_f \subset \Delta_{\mathfrak{S}}$ and $\bigcup_{E \in \mathscr{R}} \{E\} \times \mathfrak{S}[E] = \mathfrak{S}$.
 - (a2) If $E \in \mathcal{R}$ and $\mathcal{D}_1, \mathcal{D}_2 \in \mathfrak{S}[E]$, then $\mathcal{D}_1 \stackrel{\circ}{\cap} \mathcal{D}_2 \in \mathfrak{S}[E]$.
 - (a3) If $E \in \mathcal{R}$, $\mathcal{D} \in \mathfrak{S}[E]$, then $\bigcup \mathcal{D} \subset E$.
 - (a4) If E, $F \in \mathcal{R}$, $F \subset E$ and $\mathcal{Q} \in \mathfrak{S}[E]$, then $\mathcal{Q} \cap F \in \mathfrak{S}[F]$.
 - (a5) If $E_1, E_2 \in \mathcal{R}, E_1 \cap E_2 = \emptyset$ and $\mathcal{D}_i \in \mathfrak{S}[E_i]$ (i = 1, 2), then

$$\mathscr{D}_1 \cup \mathscr{D}_2 \in \mathfrak{S}\,[E_1 \cup E_2].$$

(a6) If $E \in \mathcal{R}$, $\mathscr{D} \in \mathfrak{S}[E]$, and each $D \in \mathcal{D}$ is the union of two disjoint sets $D_1, D_2 \in \mathcal{R}$, then

$$\mathcal{D}^* = \{D_i \colon D_i \in \mathcal{D}, \ i = 1, 2\} \in \mathfrak{S}[E].$$

(10) $\mu \colon \mathcal{R} \to H$ is \mathfrak{S} -additive iff for every $E \in \mathcal{R}$ and $\mathcal{Q} \in \mathfrak{S}[E]$ the family $(\mu(D) \colon D \in \mathcal{Q})$ is summable in H and $\sum_{D \in \mathcal{Q}} \mu(D) = \mu(E)$, or, equivalently,

$$\lim_{\mathscr{D}' \not= (\mathscr{D})} \mu(E \setminus \bigcup \mathscr{D}') = \mathbf{O}.$$

(11) FN-topology Γ on \mathcal{R} is \mathfrak{S} -continuous iff

$$(\Gamma)\lim_{\mathscr{D}'\in f(\mathscr{D})}(E\diagdown\bigcup\mathscr{D}')=\varnothing$$

for each $E \in \mathcal{R}$, $\mathcal{D} \in \mathfrak{S}[E]$.

(12) η is submeasure on \mathcal{R} . η is \mathfrak{S} -continuous iff

$$\lim_{\mathscr{D}'d(\mathscr{D})}\eta(E\diagdown\bigcup\mathscr{D}')=oldsymbol{O},\quad E\in\mathscr{R},\ \mathscr{D}\in\mathfrak{S}[E].$$

- (13) $\mu: \mathcal{R} \to H$ is \mathfrak{S} -singular iff $\Gamma(\mu)$ is \mathfrak{S} -singular.
- 2.4. Lemma. An FN-topology on \mathcal{R} is \mathfrak{S} -singular iff each submeasure both \mathfrak{S} -continuous and Γ -continuous, vanishes on \mathcal{R} .
 - 3. Existence of μ' , μ'' and their properties.
 - 3.1. Definitions. For any $\mathcal{D} \in A$, $f(\mathcal{D})$ is directed by \subset .
- (1) $\mu(\mathcal{D}) = \lim_{\mathcal{D}' \neq (\mathcal{D})} \mu(\bigcup \mathcal{D}')$. For \mathfrak{S} -additivity on \mathcal{R} , $E \in \mathcal{R}$ and $f(\mathcal{D})$ directed by \subset , $\mathfrak{S}[E]$ is directed by \leq .
 - $(2) \quad \mu'(E) = \lim_{\mathscr{D} \in \mathfrak{S}[E]} \mu(\mathscr{D}).$
 - (3) $\mu(E, \mathcal{D}) = \lim_{n \to \infty} \mu(E \setminus \bigcup D').$
 - (4) $\mu''(E) = \lim_{\mathscr{D}_{\epsilon} \mathfrak{S}[E]} \mu(E, \mathscr{D}).$
- 3.2. LEMMA. $\mu \in \operatorname{ea}(\mathcal{R}, H)$ is exhaustive iff for each $\mathcal{D} \in \Delta$ the family $(\mu(D) \colon D \in \mathcal{D})$ satisfies the Cauchy condition (see [1]).
- 3.3. PROPOSITION. Let $\mu \in \operatorname{ea}(\mathscr{R}, H)$; then the family $(\mu(D); D \in \mathscr{D})$ is an s-Cauchy net, for every $\mathscr{D} \in \Delta$.

Proof. This follows from Lemmas 3.2 and 1.5.

- 3.4. COROLLARY. If $\mu \in ea(\mathcal{R}, H)$ and μ is s-precomplete, then for every $\mathcal{D} \in \Delta$ $\mu(\mathcal{D})$ exists.
- 3.5. LEMMA. If $\mu \in \operatorname{ea}(\mathscr{R}, H)$ and μ is s-precomplete, $\mathscr{Q} \in \mathcal{A}$, then for each closed neighborhood U of O in H there exists $\mathscr{Q}' \in f(\mathscr{Q})$ such that if $\mathscr{Q}'' \in f(\mathscr{Q} \setminus \mathscr{Q}')$ and for each $D \in \mathscr{Q}''$, $\mathscr{Q}_D \in \mathcal{A}$ and $\bigcup \mathscr{Q}_D \subset D$, then $\sum_{D \in \mathscr{Q}''} \mu(\mathscr{Q}_D) \in U$.

Proof. Otherwise, there is a neighborhood U of O such that for each $\mathscr{D}' \in f(\mathscr{D})$ there exists $\mathscr{D}'' \in f(\mathscr{D} \setminus \mathscr{D}')$ and a family $(\mathscr{D}_D)_{D \in \mathscr{D}''}$, where $\mathscr{D}_D \in \Delta$ and $\bigcup \mathscr{D}_D \subset D$, for which we have $\sum_{D \in \mathscr{D}'} \mu(\mathscr{D}_D) \notin U$. Then there exists $\mathscr{D}''' \in f(\mathscr{D}'')$ such that for each $(\mathscr{D}_D)_{D \in \mathscr{D}''}$, $\bigcup \mathscr{D}_D \subset D$, $\mathscr{D}_D \in \Delta$, and we have $\sum_{D \in \mathscr{D}''} \mu(\mathscr{D}_D) = \mu(\bigcup_{D \in \mathscr{D}''} \mathscr{D}_D) \notin U$. Hence we find a disjoint sequence $(A_n) \subset \mathscr{R}$ such that $u(A_n)$ non $\to O$, but $\mu \in \operatorname{eac}(\mathscr{R}, H)$.

3.6. Lemma. If $\mu \in ea(\mathcal{R}, H)$ and μ is s-precomplete $\bigcup \mathcal{D} \subset E$ and

 $\mathscr{D} \in A$, $E \in \mathscr{D}$, then for each closed neighborhood U of O we have $\mu(\mathscr{D}) \in \mu^{\star}(E) + U$.

Proof. By Proposition 3.3, $\mu(\mathscr{D})$ exists. Then for each $U \in \mathscr{U}$ there exists $\mathscr{D}' \in f(\mathscr{D})$ such that

$$\mu(\mathscr{D} \setminus \mathscr{D}') \in U$$
.

Hence

$$\mu(\mathcal{D}) = \mu(\mathcal{D}') + \mu(\mathcal{D} \setminus \mathcal{D}') \in \mu(\mathcal{D}') + U,$$

but

$$\mu(\mathcal{D}') = \sum_{D \in \mathcal{D}'} \mu(D) = \mu(\bigcup \mathcal{D}') \subseteq \mu^{\check{}}(E)$$

80

$$\mu(\mathcal{D}) \in \mu(E) + U$$
.

3.7. Proposition. If $\mu \in ea(\mathcal{R}, H)$ and μ is s-precomplete, $\emptyset \neq \Delta_0 \subset \Delta$ and Δ_0 is directed by \leqslant , then $\lim \mu(\mathcal{D})$ exists.

Proof. By Proposition 3.3, $\mu(\mathcal{D})$ exists for every $\mathcal{D} \in \Delta$. Suppose that a family $(\mu(\mathcal{D}): \mathcal{D} \in \Delta_0)$ does not satisfy (sC). Then by Lemma 1.4, there exist a sequence $(\mathcal{D}_n) \subset \Delta_0$ and a neighborhood U of O such that

$$\mathscr{D}_1\leqslant \mathscr{D}_2\leqslant \dots$$

and

$$(\mu(\mathscr{D}_n)+U)\cap(\mu(\mathscr{D}_{n+1})+U)=\emptyset, \quad n=1,2,\ldots$$

Given a neighborhood U_1 of O such that $U_1 + U_1 \subset U$. Now let V_n be a closed neighborhood of O, such that

$$V_0 + V_0 + V_0 \subset U_1$$
 and $V_{n+1} + V_{n+1} \subset V_n$.

Applying Lemma 3.5 to the \mathscr{D}_n , V_n , there exists $\mathscr{D}'_n \in f(\mathscr{D}_n)$ such that, if $\mathscr{D}''_n \in f(\mathscr{D}_n \setminus \mathscr{D}'_n)$ and for each $D \in \mathscr{D}''$, $\mathscr{D}_D \in \Delta$ and $\bigcup \mathscr{D}_D \subset D$, then

$$\sum_{D\in\mathcal{D}_{n}^{''}}\mu(\mathcal{D}_{D})\in V_{n}.$$

Write

$$E_n = \bigcup \mathscr{D}'_n = \bigcup_{D \in \mathscr{D}'_n} D, \quad F_n = \bigcap_{k=0}^n E_k, \quad ext{ for } n=1,2,\ldots$$

Then $F_{n+1} \subset F_n$ and $\lim_{n} \mu(F_n \setminus F_{n+1}) = 0$. Hence for some $N \in \mathbb{N}$,

$$\mu(F_n \setminus F_{n+1}) \in V_0,$$

SO

$$\mu(F_n) = \mu(F_{n+1}) + \mu(F_n \setminus F_{n+1}) \in \mu(F_{n+1}) + V_0.$$

But

$$E_n \setminus F_n = E_n \setminus \bigcap_{k=0}^n E_k = \bigcup_{k=0}^n (E_n \setminus E_k)$$

$$= (E_n \setminus E_0) \cup (E_n \cap E_0 \setminus E_1) \cup \dots \cup (E_n \cap E_0 \cap \dots \cap E_{n-1} \setminus E_n).$$

Therefore

$$E_n \setminus E_k = \bigcup \mathscr{D}'_n \setminus \bigcup \mathscr{D}'_k \subset \bigcup \mathscr{D}'_n$$

where $\mathscr{Q}'_n \in f(\mathscr{Q}_n)$ but $\mathscr{Q}_k \leqslant \mathscr{Q}_n$. Hence for every $D_n \in \mathscr{Q}'_n$ there exists $D^n_k \in \mathscr{Q}_k$, such that $D_n \subset D^n_k$, so there exists $\mathscr{Q}''_k \in f(\mathscr{Q}_k \setminus \mathscr{Q}'_k)$ such that

$$E_n \setminus E_k \subset \mathscr{D}_k''$$

and

$$\begin{split} G_k^n &= E_n {\cap} E_0 {\cap} \dots {\cap} E_{k-1} {\setminus} E_k \subseteq \bigcup \mathscr{D}_k^{\prime\prime}, \\ G_k^n &= \bigcup_{D \in \mathscr{D}_k^{\prime\prime}} G_k^n {\cap} D. \end{split}$$

Write

$$\mathscr{D}_D = \{G_k^n \cap D, \emptyset\},\$$

by (*) we have

$$\sum_{D \in \mathscr{D}''} \mu(G_k^n \cap D) = \mu(G_k^n) \in V_k,$$

80

$$\mu(E_n \setminus F_n) \in \sum_{k=0}^{n-1} V_k.$$

But

$$\mu(E_n) \in \mu(\mathcal{D}_n) + V_n$$

and

$$\mu(E_n) = \mu(F_n) + \mu(E_n \setminus F_n) \subset \mu(F_n) + V_0 + \sum_{k=1}^{n-1} V_k.$$

Now, by the assumption,

$$V_0 \supset V_1 + V_1 \supset V_1 + V_2 + V_2 \supset \dots$$

$$\dots \supset V_1 + V_2 + \dots + V_{n-1} + V_n + V_n \supset V_1 + \dots + V_{n-1},$$

hence

$$\mu(E_n) \subset \mu(F_n) + V_0 + V_0 \subset \mu(F_{n+1}) + V_0 + V_0 + V_0 \subset \mu(F_{n+1}) + U_1,$$

for $n \ge N$. Now

$$\mu(E_{n+1}) \in \mu(\mathcal{D}_{n+1}) + V_{n+1},$$

and similarly,

$$\mu(E_{n+1}) \subset \mu(F_{n+1}) + V_0 + V_0 \subset \mu(F_{n+1}) + U_1,$$

for $n \ge N$. Thus

$$\mu(E_N) \in \mu(\mathscr{D}_N) + V_N, \quad \mu(E_{N+1}) \in \mu(\mathscr{D}_{N+1}) + V_{N+1},$$

and

$$\mu(E_N) \in \mu(F_{N+1}) + U_1, \quad \mu(E_{N+1}) \in \mu(F_{N+1}) + U_1,$$

hence

$$\begin{split} \mu(E_N) &= \mu(\mathscr{D}_N) + v_N, & v_N \in V_N, \\ \mu(E_{N+1}) &= \mu(\mathscr{D}_{N+1}) + v_{N+1}, & v_{N+1} \in V_{N+1}, \\ \mu(E_N) &= \mu(F_{N+1}) + u_1^1, & u_1^1 \in U_1, \\ \mu(E_{N+1}) &= \mu(F_{N+1}) + u_2^1, & u_2^1 \in U_1, \end{split}$$

80

$$\mu(F_{N+1}) + u_1^1 = \mu(\mathscr{D}_N) + v_N,$$

 $\mu(F_{N+1}) + u_2^1 = \mu(\mathscr{D}_{N+1}) + v_{N+1},$

and

$$\mu(F_{N+1}) + u_1 + u_2 = \mu(\mathcal{D}_N) + v_N + u_2 = \mu(\mathcal{D}_{N+1}) + v_{N+1} + u_1.$$

Write

$$u_1 = v_N + u_2^1 \subseteq U_1 + U_1 \subseteq U,$$

 $u_2 = v_{N+1} + u_1^1 \subseteq U, + U, \subseteq U.$

Then

$$\mu(\mathcal{D}_N) + u_1 = \mu(\mathcal{D}_{N+1}) + u_2$$
, where $u_i \in U$.

This contradicts the assumption.

3.8. Proposition. If $\mu \in \text{ea}(\mathcal{R}, H)$ and μ is s-precomplete, then $\mu'(\cdot) = \lim_{\mathcal{R} \in \mathcal{R}} \lim_{n \to \infty} \mu(\cdot) \setminus \bigcup_{\mathcal{D}'} \mathcal{D}'$ is exhaustive.

Proof. Let (E_n) be a disjoint sequence in \mathscr{R} . By Lemma 3.6, for each $\mathscr{D}_n \in \mathfrak{S}[E_n]$, the closed neighborhood U and closed $V \in \mathscr{U}$ such that $V + V \subset U$, we have

$$\mu(\mathcal{D}_n) \in \mu^*(E_n) + V$$

hence

$$\mu'(E_n) \in \overline{\overline{\mu^{\check{}}(E_n)} + V}.$$

But exhaustivity of μ implies exhaustivity of μ , then for $n \ge N$ we have $\mu(E_n) \subset V$, so $\mu(E_n) \in V \subset U$, and $\mu(E_n) \in U$ for $n \ge N$.

3.9. Proposition. If $\mu \in ea(\mathcal{R}, H)$ and μ is s-precomplete, then μ' is \mathfrak{S} -additive.

Proof. Let $\tilde{\mathcal{U}}$ be a uniformity induced by the topology τ (see [5]). Given any $U \in \tilde{\mathcal{U}}$, there exists $V \in \tilde{\mathcal{U}}$ such that $V \circ V \subset U$. Applying Lemma 3.5 for $E \in \mathcal{R}$, $\mathscr{D} \in \mathfrak{S}[E]$, there exists $\mathscr{D}_0 \in f(\mathscr{D})$ such that if $\mathscr{D}_D \in \mathfrak{S}[D]$, $D \in \mathscr{D}$, then

$$\left(O, \sum_{D \in \mathscr{D}'} \mu(\mathscr{D}_D)\right) \in V,$$

for every $\mathscr{D}' \subset \mathscr{D} \setminus \mathscr{D}_0$.

Let $\mathcal{D}^* \in \mathfrak{S}[E]$, $\mathcal{D} \leq \mathcal{D}^*$ be such that

$$(\mu(\mathscr{D}^*), \mu'(E)) \in V$$
.

Since $\mu(\mathscr{D}^*) = \sum_{D \in \mathscr{D}} \mu(\mathscr{D}^* \cap D)$, for each $\mathscr{D}_1 \in f(\mathscr{D})$, $\mathscr{D}_0^1 \subset \mathscr{D}_1$, \mathscr{D}_0 , $\mathscr{D}_1 \in f(\mathscr{D})$,

we have

$$\left(\mu(\mathscr{D}^*), \sum_{D\in\mathscr{D}_1} \mu(\mathscr{D}^* \cap D)\right) \in V, \quad \text{ for } \mathscr{D}_1 \supset \mathscr{D}_0.$$

Hence for $\mathscr{D}_1 \supset \mathscr{D}_0 \cup \mathscr{D}_0^1$, $\left(\mu'(E), \sum\limits_{D \in \mathscr{D}_1} \mu(\mathscr{D}^* \cap D)\right) \in V \circ V \subset U$.

3.10. PROPOSITION. If $\mu \in ea(\mathcal{R}, H)$ and μ is s-precomplete, $E \in \mathcal{R}$, $\mathscr{D} \in \mathfrak{S}[E]$, then $\mu(E, \mathscr{D})$ exists.

Proof. Suppose that a family $(\mu(E \setminus \bigcup \mathscr{D}') \colon \mathscr{D}' \in f(\mathscr{D}))$ does not satisfy (sC). Then there exist a sequence $(\mathscr{D}_n) \subset f(\mathscr{D})$ and a neighborhood U of O such that

$$\mathcal{D}_n \subset \mathcal{D}_{n+1} \subset \dots,$$

and

$$(\mu(E \setminus \bigcup \mathscr{D}_n) + U) \cap (\mu(E \setminus \bigcup \mathscr{D}_{n+1}) + U) = \varnothing.$$

Write $F_n=E\smallsetminus\bigcup\mathscr{D}_n,$ for $n=1,2,\ldots$ Then $F_{n+1}\subseteq F_n,$ so $\lim_n\mu(F_n\smallsetminus F_{n+1})$

= 0. Hence for some $N \in N$,

$$\mu(F_n \setminus F_{n+1}) \in U$$
,

for $n \ge N$. But

$$\mu(F_n) = \mu(F_{n+1}) + \mu(F_n \setminus F_{n+1}) \subset \mu(F_{n+1}) + U,$$

so for n = N

$$\mu(E \setminus \bigcup \mathscr{D}_N) \in \mu(E \setminus \bigcup \mathscr{D}_{N+1}) + U.$$

This contradicts the assumption.

3.11. Remark. Analogously, $\mu(\bigcup \mathcal{D}, \mathcal{D}) = \lim_{\mathcal{D}', \mathcal{D}' \in (\mathcal{D})} \mu(\bigcup \mathcal{D} \setminus \bigcup \mathcal{D}')$ exists. But $\mu(E \setminus \bigcup \mathcal{D}') = \mu(E \setminus \bigcup \mathcal{D}) + \mu(\bigcup \mathcal{D} \setminus \bigcup \mathcal{D}')$, for every $\mathcal{D}' \in f(\mathcal{D})$. Then $\mu(E, \mathcal{D}) = \mu(E \setminus \bigcup \mathcal{D}) + \mu(\bigcup \mathcal{D}, \mathcal{D})$.

3.12. PROPOSITION. If $\mu \in \operatorname{ea}(\mathcal{R}, H)$, μ is s-precomplete and H satisfies the cancellation laws $(x+y=x+z\Rightarrow y=z)$, then $\mu''(E)$ exists for every $E\in \mathcal{R}$.

Proof. By 3.10, $\mu(E, \mathcal{D})$ exists for every $\mathcal{D} \in \mathfrak{S}[E]$. Since for every $\mathcal{D}' \in f(\mathcal{D})$, we have

$$\mu(E) = \mu(E \setminus \bigcup \mathscr{D}') + \mu(\bigcup \mathscr{D}'),$$

then

$$(*) \qquad \mu(E) = \lim_{\mathscr{D}' \circ f(\mathscr{D})} \mu\big(E \smallsetminus \bigcup \mathscr{D}'\big) + \lim_{\mathscr{D}' \circ f(\mathscr{D})} \mu\big(\bigcup \mathscr{D}'\big) = \mu(E, \mathscr{D}) + \mu(\mathscr{D}).$$

Now by Proposition 3.7, the family $\{\mu(\mathcal{Q})\colon \mathscr{D}\in \mathfrak{S}[E]\}$, satisfies (sC). Then for every $U\in \mathscr{U}$ there exists $\mathscr{D}_0\in \mathfrak{S}[E]$ such that, for every $\mathscr{D}_j,\,\mathscr{D}_k\geqslant \mathscr{D}_0,\,\mathscr{D}_j,\,\mathscr{D}_k\in \mathfrak{S}[E]$ we have

$$(\mu(\mathscr{D}_j) + U) \cap (\mu(\mathscr{D}_k) + U) \neq \emptyset.$$

Hence, there exist $v_j, v_k \in U$ such that

$$\mu(\mathscr{D}_i) + v_i = \mu(\mathscr{D}_k) + v_k,$$

and by (*)

$$\mu(E, \mathscr{D}_j) + \mu(\mathscr{D}_j) = \mu(E, \mathscr{D}_k) + \mu(\mathscr{D}_k).$$

So

$$\mu(E, \mathscr{D}_j) + \mu(\mathscr{D}_j) + v_j = \mu(E, \mathscr{D}_k) + \mu(\mathscr{D}_k) + v_j,$$

 $\mu(E, \mathscr{D}_i) + \mu(\mathscr{D}_k) + v_k = \mu(E, \mathscr{D}_k) + \mu(\mathscr{D}_k) + v_i,$

and by the cancellation laws,

$$\mu(E, \mathscr{D}_j) + v_k = \mu(E, \mathscr{D}_k) + v_j.$$

Hence a family $\{\mu(\mathcal{D}): \mathcal{D} \in \mathfrak{S}[E]\}$ satisfies (sC).

3.13. Proposition. If $\mu \in {\it ea}(\mathcal{R},H)\,\mu$ is s-precomplete and μ'' exists, then μ'' is an \mathfrak{S} -singular.

Proof. Let η be \mathfrak{S} -continuous and $\eta \leqslant \mu''$. Suppose that for some $E \in \mathfrak{R}$ we have $\eta(E) > \varepsilon > 0$. Let $U \in \mathscr{U}$ be such that $\mu'' \ (F) \subset U$ implies $\eta(G) < \varepsilon$ for every $G \subset F$, $G \in \mathscr{R}$. Thus $\mu'' \ (E) \notin U$, hence there exists $E_1 \subset E$, $E_1 \in \mathscr{R}$ such that $\mu''(E_1) \notin U$. So for each $\mathscr{D} \in \mathfrak{S}[E_1]$ there exists $\mathscr{D}_1 \in \mathfrak{S}[E_1]$ such that $\mu(E, \mathscr{D}_1) \notin U$ and $\mathscr{D}_1 \geqslant \mathscr{D}$, hence for every $\mathscr{D}'_1 \in f(\mathscr{D}_1)$ there exists $\mathscr{D}''_1 \supset \mathscr{D}'_1$, $\mathscr{D}''_1 \in f(\mathscr{D}_1)$ such that $\mu(E \setminus \bigcup \mathscr{D}''_1) \notin U$. In other words,

Now let $\mathscr{D}_1 \in \mathfrak{S}[E_1]$ have the property (·). Given any $\mathscr{D}_2 \in \mathfrak{S}[E \setminus E_1]$, denote $\mathscr{D}_0 = \mathscr{D}_1 \cup \mathscr{D}_2$, it is clear that $\mathscr{D}_0 \in \mathfrak{S}[E]$. Since η is \mathfrak{S} -continuous and $\eta(E) > \varepsilon$, we can find $\mathscr{D}_0' \in f(\mathscr{D}_0)$ with $\eta(\bigcup \mathscr{D}_0') > \varepsilon$. Let $\mu'' = (\mu'')^*$. Hence $\mu'' \setminus (\bigcup \mathscr{D}_0') \notin U$. But $\mathscr{D}_0 = \mathscr{D}_1 \cup \mathscr{D}_2$ and $\mathscr{D}_1 \in \mathfrak{S}[E,]$ and $\mathscr{D}_2 \in \mathfrak{S}[E,]$

 $\in \mathfrak{S}[E \setminus E_1], \text{ then } \mathscr{D}_0' = \mathscr{D}_1' \cup \mathscr{D}_2', \text{ where } \mathscr{D}_1' \in f(\mathscr{D}_1), \mathscr{D}_2' \in f(\mathscr{D}_2) \text{ and } \bigcup \mathscr{D}_1 \\ \subset E, \bigcup \mathscr{D}_2' \subset E \setminus E_1. \text{ Hence by (·), there exists } \mathscr{D}_1'' \supset \mathscr{D}_1, \mathscr{D}_1'' \in f(\mathscr{D}_1) \\ \text{such that } \mu(E_1 \setminus \bigcup \mathscr{D}_1'') \notin U, \text{ this implies } \mu'' \ (E_1 \setminus \bigcup \mathscr{D}_1'') \notin U.$

Let us denote $F_1 = \bigcup \mathscr{D}'_0$, $G_1 = E_1 \setminus \bigcup \mathscr{D}'_1$. We have $F_1, G_1 \subset E$, $F_1 \cap G_1 = \emptyset$, and $\eta(F_1) > \varepsilon$, $\mu'' \vdash (F_1) \neq U$, $\mu'' \vdash (G_1) \neq U$. Applying the same argument to the set F_1 , we shall find a set F_2 , $G_2 \subset F_1$ such that $F_2 \cap G_2 = \emptyset$, and $\eta(F_2) > \varepsilon$, $\mu'' \vdash (F_2) \neq U$, $\mu'' \vdash (G_2) \neq U$, etc. Thus there exists a disjoint sequence of sets $G_n \in \mathscr{R}$ such that $\mu'' \vdash (G_n) \neq U$ for $n = 1, 2, \ldots$ This contradicts to the exhaustivity of μ .

Now by Lemma 2.4, we have the following theorem.

3.14. THEOREM. Let $\mu \in \operatorname{ea}(\mathcal{R}, H)$, if μ is s-precomplete and H satisfies the cancellation laws, then μ can be written in the form

$$\mu = \mu' + \mu'',$$

where μ' , $\mu'' \in ea(\mathcal{R}, H)$, μ' is \mathfrak{S} -additive and μ'' is \mathfrak{S} -singular.

Proof. For every $E \in \mathcal{R}$, $\mathcal{D} \in \mathfrak{S}[E]$ and $\mathcal{D}' \in f(\mathcal{D})$ we have

$$\mu(E) = \mu(\bigcup \mathscr{D}') + \mu(E \setminus \bigcup \mathscr{D}'),$$

but $\mu'(E)$, $\mu''(E)$ exist by Propositions 3.7, 3.12 and have the above properties by Propositions 3.8, 3.9 and 3.13. Hence

$$\mu(E) = \mu'(E) + \mu''(E)$$
, for every $E \in \mathcal{R}$.

Acknowledgments. I wish to thank Professor J. Musielak and Doctor L. Drewnowski for helpful comments concerning these problems.

References

- L. Drewnowski, Decompositions of set functions, Studia Math. 48 (1973), pp. 23-48.
- [2] Topological rings of sets, continuous set functions, integration I, II, III, Bull. Acad. Polon. Sci. Sér. sci. math., astr. et phys. 20 (1972), pp. 269-276, 277-286, 439-445.
- [3] N. Dunford and J. T. Schwartz, Linear operators, Part I, New York 1958.
- [4] M. Sion, A theory of semigroup valued measures, Springer-Verlag, Berlin-Heidelberg-New York 1973.
- [5] H. Schafer, Topological vector spaces, New York 1966.
- [6] T. Traynor, A general Hewitt-Yosida decomposition, Canad. J. Math. 24 (1972), pp. 1164-1169.

INSTITUT OF MATHEMATICS A. MICKIEWICZ UNIVERSITY, POZNAŃ