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H? spaces of generalized half-planes*
by
STEPHEN VAGI (Chieago, Ill.)

Abstract. New proofs are given of the following assertions abouf the Hardy
space H? on Siegel domains of type II: H2 is a Hilbert space and has a reproducing
kerngl. Eloments of H? have “I2-boundary values”, and admit a Paley—Wiener type
representation formula.

1. Introduction. The basic elementary facts in the theory of H?
gpaces are: (a) that these spaces are Hilbert spaces, (b) that H*functions
have “Leboundary values”, (¢) that a Paley—Wiener type representation
formula holds, and (d) that H?® spaces have reproducing kernels. For
tube domains over regular cones these results were proved by S. Bochner [2].
For Siegel domaing of type II they were obtained by 8. G. Gindikin [4].
Gindikin’s arguments, however, were not conclusive, and the first complete
derivation of his results was given — using methods different from. his — by
A. Xordnyi and E. M. Stein [7]. The purpose of this paper is to present,
for Siegel domains of type II, a new and, maybe, simpler approach to the
proot of the four facts listed above. .

2. Definitions, notation, and statement of results. Let W and V be
finite dimensional complex vector spaces of positive dimensions with
dim V' = n. Let U be a real form of W chosen once and for all. Elements
of U and W will be, usually, denoted by l.c. latin characters, elements
of V always by { and «. The conjugate of z € W relative to U will be written
a8 7 The value of an element 1 of the dual space U’ of U at the vector a
of U or W will be denoted by (i, a). We select once and for all Haar
meagures dz and d¢ on the vector groups U and V. The Fourier trans-
form on L1 (U) is defined by f(4) = [exp(—2mi {4, 4))f(x)dw. The Haar

U

nmeasure di on U is normalized so that the Fourier inversion formula
reads f(v) = [exp(2midA, a))f (A)dA. If I' is an inner product space, the
’4 .

inner product will be denoted, usually, by <|->r.

* Rosearch on this papor was partially supported by N. 8. F. Grant number GP
34486, . :
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A regular cone Q in U is an open convex cone with vertex at the origin
which contains no affine line. Let 2 denote the closure of 2. If Q2 is regular,
then so is its dmal cone 2 ={1eU': {A,y) >0, Vy e 2—{0}}. A Her-
mitean bilinear map @: V x VW is said to be Q2-positive if for all f e V,
&, L) e D, and if (L, ) = 0 implies that £ = 0. For 1€ .Q define a
positive definite Hermitean form on Vx V by H,({, w) = 4{4, $({, w)D,
and set g(A) = detH,.

The tube domain over 2 in W is Ty = {z e W: Imz ¢ 2}. The Siegel
domain of type I1 determined in W x ¥ by 2 and & is the set D = {(2, £}
e Wx V: Ime—9({, {) € 2} The distinguished bonudary of D is the subset.
B = {(2,{): Imz—D({, ) = 0} of the topological boundary of D. The
map (2, ) (@+i®(,£),¢) 8 a homeomorphism of UXV onto B
The topological and measure theoretic structures of B are those of Ux V,
transferred to B by the above map. Now L? spaces for 1 < p < oo can be
defined on B. The I”(B) norm of a measurable function on B is expli-
citly

L
Wlzo = | [ |flo+i0(2,0), ¢)|Pamac)’.
Ux¥V N

If F: D—>C and te Q, then the function F,: DUB-»C is defined by
Fy(2, ) = Fe+it, {). Finally, for 1< p< oo the space HP = H?(D)
is defined as the set of all holomorphic functions F': D->C such that

Flge = 3}1‘}3 HFt|B“LﬂgB)< oo,

The function ¥ ||F||z» is a norm on H?. By abuse of notation we shall
write |Fy|plnm 8 | Fyllpew. General references about the facts
reviewed here are [5], [6], and [8].

We now introduce a function spacé which will play an important
part in our proofs. Consider the set of funetions F: Q' x V- C subject:
to the following two conditions: !

(A) For every £ e V F(-, ) is measurable on ©'.

(B) For every le Q' b (2, ) is a holomorphic entire funetion on V.

This set clearly forms a linear space. By a result of FL. D. Ursell ([12],
Theorem 8), the following statement is true: (we recmd it for future refer-
ence - ag)

Remark 1. Afunction f: Q' xV—C satistying condltlons (A) and (B )
is measurable on Q' x V.

In view of the remark it is meaningful to impose the following, third
condition on our functions:

(©) Wlgs = [ &™™29\0(3, {)2aAdt < oo.
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We define the space A2 to be the set {F: Q' xV—~C: F satisfies
(4), B), } It F and G belong to H we say that F and @ are equivalent
(7 ~G) if 11’(2 {) = G(4, ) for almost all (1,¢)e Q' xV. In view of

condition (C) we have

Remark 2. If ﬁ,é‘eﬁﬁ, then
T ~G = [exp(—nH, (L, 0)IF(1,0)—

[l

G2, O)da =0

for almost every eV

o [exp(—nH (&, O)IF(3, 0)—G(2, OPdL = 0
T/

for almost every 1e Q'.

Now H? is defined as the set of equivalence classes (relative to ~)

of elements of H’o Clearly, H* is an inner product space with norm defined
by (C). We can now state our results.

LummA 1. The space H? is a Hilbert space.
THEOREM. (i) Let F eﬁ%, and let (z {) € D. Define Uff’(z, {) by

(1) UF(s, () = f E™EOF (3, £)dA.

The integral in (1) 8 a,bsoluteby convergent, UF belongs to H?, and if ¢ eH?'
s equivalent to I’ then UF = UG.

(ii) The space H* is a Hilbert space, and the map U: B> H* defined
in (i) maps B unitarily onto H.

(iii) If F e H, then for t € 2 tending to 0, | converges in the norm of
L*(B) to an eleme'nt F of I*(B), and |Fy, = 1P 22z

(iv) If (w, o), (2, ) e D, then the function (2, L) 8y, (2,

(2) S,y (25 0) = f eamich, s~ o) o (1) dA
&

) defined by

belongs to H*, and for every F e H
(3) F(w, o) = {F|8 0> n2-

Bquation (3) states that 8,18 (a, and hence by general principles)
the reproducing kernel of H2, the so called Szegd kernel of D.

3. Proof of Lemma 1. Fix 1 € 2", Definé lfll; for measurable functions
on V by

IfI3 = f om0 | f ) e,
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and define #* to be the set of entire holomorphic functions on V for which
[If; 1 is finite. The space #* is an inner product space which obviously con-
taing all the constants, and it is easily checked that it contains all polyno-
mials. The proof of Lemma 1 consists in showing that s#* is complete,

. & .
and that H? can be identified with the direct integral [ #*di. The basic
o

facts about #%, viz. the existence of a reproducing kernel and completeness
are due to V. Bargmann [1]. For the sake of completeness we include
simplified proofs of these facts.

For{ e V,and f € #* define (A,f) (w) tobeexp(nﬂl(w O —3=H, (¢, ) x
X f(w—¢). Clearly, w—(4.f)(w) is an entire function on V. A simple calcul-
ation shows that for f, g € #* one hag (writing the inner product in s#*
as ([
(4) CAS1Aegda = <flgdi
and that in particular for fe #* |4, fl; = |If| Another easy calculation
checks that A _, is the inverse of 4,.. Thercfore 4, is a unitary transform-
ation of s#* onto itself. Let now 6 e R, for fe#* define f, by f,(Z)
= f(6*°¢). Clearly, f; e #*. The change of variable ¢ and the fact
that Hy(e™“, 7)) = Hy(¢,¢) show that (|13, = {f|1LDs Therefore,
using first Fubini’s and then Cauchy’s theorem we have

(B) <l -— fol15:46 = L Fod011) =F(0)<1[1);.
2n P 2 p '

By evaluating (1|1}, in a coordinate system in which H, is diagonal,’

we find that (1|1, = g(l)-"l. Using this in (5) we have

(6) = o (A)<{fIL);-

Since f(Z) = exp(%nﬂ;_(é‘ g“)) _;f (0), we obtain from (6) that
F(O) = e(Wexp (drH, (L, 0))<4_f11;.

Applying (4) to the right-hand side of the last equality we have

(7) F(O) = e ()™ EIflA )y,

Sinee (4,1)(w) = exp(nﬂz(w 4‘ —4nH((,¢)), we can rewrite (7) by

setting o (A)exp (nH,(w, {)) = K (o) as

(8) fQ) = {f1 KD,

(Note that since K7 is a numerical multiple of 4,1, it is an element of #7.)
We have proved that #* has a reproduomg kernel given by K.

An easy calculation shows that (K|, = o(A)jtexp (3=H (L, O). Usmg

this value of [|K}[, and applying Schwarz’s inequality to (8) we got

(9) IFOI< o (MmO ).

§
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If K <V is compact and g = sup {exp (ynH,(Z, 0)): ¢ €K}, then for
£ e K (9) yields [£(£)| < o(A*Cglfl;- This inequality immediately implies
the completeness of s#°. We shall now derive another consequence of (9)
which will be needed in the proof of the theorem. Let F eHD, then, by
condition (0), F(l ) belongs to s#* for aJmost every 1 e 2. In view of (9)
we therefore have

Remark 3. If F e H?, then, for every ¢ V, Am () Fe il
xI(%, £) belongs to L*(2).

Let us also observe the following fact: if £,,j =1, 2, 3,
soquence in V and fe #* is such that (f IK;‘) =0 for j =
then by (8) f = 0. Consequently, we have the followmg

Remark 4. If {;, j =1,2,3,... is a dense sequence in V, then
Kk, j=1,2,3,...is a total sequence in 4.

We now prove that H* is complete. Let & = H #*, and let ®

= {f: @' xV-C: f satisfies (A), and for every i e Q f e #". Note
first that G can be identified in an obvious way with a lmea,r subspace
of §. Also note that for fixed { e V (4, w)» K} (w) belongs to &. We shall
now verify that the Hilbert spaces s#* form a measurable field of Hilbert
spaces ([3], p. 142). To this end ‘we must check three conditions.

(1) If fe®, then i |f(4, ) i8 @ measurable function on .Q

To prove 13]115, note that, by Remark 1, fis a measurable function
on 2 xV. Then approximate the integral giving |f(2, *)|3 to within &/2
by an integral over a large cube in V. Now approximate the integral over
the cube to within ¢/2 by a Riemann sum. This Riemann sum is a meagur-
able function of 1. Therefore ||f(4, -)[; is the pointwise limit of measur-
able functions, and hence measurable.

(2) If g €% is such that A—<{gif>, is measumblefor every fe®, then ge®.

Proof. g(A)(¢) = <{g|EE, is measurable for every (e V because
K} e®, then use Remark 1.

(8) There is a sequence f of elemems of ® such that for every le Q'
the sequence f(1, ) is total in "

Proof. Remark 4. .

The elements of ® are called measurable vector fields. A measurable
voctor field f is said to be square imiegrable it ,,f IF(A; )|2dA is finite.

. is a dense
1,2,3,...,

Two square m‘ﬁegmblo measurable vector fields f and ¢ are eguivalent if

f If(A J|#@A = 0. The direct integral ﬁf 2#*dJ is defined as the
set of eqmveulence clagses of measurable, square integrable vector fields.
R

3 — Studia Mathematica LXX.2
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If fe ® is square integrable, then, clearly, f belongs 10 H" If g is
another square integrable element of ®, and ¢ is’ equivalent to f, then

(Remark 2) f and g are also equlvalent in IP The norm of a. square inte-

grable f e ® equals its H?-norm. So far we have shown that f H#*dA can

be identified with a subspace of bigh To prove that this subspaee is actually
all of H? let F e H?, and select a representative I’ of ¥ in H2 The set
of A's in Q' for which Fl( -) does not belong to #* is ‘of measure zero.
Now define F, a5 follows: Fy (4, 0= B, 0 it F,(4, ) e #, and ¥ 7,00, 0)
= 0 otherwise. By Remark 1, 17’2 belongs to ®, and hence to 1’0, and by
Remark 2 it is equivalent to 1’1 This proves that H? can be identified

with the direct integral of the #™s. Since the direct integral of Hilbert
spaces is a Hilbert space, Lemma 1 is proved..

4. Proof of the Theorem. In addition to Lemma 1 and Remark 3
two technical results will be needed which we now list.

TEMMA 2. Lot FeH?, 1<p< oo. Let LeV, and 6eQ such that
8=-0(, é‘) € Q. Then zHI’d(z 8y = F(e+148,¢) belongs to HP(T'gG).

" LmwwA 3. Let e >0, 0< a< %, and Tet 4,, Za, <y Ay be ' basis of v
contained in Q' whwh 18 “compatible with the Hawr' measure dh on. U'. Thm

@ (2, ;) = exp{»—aj \"< iy 2% belongs to H* (D), and 48 bounded and
continuous on. D..

Lemma-2-is actislly true for all positive p, but wé only need it for
p =1,2 Ttis due to B. M. Stein’ [10]. Lemma 3 is from [91.- :

Let now FeH; and (,0)eD, with 2 = a--it-+id(C, ), where
te . In any coordinate system o(1) is a homogéneous polynomial of
degree n, and one can sHow readily that §(2)exp(—2n(4,t>) is square
integrable on £'. Therefore, by Remark 3, g co

(10) JETARR (2, 0)an = [ @ g IO () 1)@z
o ) o .

" is absolutely convergent for every ¢ e V. Choosing coordinates in W x V,
and applying Morera’s theorem in combination with Fubini’s theoremn
one shows that UF is. holomorplnc in each coordinate of (z, {), and hence
by Hartogs’s theorem holomorphic in .D. Since g(i)exp(—2m(i, D)
is a bounded function of.2 on Q', by Remark 3 one concludes that the
quantity multiplying exp(2ni{4, m)) in (10) is square integrable on ',
Therefore, by Plancherel’s. theorem for every { e V.

Uf (OB (o it-+i9(2,0),¢) Pao = [ a3 g~560151(2, £y,
p
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Integrating this equality on V we get

(11) [ e %‘”Hz“ VF(A; &) PaAdL <

@QxV

(OB am = < Wls.

From (11) we conclude that UI7’ eH”. If t, e Q is a sequence tending to 0,

then by the dominated convergence theorem we have that ][(UI’)AI}:»(B)
converges: to ||I’||Hz and that therefore

(12) 10|z = 1.

If G ¢ A2 and I' ~ @, then (12) implies that |UF — UGqu |17 — @z = 0,

i.e. that equwa.lent s give rise to the same UF. Therefore U defines

* alinear-map from H? to H? which We continue to write U, The equation (12)

shows that U maps H? isometrically into H2 Now let #, & 2 be a'sequenee
converging to 0, then (11) (with (Ufi’) (UF) instead of (Uﬁ’)t)
the dominated convergence theorem show that (UF)%]B is a Cauchy se-
quence in I* (B). Therefore ( UF) |z converges in L*(B) norm t0,an element:
of L*(B). We omit the proof tha.t the sequential limit can be replaced by,
t € £ tending to 0. We therefore have

Remark 5. Assertion (iii) of the theorem holds for every FeH
which admits the representation (1).

Let'now I e H*H* and let { ¢ V be arbitrary but fxxed (By Lem.ma

3, H*nH* & {0}.)Set 2, = {6 Q: §—D((, ) € Q). For 6 € 2, 2+>Fy(2, 9]
belongs to (H*NH") (Tg) by Lemma 2. By the theory of H® gpaces on tube
domains ([11], Chapter’3) the boundary funemon of Fy, viz. mn—>1f’,,(:c, C)
belongs to (L*nI*{ ) "We ¢an therefme define a iuncmon 17‘5(1 o b
(13) . " ( j g~ 2miA, m>11 (m o)d

Remark 6. By the H? ‘theory for tube domains Fa( ) is supported
in £. Since (-, )eL‘(U)mO”(U), 1’5( , £) 'is continuous and inte-
grable. Therefore Fourier inversion “¢can be applied t0 (13) everywhere.

Tf ¢ is another element of £2,, then for A e @', by the H* theory for
tube domaing,

By (1, 8) = exp(—2mA, 0)) iy (2, £) = exp(—2x (4, 83) (4, 0).
Therefore for J e .Qc exp(2n<1 6>)I‘,,(/1 ¢) is independent of 8. Denote
this function by F(/l £).

Now let 2 —w+zyeW be such that (z, C)ED i.e. y € Q. Note

that F(z, {) = F,(z, (). By Remark 6, we can apply Fourier inversion
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o (13). If we now express fi’,, in terms of F in the Fourier inversion for-
mula, we get
(14) Fle,0) = [@™OPR(, 0dn = U (s 0).

&

Since 7 ‘was arbitrary, (14) holds for every (¢, ) € .D.

" We now prove that I e H® Again fix {, eV, and also ie Q. If

d e, then there is a polydise, 4 = V centered at {, such that §e Q,
for ¢ € 4. Now by (13) and by the definition of 7 we have for { € A that

F(}» C - 6'27:{1 ) fe—nr:i(a :1:>1;1 ( C)dw

Exactly as before, by combining the theorems of Fubini, Morera, and
Hartogs, we can show that ZHF(A, £) is holomorphic in 4. Since {, was
arbitrary in V, it follows that 17’(1, -) is an entire function. By Remark 6,
we know that ﬁ'( ¢) is continuous for every { e V, therefore by Remark 1,
E is measurable on Q' x V.

Now let ¢ e 2, then Plancherel’s theorem apphed to (13) gives for
every (e V

[ Plotit+io@, 0, t)]%do = [P, )par.
U ' 9

Integrating this equality on V we have

J P e D (G, prdadg <
XV .
By Fatou’s lemma it follows that FeH Taking suprema over 2 we
see that |Flzz = |Flzz. We conclude that the map Pl maps. the
subspace H*nH* of H® isometrically into . By Lemma 1, the range of
this map is contained in a complete space, and therefore, if we denote
by M the closure in H” of H'nH’, it extends uniquely to an isometry ¥
of M into A% Now for F e H*nH' (14) holds, and therefore for such 7,
UVF = F, ie., UV is the identity of H*nH". By continuity it follows
that UV is the identity on all of M, and hence if ' e M, then 7 = U(VF),
i.e., U maps big isometrically onto M: M is a Hilbert space, and the unitary
maps Ulyy and V are inverses of each other. By Remark &5 it follows
that assertion (iii) holds for every F e M.

We now prove that M = H*. Let F e H? and let G¢* be tho function
introduced in Lemma 3. By that lemma and Schwarz’s inequality G°F
e H*nH*. Since assertion (iii) of the theorem holds in M, there exists an
element (G°F)" of I*(B) such that (G°F),|5 tends to (¢*F)" in I*(B) as

t e tends to zero. Consider first the case ¢ = 1 " For some sequence
t € 2, 1,~>0 (fixed once and for all in this proof) (G' F),, |;—~(G"F)” almost

P2 = 172
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everywhere on B. Since G}|z~G|z =" everywhere on B, and G* does
not vanish anywhere, we oan conclude that |5 converges almost every-
where on B to a limit F. Since Fy, e < ]]F[[Ez, it follows from Fatou’s
lemms that F eLz(B) Now let ¢ be arbitrary positive. Since (G'Fyls
= G; |pF,|p~>GF almost everywhere, and (G°F), lpg—~(G@F)” in IL*(B)
it follows that (G@*F)” = G*F almost everywhere on B.

Now let e,—0, then

I6"F -G Flgp = [ 16" ~G" |FPadt
UxV
because (iii) holds in M. Since G” —G™ tends to zero boundedly, we hzwe
that @ F is a Cauchy sequence in the complete space M, and therefore
tends in H? to an element H of M. Now let ¢ ¢ 2 be arbitrary but fixed,
then

e lJF)F‘Ht“LZ(,B) <G F —H|ze
and therefore (G”F),|z—H;p in L*(B) norm. On the other hand Gf|z—1
everywhere on B. Consequently F|z = H/|; because both functions are
continnous. Since t € 2 was arbitrary, it follows that F = H, and hence,

that M = H. Therefore UH> = H>
To prove (iv) let (w, »)e.D and F eH’. By the a.ssertlons of the

theorem. already proved, we have
(15) Flw,0) = [ F(1, 0)dl
P

where # = U-'F eﬁz. Since ﬁ’(l, Y e #* for almost every e a2, we

have (4, -) = (P (4, )| KLY, for almost every Ae @', Introducing this

into (15) and rewntmg the integral formally as a double mtegral ‘we have

(only formally, so far),

(16) F(w, o) = f 8—1:1?!,1(1;.:)171(1’ £) {e—anfa@)enm(c,m)ﬂﬂ
QxV

Denote the quantity in eurly brackets by L,s (4, ). A straightforward

check verifies that (4, £) T, 0 (4, E) belongs to . Therefore the double

integral in (16) is absolutely convergent (this justifies the passage from (15)

to (16)) and equal to (If’lT(w’mpm. Consequently,

(17) F(w, 0) = I Topudie-

Now a simple calculation shows that UT(w o 18 the function Sy,u) defined
by (2), hence in view of the fact that U is unitary, (17 ) ylelc‘ls

E (w7 w) = <P|S(w,w)>H~'

But this is equatioh (3) in assertion (iv) of the theorem whose proof is
now complete,

)} dAde.
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Integrability of seminorms, the 0-1 law and the affine kernel for
product measures

by
J. HOFFMANN-JORGENSEN (Aarhus, Denmark)

Abstract. Let (X,) be a sequence of random variables taking values in a measur-
able linear space B, and let ¢ be a quasi-convex subadditive function on E®. The
first part of the paper deals with the problem of finding conditions, which assures
that E(e*™) is finite for some positive & where M = supg(Xy, ..., Xy, 0,0,...).

n
In the second and third part of the paper we take B = R, and we show that if X,
has no mass points, then every linear subspace of R™has probability 0 or 1. Finally,
we study the affine kernel of (X,,), i.e. the intersection of all affine subspaces of prob-
ability 1, and we give an analytic expression for this.

1. Totroduetion. If 4 is a Gaussian measure on a locally convex
space, there are three main results which have proved to be useful.

The first iy the result of Fernique stating that, if ¢ is a measurable
a.e. finite seminorm, then E(exp ep?)) < oo where E denotes expectation
with respect to u. A similar result has been proved by O. Borel ([1]) for
certain other classes of measures. In Section 2 of this paper we shall prove

[+ n .
some results in this direction when 4 is a produet measure on ( [l]En, @;Bn)

and (#,, B,) is a measurable linear space. Here we define a measurable

linear space, (H, B), to be a linear space. B equipped with a o-algebra B
satisfying

(1.1) (#, y)—>o+y is measurable: (Ex B, BRB)~(E, B),
(1.2) {4, y)—~Ay is measurable: (E’ xR, B®B(R))—>(E, B).

The .methods and the results of that section are closely related to the
regults of Marcus and Jain in [9] and to the results in [2] and [3].

The second result is the 0-1 law by Kallianpur in [5]. C. Borel has
in [1] shown that the same result holds for certain other classes of measure.
In Section 3 we ghow that, if 4 is a produet measure on R* with non-
atomic factors, then u(4) =0 or 1 for all u-meagurable affine subsets.

The third result on Gaussian measures, which has proved to.be a very
powerful tool, is the reproducing kernel Hilbert space which, in case u
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