

H2 spaces of generalized half-planes

bν

STEPHEN VÁGI (Chicago, Ill.)

Abstract. New proofs are given of the following assertions about the Hardy space H^2 on Siegel domains of type II: H^2 is a Hilbert space and has a reproducing kernel. Elements of H^2 have " L^2 -boundary values", and admit a Paley-Wiener type representation formula.

- 1. Introduction. The basic elementary facts in the theory of H^2 spaces are: (a) that these spaces are Hilbert spaces, (b) that H^2 -functions have " L^2 -boundary values", (c) that a Paley-Wiener type representation formula holds, and (d) that H^2 spaces have reproducing kernels. For tube domains over regular cones these results were proved by S. Bochner [2]. For Siegel domains of type II they were obtained by S. G. Gindikin [4]. Gindikin's arguments, however, were not conclusive, and the first complete derivation of his results was given using methods different from his by A. Korányi and E. M. Stein [7]. The purpose of this paper is to present, for Siegel domains of type II, a new and, maybe, simpler approach to the proof of the four facts listed above.
- 2. Definitions, notation, and statement of results. Let W and V be finite dimensional complex vector spaces of positive dimensions with $\dim V = n$. Let U be a real form of W chosen once and for all. Elements of U and W will be, usually, denoted by l.c. latin characters, elements of V always by ζ and ω . The conjugate of $z \in W$ relative to U will be written as \overline{z} . The value of an element λ of the dual space U' of U at the vector u of u or u will be denoted by u and u. We select once and for all Haar measures u and u on the vector groups u and u. The Fourier transform on u is defined by u and u is normalized so that the Fourier inversion formula reads u on u is normalized so that the Fourier inversion formula reads u or u is normalized so that the Fourier inversion formula reads u is normalized so that u is an inner product space, the inner product will be denoted, usually, by u is u in the fourier inversion formula reads u in the fourier will be denoted, usually, by u in the first u in the fourier inversion formula in the fourier will be denoted, usually, by u in the first u in the fourier inversion formula in the fourier will be denoted, usually, by u in the first u in the first

^{*} Research on this paper was partially supported by N. S. F. Grant number GP 34486.

A regular cone Ω in U is an open convex cone with vertex at the origin which contains no affine line. Let $\overline{\Omega}$ denote the closure of Ω . If Ω is regular, then so is its dual cone $\Omega' = \{\lambda \in U' : \langle \lambda, y \rangle > 0, \ \forall y \in \overline{\Omega} - \{0\}\}$. A Hermitean bilinear map $\Phi \colon V \times V \to W$ is said to be Ω -positive if for all $\zeta \in V$, $\Phi(\zeta, \zeta) \in \overline{\Omega}$, and if $\Phi(\zeta, \zeta) = 0$ implies that $\zeta = 0$. For $\lambda \in \Omega'$ define a positive definite Hermitean form on $V \times V$ by $H_{\lambda}(\zeta, \omega) = 4\langle \lambda, \Phi(\zeta, \omega) \rangle$, and set $\varrho(\lambda) = \det H_{\lambda}$.

The tube domain over Ω in W is $T_{\Omega} = \{z \in W : \operatorname{Im} z \in \Omega\}$. The Siegel domain of type II determined in $W \times V$ by Ω and Φ is the set $D = \{(z, \zeta) \in W \times V : \operatorname{Im} z - \Phi(\zeta, \zeta) \in \Omega\}$ The distinguished boundary of D is the subset $B = \{(z, \zeta) : \operatorname{Im} z - \Phi(\zeta, \zeta) = 0\}$ of the topological boundary of D. The map $(x, \zeta) \mapsto (x + i\Phi(\zeta, \zeta), \zeta)$ is a homeomorphism of $U \times V$ onto B. The topological and measure theoretic structures of B are those of $U \times V$, transferred to B by the above map. Now L^p spaces for $1 \leqslant p < \infty$ can be defined on B. The $L^p(B)$ norm of a measurable function on B is explicitly

$$||f||_{L^{p}(B)} = \Big(\int_{U \times V} |f(x+i\Phi(\zeta,\zeta),\zeta)|^{p} dx d\zeta\Big)^{\frac{1}{p}}.$$

If $F: D \to C$ and $t \in \Omega$, then the function $F_t: D \cup B \to C$ is defined by $F_t(z,\zeta) = F(z+it,\zeta)$. Finally, for $1 \le p < \infty$ the space $H^p = H^p(D)$ is defined as the set of all holomorphic functions $F: D \to C$ such that

$$\|F\|_{H^p} = \sup_{t \in \Omega} \|F_t|_B\|_{L^p(B)} < \infty.$$

The function $F \mapsto ||F||_{H^p}$ is a norm on H^p . By abuse of notation we shall write $||F_t||_B||_{L^p(B)}$ as $||F_t||_{L^p(B)}$. General references about the facts reviewed here are [5], [6], and [8].

We now introduce a function space which will play an important part in our proofs. Consider the set of functions $\hat{F}: \Omega' \times V \to C$ subject to the following two conditions:

- (A) For every $\zeta \in V$ $\hat{F}(\cdot, \zeta)$ is measurable on Ω' .
- (B) For every $\lambda \in \Omega'$ $\hat{F}(\lambda, \cdot)$ is a holomorphic entire function on V. This set clearly forms a linear space. By a result of H. D. Ursell ([12], Theorem 8), the following statement is true: (we record it for future reference as)

Remark 1. A function $f\colon\thinspace \mathcal{Q}'\times V\to C$ satisfying conditions (A) and (B) is measurable on $\mathcal{Q}'\times V$.

In view of the remark it is meaningful to impose the following, third condition on our functions:

(C)
$$\|\hat{F}\|_{\dot{H}^2} = \int\limits_{\Omega' \times V} e^{-\pi H_{\lambda}(\zeta,\zeta)} |\hat{F}(\lambda,\zeta)|^2 d\lambda d\zeta < \infty$$
.

We define the space \hat{H}_0^2 to be the set $\{\hat{F}\colon \Omega'\times V\to C\colon \hat{F} \text{ satisfies }(A), (B), (C)\}$. If \hat{F} and \hat{G} belong to \hat{H}_0^2 , we say that \hat{F} and \hat{G} are equivalent $(\hat{F}\sim\hat{G})$ if $\hat{F}(\lambda,\zeta)=\hat{G}(\lambda,\zeta)$ for almost all $(\lambda,\zeta)\in\Omega'\times V$. In view of condition (C) we have

Remark 2. If \hat{F} , $\hat{G} \in \hat{H}_0^2$, then

$$\hat{F} \sim \hat{G} \Rightarrow \int\limits_{\Omega'} \exp\left(-\pi H_{\lambda}(\zeta,\,\zeta)\right) |\hat{F}(\lambda,\,\zeta) - \hat{G}(\lambda,\,\zeta)|^2 d\lambda = 0$$

for almost every $\zeta \in V$

$$\Rightarrow \int_{\mathcal{V}} \exp\left(-\pi H_{\lambda}(\zeta,\zeta)\right) |\hat{F}(\lambda,\zeta) - \hat{G}(\lambda,\zeta)|^2 d\zeta = 0$$

for almost every $\lambda \in \Omega'$.

Now \hat{H}^2 is defined as the set of equivalence classes (relative to \sim) of elements of \hat{H}_0^2 . Clearly, \hat{H}^2 is an inner product space with norm defined by (C). We can now state our results.

LEMMA 1. The space \hat{H}^2 is a Hilbert space.

THEOREM. (i) Let $\hat{F} \in \hat{H}_0^2$, and let $(z, \zeta) \in D$. Define $U\hat{F}(z, \zeta)$ by

(1)
$$U\hat{F}(z,\zeta) = \int\limits_{g'} e^{2\pi i \langle \lambda,z\rangle} \hat{F}(\lambda,\zeta) d\lambda.$$

The integral in (1) is absolutely convergent, $U\hat{F}$ belongs to H^2 , and if $\hat{G} \in \hat{H}_0^2$ is equivalent to \hat{F} , then $U\hat{F} = U\hat{G}$.

- (ii) The space H^2 is a Hilbert space, and the map $U: \hat{H}^2 \rightarrow H^2$ defined in (i) maps \hat{H}^2 unitarily onto H^2 .
- (iii) If $F \in H^2$, then for $t \in \Omega$ tending to 0, $F_{t|B}$ converges in the norm of $L^2(B)$ to an element \tilde{F} of $L^2(B)$, and $||F||_{H_2} = ||\tilde{F}||_{L^2(B)}$.

(iv) If (w, ω) , $(z, \zeta) \in D$, then the function $(z, \zeta) \mapsto S_{(w,\omega)}(z, \zeta)$ defined by

(2)
$$S_{(w,\omega)}(z,\zeta) = \int_{\Omega'} e^{2\pi i \langle \lambda, z - \overline{w} - 2i\Phi(\zeta,\omega) \rangle} \varrho(\lambda) d\lambda$$

belongs to H^2 , and for every $F \in H^2$

(3)
$$F(w, \omega) = \langle F | S_{(w, \omega)} \rangle_{H^2}.$$

Equation (3) states that $S_{(w,w)}$ is (a, and hence by general principles) the reproducing kernel of H^2 , the so called *Szegö kernel* of D.

3. Proof of Lemma 1. Fix $\lambda \in \Omega'$. Define $||f||_{\lambda}$ for measurable functions on V by

$$||f||_{\lambda}^2 = \int\limits_{\mathcal{X}} e^{-\pi H_{\lambda}(\zeta,\zeta)} |f(\zeta)|^2 d\zeta,$$

and define \mathscr{H}^{λ} to be the set of entire holomorphic functions on V for which $\|f_{\lambda}\|$ is finite. The space \mathscr{H}^{λ} is an inner product space which obviously contains all the constants, and it is easily checked that it contains all polynomials. The proof of Lemma 1 consists in showing that \mathscr{H}^{λ} is complete, and that \hat{H}^2 can be identified with the direct integral $\int_{0}^{\oplus} \mathscr{H}^{\lambda} d\lambda$. The basic facts about \mathscr{H}^{λ} , viz. the existence of a reproducing kernel and completeness are due to V. Bargmann [1]. For the sake of completeness we include simplified proofs of these facts.

For $\zeta \in V$, and $f \in \mathscr{H}^{\lambda}$ define $(A_{\xi}f)(\omega)$ to be $\exp(\pi H_{\lambda}(\omega, \zeta) - \frac{1}{2}\pi H_{\lambda}(\zeta, \zeta)) \times f(\omega - \zeta)$. Clearly, $\omega \mapsto (A_{\xi}f)(\omega)$ is an entire function on V. A simple calculation shows that for $f, g \in \mathscr{H}^{\lambda}$ one has (writing the inner product in \mathscr{H}^{λ} as $\langle \cdot | \cdot \rangle_{\lambda}$)

$$\langle A_{\xi}f|A_{\xi}g\rangle_{\lambda}=\langle f|g\rangle_{\lambda},$$

and that in particular for $f \in \mathscr{H}^{\lambda} \| A_{\zeta} f \|_{\lambda} = \| f \|_{\lambda}$. Another easy calculation checks that $A_{-\zeta}$ is the inverse of A_{ζ} . Therefore A_{ζ} is a unitary transformation of \mathscr{H}^{λ} onto itself. Let now $\theta \in \mathbf{R}$, for $f \in \mathscr{H}^{\lambda}$ define f_{θ} by $f_{\theta}(\zeta) = f(e^{i\theta}\zeta)$. Clearly, $f_{\theta} \in \mathscr{H}^{\lambda}$. The change of variable $\zeta \mapsto e^{i\theta}\zeta$ and the fact that $H_{\lambda}(e^{-i\theta}\zeta, e^{-i\theta}\zeta) = H_{\lambda}(\zeta, \zeta)$ show that $\langle f_{\theta}|1\rangle_{\lambda} = \langle f|1\rangle_{\lambda}$. Therefore, using first Fubini's and then Cauchy's theorem we have

$$\langle f|1\rangle_{\lambda} = \frac{1}{2\pi} \int_{0}^{2\pi} \langle f_{\theta}|1\rangle_{\lambda} d\theta = \left\langle \frac{1}{2\pi} \int_{0}^{2\pi} f_{\theta} d\theta |1\right\rangle_{\lambda} = f(0)\langle 1|1\rangle_{\lambda}.$$

By evaluating $\langle 1|1\rangle_{\lambda}$ in a coordinate system in which H_{λ} is diagonal, we find that $\langle 1|1\rangle_{\lambda} = \varrho(\lambda)^{-1}$. Using this in (5) we have

(6)
$$f(0) = \rho(\lambda) \langle f|1 \rangle_{\lambda}.$$

Since $f(\zeta) = \exp(\frac{1}{2}\pi H_{\lambda}(\zeta,\zeta))$ $(A_{-\zeta}f)(0)$, we obtain from (6) that

$$f(\zeta) = \varrho(\lambda) \exp\left(\frac{1}{2}\pi H_{\lambda}(\zeta, \zeta)\right) \langle A_{-\zeta}f|1\rangle_{\lambda}.$$

Applying (4) to the right-hand side of the last equality we have

(7)
$$f(\zeta) = \varrho(\lambda) e^{\frac{1}{4}\pi H_{\lambda}(\zeta,\zeta)} \langle f|A,1\rangle_{\lambda}.$$

Since $(A_{\xi}1)(\omega) = \exp(\pi H_{\xi}(\omega, \zeta) - \frac{1}{2}\pi H(\zeta, \zeta))$, we can rewrite (7) by setting $\varrho(\lambda) \exp(\pi H_{\xi}(\omega, \zeta)) = K_{\xi}^{2}(\omega)$ as

(8)
$$f(\zeta) = \langle f | K_{\ell}^{\lambda} \rangle_{1}.$$

(Note that since K_{ξ}^{λ} is a numerical multiple of $A_{\xi}1$, it is an element of \mathscr{H}^{λ} .) We have proved that \mathscr{H}^{λ} has a reproducing kernel given by K_{ξ}^{λ} . An easy calculation shows that $\|K_{\xi}^{\lambda}\|_{\lambda} = \varrho(\lambda)^{\lambda} \exp\left(\frac{1}{2}\pi H_{\lambda}(\zeta,\zeta)\right)$. Using this value of $\|K_{\xi}^{\lambda}\|_{\lambda}$ and applying Schwarz's inequality to (8) we get

(9)
$$|f(\zeta)| \leqslant \varrho(\lambda)^{\frac{1}{4}} e^{\frac{1}{4}\pi H_{\lambda}(\zeta,\zeta)} ||f||_{\lambda}.$$

If $K \subset V$ is compact and $C_K = \sup\{\exp\{\frac{1}{2}\pi H_\lambda(\zeta,\zeta)\}: \zeta \in K\}$, then for $\zeta \in K$ (9) yields $|f(\zeta)| \leq \varrho(\lambda)^{\frac{1}{4}} C_K ||f||_{\lambda}$. This inequality immediately implies the completeness of \mathscr{H}^{λ} . We shall now derive another consequence of (9) which will be needed in the proof of the theorem. Let $\hat{F} \in \hat{H}_0^2$, then, by condition (C), $\hat{F}(\lambda, \cdot)$ belongs to \mathscr{H}^{λ} for almost every $\lambda \in \Omega'$. In view of (9) we therefore have

Remark 3. If $\hat{F} \in \hat{H}_0^2$, then, for every $\zeta \in V$, $\lambda \mapsto \varrho(\lambda)^{-\frac{1}{2}} e^{-\frac{i}{2}\pi H_{\lambda}(\zeta,\zeta)} \times \hat{F}(\lambda,\zeta)$ belongs to $L^2(\Omega')$.

Let us also observe the following fact: if ζ_j , j=1,2,3,... is a dense sequence in V and $f \in \mathscr{H}^{\lambda}$ is such that $\langle f | K_{c_j}^{\lambda} \rangle = 0$ for j=1,2,3,..., then by (8) f=0. Consequently, we have the following

Remark 4. If ζ_j , j=1,2,3,... is a dense sequence in V, then K_{ij}^{λ} , j=1,2,3,... is a total sequence in \mathscr{H}^{λ} .

We now prove that \hat{H}^2 is complete. Let $\mathfrak{F} = \prod_{\lambda \in \Omega'} \mathscr{H}^{\lambda}$, and let \mathfrak{G} = $\{f \colon \Omega' \times V \to C \colon f \text{ satisfies (A), and for every } \lambda \in \Omega' \ f(\lambda, \cdot) \in \mathscr{H}^{\lambda}\}$. Note first that \mathfrak{G} can be identified in an obvious way with a linear subspace of \mathfrak{F} . Also note that for fixed $\zeta \in V \ (\lambda, \omega) \mapsto K_{\zeta}^{\lambda}(\omega)$ belongs to \mathfrak{G} . We shall now verify that the Hilbert spaces \mathscr{H}^{λ} form a measurable field of Hilbert spaces ([3], p. 142). To this end, we must check three conditions.

(1) If $f \in \mathfrak{G}$, then $\lambda \mapsto ||f(\lambda, \cdot)||_{\lambda}$ is a measurable function on Ω' .

To prove this, note that, by Remark 1, f is a measurable function on $\Omega' \times V$. Then approximate the integral giving $\|f(\lambda,\cdot)\|_{\lambda}^2$ to within $\varepsilon/2$ by an integral over a large cube in V. Now approximate the integral over the cube to within $\varepsilon/2$ by a Riemann sum. This Riemann sum is a measurable function of λ . Therefore $\|f(\lambda,\cdot)\|_{\lambda}$ is the pointwise limit of measurable functions, and hence measurable.

- (2) If $g \in \mathfrak{F}$ is such that $\lambda \mapsto \langle g | f \rangle_{\lambda}$ is measurable for every $f \in \mathfrak{G}$, then $g \in \mathfrak{G}$. Proof. $g(\lambda)(\zeta) = \langle g | K_{\zeta}^{2} \rangle_{\lambda}$ is measurable for every $\zeta \in V$ because $K_{\zeta}^{2} \in \mathfrak{G}$, then use Remark 1.
- (3) There is a sequence f_j of elements of \mathfrak{G} such that for every $\lambda \in \Omega'$ the sequence $f_j(\lambda, \cdot)$ is total in \mathscr{H}^{λ} .

Proof. Remark 4.

The elements of $\mathfrak G$ are called measurable vector fields. A measurable vector field f is said to be square integrable if $\int\limits_{\Omega'}\|f(\lambda,\cdot)\|^2d\lambda$ is finite. Two square integrable measurable vector fields f and g are equivalent if $\int\limits_{\Omega'}\|f(\lambda,\cdot)-g(\lambda,\cdot)\|^2d\lambda=0.$ The direct integral $\int\limits_{\Omega'}^{\mathfrak G}\mathscr{H}^{\lambda}d\lambda$ is defined as the set of equivalence classes of measurable, square integrable vector fields. The norm of $f\in\int\limits_{\Omega'}^{\mathfrak G}\mathscr{H}^{\lambda}d\lambda$ is $\left(\int\limits_{\Omega}\|f(\lambda,\cdot)\|^2d\lambda\right)^{\frac{1}{2}}$.

If $f \in \mathfrak{G}$ is square integrable, then, clearly, f belongs to \hat{H}_0^2 . If g is another square integrable element of \mathfrak{G} , and g is equivalent to f, then (Remark 2) f and g are also equivalent in \hat{H}_0^2 . The norm of a square integrable $f \in \mathfrak{G}$ equals its \hat{H}^2 -norm. So far we have shown that $\int_{\Omega'}^{\mathfrak{G}} \mathscr{H}^{\lambda} d\lambda$ can be identified with a subspace of \hat{H}^2 . To prove that this subspace is actually all of \hat{H}^2 let $\hat{F} \in H^2$, and select a representative \hat{F}_1 of \hat{F} in \hat{H}_0^2 . The set of λ 's in Ω' for which $\hat{F}_1(\lambda,\cdot)$ does not belong to \mathscr{H}^{λ} is of measure zero. Now define \hat{F}_2 as follows: $\hat{F}_2(\lambda,\zeta) = \hat{F}_1(\lambda,\zeta)$ if $\hat{F}_1(\lambda,\cdot) \in \mathscr{H}^{\lambda}$, and $\hat{F}_2(\lambda,\zeta) = 0$ otherwise. By Remark 1, \hat{F}_2 belongs to \mathfrak{G} , and hence to \hat{F}_0^2 , and by Remark 2 it is equivalent to \hat{F}_1 . This proves that \hat{H}^2 can be identified with the direct integral of the \mathscr{H}^{λ} 's. Since the direct integral of Hilbert spaces is a Hilbert space, Lemma 1 is proved.

4. Proof of the Theorem. In addition to Lemma 1 and Remark 3 two technical results will be needed which we now list.

LEMMA 2. Let $F \in H^p$, $1 \leq p < \infty$. Let $\zeta \in V$, and $\delta \in \Omega$ such that $\delta - \Phi(\zeta, \zeta) \in \Omega$. Then $z \mapsto F_{\delta}(z, \zeta) = F(z + i\delta, \zeta)$ belongs to $H^p(T_{\Omega})$.

LEMMA 3. Let $\varepsilon > 0$, $0 < \alpha < \frac{1}{2}$, and let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be a basis of U' contained in Ω' which is compatible with the Haar measure $d\lambda$ on U'. Then $G^{\varepsilon}(z,\zeta) = \exp\{-\varepsilon \sum_{j=1}^{m} < \lambda_j, z\rangle^{\alpha}\}$ belongs to $H^{\varepsilon}(D)$, and is bounded and continuous on \overline{D} .

Lemma 2 is actually true for all positive p, but we only need it for p = 1, 2. It is due to E. M. Stein [10]. Lemma 3 is from [9].

Let now $\hat{F} \in H_0^2$ and $(z,\zeta) \in D$, with $z = x + it + i\mathcal{O}(\zeta,\zeta)$, where $t \in \Omega$. In any coordinate system $\varrho(\lambda)$ is a homogeneous polynomial of degree n, and one can show readily that $\dot{\varrho}(\lambda) \exp(-2\pi \langle \lambda, t \rangle)$ is square integrable on Ω' . Therefore, by Remark 3,

(10)
$$\int\limits_{\Omega'} e^{2\pi i \langle \lambda, z \rangle} \hat{F}(\lambda, \zeta) d\lambda = \int\limits_{\Omega'} e^{2\pi i \langle \lambda, z \rangle} e^{-2\pi \langle \lambda, t \rangle} e^{-4\pi H_{\lambda}(\zeta, \zeta)} \hat{F}(\lambda, \zeta) d\lambda$$

is absolutely convergent for every $\zeta \in V$. Choosing coordinates in $W \times V$, and applying Morera's theorem in combination with Fubini's theorem one shows that $U\hat{F}$ is holomorphic in each coordinate of (z,ζ) , and hence by Hartogs's theorem holomorphic in D. Since $\varrho(\lambda)\exp{(-2\pi\langle\lambda,t\rangle)}$ is a bounded function of λ on Ω' , by Remark 3 one concludes that the quantity multiplying $\exp{(2\pi i\langle\lambda,x\rangle)}$ in (10) is square integrable on Ω' . Therefore, by Plancherel's theorem for every $\zeta \in V$

$$\int\limits_{U} \big|\, U \hat{F} \big(x + it + i \varPhi(\zeta \,,\, \zeta) \,,\, \zeta \big)\big|^2 \, dx \, = \int\limits_{\Omega'} e^{-4\pi \langle \lambda,t \rangle} \, e^{-\pi H_\lambda(\zeta,\zeta)} |\hat{F} \,(\lambda \,,\, \zeta)|^2 \, d\lambda \,.$$

Integrating this equality on V we get

$$(11) \qquad \|(U\hat{F})_{t}\|_{L^{2}(B)}^{2} = \int\limits_{\Omega' \times V} e^{-4\pi \langle \lambda, t \rangle} e^{-\pi H_{\lambda}(\zeta, \zeta)} |\hat{F}(\lambda, \zeta)|^{2} d\lambda d\zeta \leqslant \|\hat{F}\|_{\hat{H}^{2}}^{2}.$$

From (11) we conclude that $U\hat{F} \in H^2$. If $t_k \in \Omega$ is a sequence tending to 0, then by the dominated convergence theorem we have that $\|(U\hat{F})_t\|_{L^2(B)}^2$ converges to $\|\hat{F}\|_{\dot{H}^2}^2$, and that therefore

$$\|U\hat{F}\|_{H^2}^2 = \|\hat{F}\|_{\hat{H}^2}^2.$$

If $\hat{G} \in H_0^2$ and $\hat{F} \sim \hat{G}$, then (12) implies that $\|U\hat{F} - U\hat{G}\|_{H^2} = \|\hat{F} - \hat{G}\|_{\dot{H}^2} = 0$, i.e. that equivalent \hat{F} 's give rise to the same $U\hat{F}$. Therefore U defines a linear map from \hat{H}^2 to H^2 which we continue to write U. The equation (12) shows that U maps \hat{H}^2 isometrically into H^2 . Now let $t_k \in \Omega$ be a sequence converging to 0, then (11) (with $(U\hat{F})_{t_k} - (U\hat{F})_{t_l}$ instead of $(U\hat{F})_{t_l}$) and the dominated convergence theorem show that $(UF)_{t_k|_B}$ is a Cauchy sequence in $L^2(B)$. Therefore $(U\hat{F})_{t_k|_B}$ converges in $L^2(B)$ norm to an element of $L^2(B)$. We omit the proof that the sequential limit can be replaced by $t \in \Omega'$ tending to 0. We therefore have

Remark 5. Assertion (iii) of the theorem holds for every $F \in H^2$ which admits the representation (1).

Let now $F \in H^2 \cap H^1$ and let $\zeta \in V$ be arbitrary but fixed. (By Lemma 3, $H^1 \cap H^2 \neq \{0\}$.) Set $\Omega_{\zeta} = \{\delta \in \Omega \colon \delta - \Phi(\zeta, \zeta) \in \Omega\}$. For $\delta \in \Omega_{\zeta} z \mapsto F_{\delta}(z, \zeta)$ belongs to $(H^2 \cap H^1)$ (T_{Ω}) by Lemma 2. By the theory of H^p spaces on tube domains ([11], Chapter 3) the boundary function of F_{δ} , viz. $x \mapsto F_{\delta}(x, \zeta)$ belongs to $(L^2 \cap L^1)(U)$. We can therefore define a function $\hat{F}_{\delta}(\lambda, \zeta)$ by

(13)
$$\hat{F}_{\delta}(\lambda,\zeta) = \int\limits_{U} e^{-2\pi i \langle \lambda,x \rangle} F_{\delta}(x,\zeta) dx.$$

Remark 6. By the H^2 theory for tube domains $\hat{F}_{\delta}(\cdot, \zeta)$ is supported in Ω' . Since $F_{\delta}(\cdot, \zeta) \in L^1(U) \cap C^{\infty}(U)$, $\hat{F}_{\delta}(\cdot, \zeta)$ is continuous and integrable. Therefore Fourier inversion can be applied to (13) everywhere.

If δ' is another element of Ω_{ζ} , then for $\lambda \in \Omega'$, by the H^2 theory for tube domains,

$$\hat{F}_{\delta+\delta'}(\lambda,\zeta) = \exp\left(-2\pi\langle\lambda,\delta\rangle\right) \hat{F}_{\delta'}(\lambda,\zeta) = \exp\left(-2\pi\langle\lambda,\delta'\rangle\right) \hat{F}_{\delta}(\lambda,\zeta).$$

Therefore for $\delta \in \Omega_{\zeta} \exp(2\pi \langle \lambda, \delta \rangle) \hat{F}_{\delta}(\lambda, \zeta)$ is independent of δ . Denote this function by $\hat{F}(\lambda, \zeta)$.

Now let $z = x + iy \in W$ be such that $(z, \zeta) \in D$, i.e. $y \in \Omega_{\zeta}$. Note that $F(z, \zeta) = F_{y}(x, \zeta)$. By Remark 6, we can apply Fourier inversion

to (13). If we now express \hat{F}_y in terms of F in the Fourier inversion formula, we get

(14)
$$F(z,\zeta) = \int_{\Omega'} e^{2\pi i \langle \lambda,z \rangle} \hat{F}(\lambda,\zeta) d\lambda = U \hat{F}(z,\zeta).$$

Since ζ was arbitrary, (14) holds for every $(z, \zeta) \in D$.

We now prove that $\hat{F} \in \hat{H}^2$. Again fix $\zeta_0 \in V$, and also $\lambda \in \Omega'$. If $\delta \in \Omega_{\zeta_0}$, then there is a polydisc, $\Delta \subset V$ centered at ζ_0 such that $\delta \in \Omega_{\zeta}$ for $\zeta \in \Delta$. Now by (13) and by the definition of \hat{F} we have for $\zeta \in \Delta$ that

$$\hat{F}(\lambda,\zeta) = e^{2\pi\langle\lambda,\delta\rangle} \int\limits_{U} e^{-2\pi i\langle\lambda,x\rangle} F_{\delta}(x,\zeta) dx.$$

Exactly as before, by combining the theorems of Fubini, Morera and Hartogs, we can show that $\zeta \mapsto \hat{F}(\lambda, \zeta)$ is holomorphic in Δ . Since ζ_0 was arbitrary in V, it follows that $\hat{F}(\lambda, \cdot)$ is an entire function. By Remark 6, we know that $\hat{F}(\cdot, \zeta)$ is continuous for every $\zeta \in V$, therefore by Remark 1, \hat{F} is measurable on $\Omega' \times V$.

Now let $t \in \Omega$, then Plancherel's theorem applied to (13) gives for every $\zeta \in V$

$$\int\limits_{U} \big| F\big(x+it+i\varPhi(\zeta,\zeta),\zeta\big) \big|^2 dx \, = \int\limits_{\Omega'} e^{-4\pi\langle\lambda,t+\varPhi(\zeta,\zeta)\rangle} |\hat{F}(\lambda,\zeta)|^2 d\lambda.$$

Integrating this equality on V we have

$$\|F_t\|_{L^2(B)}^2 = \int\limits_{\Omega'\times V} e^{-4\pi\langle\lambda,t\rangle} e^{-\pi H_\lambda(\zeta,\zeta)} |\hat{F}(\lambda,\zeta)|^2 d\lambda d\zeta \leqslant \|F\|_{H^2}^2.$$

By Fatou's lemma it follows that $\hat{F} \in \hat{H}^2$. Taking suprema over Ω we see that $\|F\|_{H^2} = \|\hat{F}\|_{\hat{H}^2}$. We conclude that the map $F \mapsto \hat{F}$ maps the subspace $H^2 \cap H^1$ of H^2 isometrically into \hat{H}^2 . By Lemma 1, the range of this map is contained in a complete space, and therefore, if we denote by M the closure in H^2 of $H^2 \cap H^1$, it extends uniquely to an isometry V of M into \hat{H}^2 . Now for $F \in H^2 \cap H^1$ (14) holds, and therefore for such F, UVF = F, i.e., UV is the identity of $H^2 \cap H^1$. By continuity it follows that UV is the identity on all of M, and hence if $F \in M$, then F = U(VF), i.e., U maps \hat{H}^2 isometrically onto M: M is a Hilbert space, and the unitary maps $U|_{VM}$ and V are inverses of each other. By Remark 5 it follows that assertion (iii) holds for every $F \in M$.

We now prove that $M=H^2$. Let $F\in H^2$, and let G^* be the function introduced in Lemma 3. By that lemma and Schwarz's inequality $G^*F\in H^2\cap H^1$. Since assertion (iii) of the theorem holds in M, there exists an element $(G^*F)^{\sim}$ of $L^2(B)$ such that $(G^*F)_t|_B$ tends to $(G^*F)^{\sim}$ in $L^2(B)$ as $t\in \Omega$ tends to zero. Consider first the case $\varepsilon=1$. For some sequence $t_k\in \Omega$, $t_k\to 0$ (fixed once and for all in this proof) $(G^1F)_{t_k}|_B\to (G^1F)^{\sim}$ almost

everywhere on B. Since $G^1_{t_k}|_B \to G^1|_B = \tilde{G}^1$ everywhere on B, and \tilde{G}^1 does not vanish anywhere, we can conclude that $F_{t_k}|_B$ converges almost everywhere on B to a limit \tilde{F} . Since $\|F_{t_k}\|_{L^2} \leqslant \|F\|_{H^2}$, it follows from Fatou's lemma that $\tilde{F} \in L^2(B)$. Now let ε be arbitrary positive. Since $(G^\varepsilon F)_{t_k}|_B = G^\varepsilon_{t_k}|_B F_{t_k}|_B \to \tilde{G}^\varepsilon \tilde{F}$ almost everywhere, and $(G^\varepsilon F)_{t_k}|_B \to (G^\varepsilon F)^-$ in $L^2(B)$ it follows that $(G^\varepsilon F)^- = \tilde{G}^\varepsilon \tilde{F}$ almost everywhere on B.

Now let $\varepsilon_{\nu} \rightarrow 0$, then

$$\|G^{\epsilon_{\!\scriptscriptstyle{p}}}F\!-\!G^{\epsilon_{\!\scriptscriptstyle{\mu}}}F\|_{H^2}^2 = \int\limits_{U imes V} |G^{\epsilon_{\!\scriptscriptstyle{p}}}\!-\!G^{\epsilon_{\!\scriptscriptstyle{\mu}}}|^2\,| ilde{F}|^2 dx d\zeta$$

because (iii) holds in M. Since $G^{\epsilon_y} - G^{\epsilon_y}$ tends to zero boundedly, we have that $G^{\epsilon_y} F$ is a Cauchy sequence in the complete space M, and therefore tends in H^2 to an element H of M. Now let $t \in \Omega$ be arbitrary but fixed, then

$$\|(G^{\epsilon_{y}}F)_{t}-H_{t}\|_{L^{2}(B)}\leqslant \|G^{\epsilon_{y}}F-H\|_{H^{2}}$$

and therefore $(G^{\epsilon_r}F)_{t|_B}\to H_{t|_B}$ in $L^2(B)$ norm. On the other hand $G^{\epsilon_r}_{t|_B}\to 1$ everywhere on B. Consequently $F_{t|_B}=H_{t|_B}$ because both functions are continuous. Since $t\in\Omega$ was arbitrary, it follows that F=H, and hence, that $M=H^2$. Therefore $U\hat{H}^2=H^2$.

To prove (iv) let $(w, \omega) \in D$ and $F \in H^2$. By the assertions of the theorem already proved, we have

(15)
$$F(w,\omega) = \int_{\Omega'} e^{2\pi i \langle \lambda, w \rangle} \hat{F}(\lambda, \omega) d\lambda$$

where $\hat{F} = U^{-1}F \in \hat{H}^2$. Since $\hat{F}(\lambda, \cdot) \in \mathscr{H}^{\lambda}$ for almost every $\lambda \in \Omega'$, we have $\hat{F}(\lambda, \cdot) = \langle \hat{F}(\lambda, \cdot) | K_{\omega}^{\lambda} \rangle_{\lambda}$ for almost every $\lambda \in \Omega'$. Introducing this into (15) and rewriting the integral formally as a double integral we have (only formally, so far)

$$(16) F(w,\omega) = \int\limits_{\Omega'\times V} e^{-\pi H_{\lambda}(\zeta,\zeta)} \hat{F}(\lambda,\zeta) \overline{\{e^{-2\pi i\langle\lambda,\overline{w}\rangle}e^{\pi H_{\lambda}(\zeta,\omega)}\varrho(\lambda)\}} \, d\lambda d\zeta.$$

Denote the quantity in curly brackets by $T_{(w,\omega)}(\lambda,\zeta)$. A straightforward check verifies that $(\lambda,\zeta)\mapsto T_{(w,\omega)}(\lambda,\zeta)$ belongs to \hat{H}^2 . Therefore the double integral in (16) is absolutely convergent (this justifies the passage from (15) to (16)) and equal to $\langle \hat{F}|T_{(w,\omega)}\rangle_{\hat{H}^2}$. Consequently,

(17)
$$F(w, \omega) = \langle \hat{F} | T_{(w,\omega)} \rangle_{\hat{H}^2}.$$

Now a simple calculation shows that $UT_{(w,\omega)}$ is the function $S_{(w,\omega)}$ defined by (2), hence in view of the fact that U is unitary, (17) yields

$$F(w, \omega) = \langle F | S_{(w,\omega)} \rangle_{H^2}.$$

But this is equation (3) in assertion (iv) of the theorem whose proof is now complete.

References

- V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, I, Comm. Pure Appl. Math. 14 (1961), pp. 187-214.
- [2] S. Bochner, Group invariance of Cauchy's formula in several variables, Ann. of Math. 45 (1944), pp. 686-707.
- [3] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, 2nd ed., Gauthier-Villars, Paris 1969.
- [4] S. G. Gindikin, Analysis in homogeneous domains, Uspekhi Mat. Nauk 19 (1964), pp. 3-92 (in Russian).
- [5] A. Korányi, Holomorphic and harmonic functions on bounded symmetric domains, (C. I. M. E., Summer course on bounded homogeneous domains) Cremonese. Roma 1968.
- [6] The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. 82 (1965), pp. 332-350.
- [7] A. Korányi and E. M. Stein, H² spaces of generalized half-planes, Studia Math. 44 (1972), pp. 379-388.
- [8] S. Murakami, On automorphisms of Siegel domains, Lecture Notes in Mathematics 286, Springer, Berlin 1972.
- [9] R. D. Ogden and S. Vági, Harmonic analysis of a nilpotent group and function theory on Siegel domains, to appear.
- [10] E. M. Stein, Note on the boundary values of holomorphic functions, Ann. of Math. 82 (1965), pp. 351-353.
- [11] E. M. Stein and G. Weiss, Introduction to Fourier analysis in Euclidean spaces, Princeton University Press, Princeton 1971.
- [12] H. D. Ursell, Some methods of proving measurability, Fund. Math. 32 (1939), pp. 311-330.

Received August 20, 1975 (1059)

Integrability of seminorms, the 0-1 law and the affine kernel for product measures

by

J. HOFFMANN-JØRGENSEN (Aarhus, Denmark)

Abstract. Let (X_n) be a sequence of random variables taking values in a measurable linear space E, and let q be a quasi-convex subadditive function on E^∞ . The first part of the paper deals with the problem of finding conditions, which assures that $\mathbf{E}(e^{\epsilon M})$ is finite for some positive ϵ , where $M = \sup_n q(X_1, \ldots, X_n, 0, 0, \ldots)$.

In the second and third part of the paper we take E = R, and we show that if X_n has no mass points, then every linear subspace of \mathbf{R}^{\odot} has probability 0 or 1. Finally, we study the affine kernel of (X_n) , i.e. the intersection of all affine subspaces of probability 1, and we give an analytic expression for this.

1. Introduction. If μ is a Gaussian measure on a locally convex space, there are three main results which have proved to be useful.

The first is the result of Fernique stating that, if φ is a measurable a.e. finite seminorm, then $\mathbf{E}(\exp(\varepsilon\varphi^2)) < \infty$ where \mathbf{E} denotes expectation with respect to μ . A similar result has been proved by C. Borel ([1]) for certain other classes of measures. In Section 2 of this paper we shall prove some results in this direction when μ is a product measure on $(\prod_{1}^{\infty} E_n, \stackrel{n}{\otimes} B_n)$ and (E_n, B_n) is a measurable linear space. Here we define a measurable linear space, (E, B), to be a linear space E equipped with a σ -algebra E satisfying

(1.1)
$$(x, y) \rightarrow x + y$$
 is measurable: $(E \times E, \mathbf{B} \otimes \mathbf{B}) \rightarrow (E, \mathbf{B}),$

(1.2)
$$(\lambda, y) \rightarrow \lambda y$$
 is measurable: $(E \times R, B \otimes B(R)) \rightarrow (E, B)$.

The methods and the results of that section are closely related to the results of Marcus and Jain in [9] and to the results in [2] and [3].

The second result is the 0-1 law by Kallianpur in [5]. C. Borel has in [1] shown that the same result holds for certain other classes of measure. In Section 3 we show that, if μ is a product measure on \mathbf{R}^{∞} with non-atomic factors, then $\mu(A) = 0$ or 1 for all μ -measurable affine subsets.

The third result on Gaussian measures, which has proved to be a very powerful tool, is the reproducing kernel Hilbert space which, in case μ