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. Uniyersal spaces and universal bases
) o in metric linear spaces

by
N.J. KALTON (Swansea, U. K.)

Abstract, Our main result is the existence of a separable F-space (complete
metrie linear upacu) universal for all separable F-spaces. We also show that there are
complemeuwbly universal membets of the families of all bases in Banach spaces and
all bases in Fréchet spaces (Iocally convex metric linear spaces). In the other direction,
we ghow that there is no separable F-space with a separating dual which is universal
for all F-gpaces with separating duals.

" 1. Introduction. ' A topological vector space X is [co'rszlemenmbly]
- untversal for a family & of topological vector spaces if for each Y e <,
there exists a [complemented] subspace Z of X isomorphic to Y. X is
co-universal for s, if for each Y e of there is a closed subspace N of X
such: that ¥ o= X /N,
The sct of all separable Banach spaces contains a universal member
C[0, 1] (Banach-Mazur [1], p. 185), a co-universal member (I, see [10],
.. 280) but no complementably universal member (Johnson-Szankowski [5]).
On the other hand, the set of all Banach spaces with bases has a unigue
complementably universal member (Pelezyiski [13]) which is also the
unique complementably universal member for the set of all Banach spaces
with the Bounded Approximation Property (Kadec [6], Pelozyniski [14]).
There are a number of other existence and non-existence results known
on clasges of soparable Banach spaces (see for example [21], [24] and [27]).
Tt is the purpose of this paper to study universal spaces for general
F-gpaces (complete metric linear spaces) where much less is known. Our
main result (Theorem 4.3) which answers a questwn of Rolewicz (see
Problem IX. 4.1 of [16]; also see [12]) is that there exists a sepaiable
T-gpace universal for all separable F-gpaces. The proof depends on a method
of packing expounded in § 2, which is a slight modification of that of
Polezyriski [137] (soe alyo Gurarii [3]). The modification is significant, in
that we are able to apply the technigues of § 2 to Banach spaces and obtain
some new results. We construct a universal linearly independent sequence
and thén answer a quostion of Pelezyriski [13], p. 266, Problem 1, by showing
that there is a universal basis for the family of bases in Banach spaces
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(without any normalization conditions). By modifying the technique we
can also produce a universal basis for all bases in Fréchet spaces. We do
not however know whether there is a universal basis for all bages in F-
spaces (see Theorem. 4.4).

In § 5 we answer a question of Rolewicz ([16], p. 47) by giving a co-
universal separable F-space; we also show that there is no complementably
universal separable F-space. In § 6 we answer a question of Pelezyriski
by showing that there is mo nearly convex (i.e. with separating dual)
separable F-gpace universal for all nearly convex separable .JF-spaces.
Finally, in § 7 we show nearly convex F-gpaces can always be embedded
in F-gpaces with the approximation property. In § 8 we list some open
problems.

The author would like to thank Professor A. Pelezyndski for suggest-
ing this problem and for several illuminating discussions concerning it.
The author also wishes to thank Dr L. Drewnowski for pointing out an
error in the first version of this paper.

The following notation will be used in the paper. An' F*-gpace is
a metric linear space and an F-semi-norm on a real (or complex) vector
space X is asmap ¢: X—[0, co) satisfying (a) g(0)= 0, (b) g(w+4) < g(@)+
+a(y), #,y€X, (o) q(iz) < g() for [t|<1, and (d) limg(tw) =0 for

=0

% ¢ X. If in addition ¢(w) = 0 implies # = 0, then ¢ is an F-norm. A p-norm
is an F-norm ¢ satisfying ¢(iz) = [t|°q(2), € X. A set A is absolutely
p-conver if |a|l+ 1817 <1, v,y € A imply aw-+fy € A. An F*-space with
a base of absolutely p-convex neighbourhoods of 0 is called locally p-conves.
An F*-space i8 locally bounded if it has a bounded neighbourhood of 0.
Every locally bounded F*-space is locally p-conves for some 2, 0<p<1
(see [16], p. 61) and its topology may be given by a p-norm. A locally
p-convex locally bounded F-space is called a p-Banach space.

2. A Packing technique. Suppose (¥, <) is a partially ordered set.
A subset 4 of B is (i) a chain if it is totally ordered and (ii) a seotion if
b< a e A implies b & A. For each ¢ e B, lot o] = {a: a < c}. I for each
¢ e B, E[c] is a finite chain we shall say that 7 is treelike.

TImyvova 2.1, If B dis countable and treelilie, then there is @ mon-decre-
asing bijection o: N—T.

Proof. Let {a,} be a sequence of elements of B such that each el-
ement occurs infinitely often. Define an increasing sequence {m,,} by indue-
tion: if {m;: j< k} have been chosen (where if & = 1, this set is empty),
choose my, to be the least n > m,_, such that {5 ooy Oy @,} 35 & seCtion.
of B and a, ¢{a,, ..., Oy} Then let o(h) = Oy, 16 can be proved
by induction on the number of elements of EH[c] that each ¢ € B is in the
range of o.
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For each subset 4 of B we let #(A) be the space of real finitely sup-
ported functions on 4. Let P, denote the natural projection P, :5(H)-—>F (4)-
By a consistent family of F-norms on ¥ we mean a collection {m,: ¢ e I}
such that ‘
(1) m, is an F-norm on F(E[c]).
(ii) If @ < ¢, then for » eF (H[al), m,(2) = m,(2).
If {m,: ¢ e} is a consistent family, we define the limit F-norm of
{m,;: ¢ce B} on&(E) by :
ki n . i L !
M) @) =it D) Y w =05 u eF (Blol); ne N}
. | i=1 el -
It is clear that = is an F-gemi-norm; the fact that it is an F-norm is proved
below : . . P
PRrOPOSITION 2.2. Suppose B is treelike and {x,: ¢ € B} is.a consistent
famaly of F-norms on B, with limit. ;. Then .
L)y If A = suppuw, then ; 1 s
o) =t natu): v @D, S =3

. aed

(ii) If o eF (Bo]), m(@) = mp(@).

(ili) 748 an F-norm on F (B). ot Lo e
Proof. (i) Given &> 0, choose a mim’ma,l’ collection w;
(1< i< n) such thati Do Vi

I T

e (B[e;])

LR N}

We niay suppose that ¢, = max [suppu,] by the consistency of {m,: ¢ e B},
It is enough to show that for each 4 there exists a; € A with ¢; < a;. Suppose
not; then there exists a maximal ¢ such that ¢; = ¢ for some j < n, and
enon < o for any a € 4. As ', (c) = 0, we have ¢, > ¢ for some k # j,
and hence g, = ¢. Then S .

Z Uyt (g ) = @

§

TN
and. - S
D () oy ) () ey
&Lk . 4 o
contiadicting the tinimality of [2;, ..., 4] .
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(ii) This follows immediately from (i); if u, e # (B[a]) and 3 u,= o,

then Y, (u,) = X, (u,) = w3 u,) = m,(w).
(iii) If n(#) = 0, then for each neN there exist u} e# (H[a])
a €A = suppx, such that

2 malu) <

aed

ZuZ = 5.

Then lim =, (u}) = 0 for each a € 4. As each.Z (F[«a]) is finite-dimensional
n—-o0

2

<1l/m,

‘limuyz(a) =0 for acd (the functional w->u(a) is continuous on

(# (B[al),m,)). Hence z(a) = 0 for all a e 4, ie. @ = 0.
An F-norm » on% (E) is called monotone if n(P ) <
r e F(F) and for each section .4 < H.
PropPOSITION 2.3. Suppose B is treelike and {m,: ¢ e B} is a consistent
Sfamily of F-norms satisfying w,(Pge o) < nc('/a) whenever &< ¢. Then the
limit. P-norm = is monotone.

n(w) for each

Pro of. Suppose 4 is any section of ¥ and # e# (H). For ¢ > 0 suppose

r = Z‘uﬂ where u; e (He;]) and 27, () < w(w)+e. Then AnB[e]
G=1
= E[a;] for some a,; and hence
m(Py2) < 37 (Paytie) < Dty () < m(@)+ 5

As £ > 0 is arbitrary this concludes the proof. :
Consider now the space# () of all finitely non-zero sequences. For
each n e N we define e, e #(N) by e,(k) = 8,,. We shall also denote
Z(N[n]) by the more natural R,; of course R, = lin(e,, . ¢,). Let @
. be the family of all F-normg on % (N) and &, be the family of all F-norms
on R,. The distance d(p, g) between two F-norms p and ¢ on X =% (N)
or R, is defined by

a(p,g) = ig}{)llog(p(w)/q(w)){-
0 .

Strictly d is not a metric; however we can define a metric d* on X by

a(»,q

‘We ghall therefore treat (®, d) and (&,, d) d) a8 metric spaces. Let J, denote
the restrietion map J,: ®—>&,. Then J, is contractive.

Construection 2.4. We now describe the general construction of

universal spaces to be applied in the next two sections, We shall suppose 2
ig a seb of F-norms on & (N) satisfying

= a;rctand(io, q).
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(o) J,(2) is separable for cach n e N;

(B) for each pe?, geJ,(P) t_ere exists ¢ €# such that J,(¢) =g
and d(p, q) = d(Ju(p), 7).

Pick F, a dense countable subset of J,(#). Then pick countable
subsets B, of J,(#) as follows: if B, _, has been chosen, choose for each
pe B, , a dense countable subset A(p) of J,(#)NJ,(J;1(p). Then
B, = (A(p): peB,). Thenlet B = | B, and define a partial order <
on B by p < ¢ if and only if p is a restriction of ¢, i.e. ifp € B,, and q € B,
then m < n and p(z) = ¢(z) for x e B,,. Clearly, F is treelike.

Next we define a consistent family (z,: p < B) of F-norms. If p e B,,,

then E[p] = {py, Pey .-+ Pm} Where py =p|Ey; ..., P = p| By = p. De-

fine
m
=p( > a(@)e)-
q=1
Let & be the limit F-norm on # (B). Then we have
(v) For each p € P and & > 0 there ewists a mawimal chain C in E and
an order-preserving bijection ¢: O—N such that the map T: 5 (N)»ﬁ 0)
defined by Tw(a) = o(p(a)) satzsfws

(1~6)P(w <7

Proof of (y). Choose #,>0 such that Il(1+nn)<

p, = p; we define a sequence p, €2 such that
(1) (14 90) 7 P (@) < 2y (8) < (14 775) Do (2) 5
(ii) Jpr(Pn) = T2 (Pps)y 122,
(iii) I, (p,) € By n=1.
Suppose {p;: k<< n} have been chosen Then J,_;(Pp_y) € B,_, (this
condition is vacuous if n = 1), and J,(Pn—1) € I ()N, (Trl1 (Py_1}Bumy))-
Pick ¢ € A(p,,|R,_,) such that

< (A+e)p(@).

14+e Let

W>17

(L4 7) 7 P (@) S (@) < A+ 1) Pua (@), @€ R,
and then use (B) to choose p,, € # such that
(17,) " P (#) < 2o @) < (L4 )Paa (@), 0 F(N)
and
JulPu) = 4.

By condition (ii), the sequence (J (py) ) is & chain in ¥ and 11; is clearly
maximal. Let ¢ = {J,(p,): n e N} and define ¢(J, (p,,)) =mn; for n>1.
For ek,

w(T2) = pu(@)
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and .
(1—e)p(2) < pu(2) < (L+6)p (@),
since
(1 +771) (1 + 7711.) ] ‘]"

3. Universal sequences in Banach and Fréchet spaces. Let {z,} be
a sequence in an F-space X and {y,} a sequence in an F-gpace Y. Lot X
and Y, be the closed linear spans of (#,) and (y,), respectively. Then we
shall say (m,) and (y,) are equivalent if there is an isomorphism (linear
homeomorphism) 7': X,— ¥, such. that T, =y, for n-+N. Let £ be a set
of sequences in F-spaces; then & sequence (w;,) in an F-gpace is universal
for X if for every (z,) € X there is an increasing sequence (1) such that (z,)
is equivalent to (w,,). Let W be the closed linear span of (w,). If, in ad-
dition, we can for each (2,) € & choose n,, 50 that there is a continuous pro-
jection P: W—W satisfying Puw, = w, (keN) and Pw; =0, j¢(n),
we say that (w,) is complementably wniversal for X

In [13], Pelezynhski showed that the families of all seminormalized
bases in Banach spaces and of all seminormalized unconditional bases
in Banach spaces contain complementably universal members. We ghall
give some related results and in particular resolve a problem posed by
Pelezyniski ([13], p. 266) by f1nd1nof a complementably wniversal member
of the family of all bases in Banach spaces (Theorem. 3.2 below).

THEOREM 3.1. There is a linearly independent sequence (w,) in C(0, 1]
which is universol for all linearly independent sequences in Banach spaces.

Proof. Let M be the set of all norms on & (N). M clearly sabisfies 2.4(a).
For 2.4(B) note that . ’ o '

e 17 Q(”) 'p(w), wekR,,
where 0 = d(J,(p), ). Let ' .
@y . <o g(w) =int{g(y +ep(%y) y e Ry},

Then'for 2% R,n , it is easy to show that q( )
< (7)< €"p ().

If {z,} iv any linearly independent sequence in a Bcunmch space, 1hen
its linear spm is isomorphic to (.W (), p) for some p e M. Now construct
the space (F (B ) as in 2.4. Tor edch & e B denote by ¢, & # (), thoelement
e,(a) =1, ea(b)_m 0 if b 5 a, Choose ¢: N—F to satisfy Lemma 2.1
and write w, = o) Then by 2. 4( ) coxrespondmﬂ‘ to (w,) and &> 0,
there is an increasing sequence (ny) such that !

) <1~6HZWH (an)wMHMzH

Fmaﬂy, observe thzut ( (D) ) can be embedded 1~30metr1m1]y m 0[0 1]
by the Banach~Mazur theorem ([1], p. 185).

'

i@ ) smdwe%( )s e""’p( )
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Remark. Of course (w,) constructed above 'is “néarly isometrically
universal” (see (3)).
. TupmoreM 3.2. There is a basis of a Banach space By which is comp-
lementably universal for the family of all bases in Banach spaces.’
Remark. By Corollfuy 4, p. 266 of [13], the space B is umque and

isomorphic to the space constructed in [13]: One may also mimic the

tcchmques of [13] to ghow that the eomplementa.bly umversal bamS i
uhique’ up to permumtlon amd equivalence.:

T Prpof. The ‘prdi)f of Theorem 3.218 very gimilad to ﬁha,t of Theéorern 3.1.
Tiot % be the fatriily of all monotorie noriis on % (N). Again & sitisties 2.4(w),
and for 2.4(B) we need only observe that ¢ constructed in equatmn (2)
is how 4 Thonotoné Hiorm. Liet (# (B), x) be the constructed normed space; m
is & monotone norm on# (E) by 2. 3 Let B be the completion of (?(E), n)
and choose ¢ by Lemma 2.1. Then w, = ¢y, is & monotone basiy of B
since for each n, {o(1), ¢(2)....0(n)} is.a: Reetion of K. Furthermore, for
each maximal chain ¢ in E.given by {a k): k € N}, the projection . .

(Zt wi) Z't,,(,)wm) e

w-l

hms norm one, §ince 0 is a section of E. '
The theorem follows from the observation that for any ba,sm JIav,,}
of a Banach space X, there is a mom)‘oone fiorm p on & (N) such that the

P [EEE T Py

(S’tw)

is a homeomorphism between hn{mn} and (# ( (N, P).

Remark. Theorem 3.2 could also e obtained by applying a tech-
nique of Zippin [27]. Let (# (L’) 7) be the space constructed in Theorem 3.1
and define . S S e

n“(m) = gup [n(PAm): A a section of B

Then »* is monotone on# (B). Let B be the completion of (#(H), )
Tt is not difficult 0 show that (w,) is now a complementably universal
Dbasis. Using either direct method or this approach we may prove Thet
orems 3.3 and 8.4 below.

TrroreEM 3.3. There s o oomplementably universal membeo of the
famialy of all unconditional bases in Banach spaces. ‘ t
A soquenae (2,,) ir. a Banach space X is semi-basic ([7]) if there is
a soquence e/* such that (x,, x3) is bi-orthogonal, i.e. o (2,) = By
It ‘in addition @) c¢an be chosen so- that sup\lw,,mlmn[|< oo, then (,) i§
boundedly semi- basw A -
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TauoREM 3.4. There is a universal member of the set of all boundedly
semi-basic sequences. .

Next we consider Fréchet spaces (i.e. locally convex F-gpaces). The
author does not know whether there is an analogue to Theorem 3.1 in thig
setting. However Theorem 3.2 can be extended:

THEOREM 3.5. There is a basis of a Fréchet space C which i3 comp-
lementably undversal for the family of all bases in Fréchet spaces.

Proof. Consider the partially ordered space ¥ which was constructed
for the proof of Theorem 3.2; denote by F, the subset of H of all norms
on R, (as in 2.4). Let 4, denote the I,-norm on R,. We may suppose that
A€ B, for all . )

Now for each m e N, let D,, be the set of all pairs of sequences {(p,),
(a,)}, where

) poe By, neN,

(ii) p, = 4, except for finitely many n,

(iii) @, is a subset of {1,2,...,m}, neN,

(iv) @, > {1, 2, ..., min(m, n)}, n e N.

.Then each D,, is countable and so is D = \JD,. We order D by
{(Pa); (2,)} < {(gn), (B,)} if and only if {(p,), (a,)} € Dyand {(g,), (Ba)} € D,,
where I << m and

(1), P gps mEN (Le. Dy = q'n|Rl)7

(i) a, = g,n{1,2,...,1}, neN.

Then D is countable and treelike.

For each m e N we define a consistent family of norms on.# (D) by

" (@) = py, Zk a(a)e),

=1

where o = {(p,), (a,)} and ¢, <a,<...<a, =a is the chain D[a].
Bach family (2{™: a € D) has a limit norm a™, Next define 4,, < .
by )

A, =]H {{(pn): (0} €Dyt ke am}7
and )
o™ (@) = 2™ (P, ).
We have thus defined a sequence (™) of monotone semi-norms on # (D).
Tt is not difficult to check that they define a Hausdorff topology. Take
for-C the completion of # (D). As in the proof of Theorem 3.2 the elements

{é,: @ € DY can be arranged in a sequence to be a basis of 0, and if (a,)
is any maximal chain in. D, then lin(e,,) is complemented in C.

icm®

Universal spaces and universal bases 169
It therefore remaing only to show that if {g,} is any sequence of mon-
otone semi-norms on & (N), then there is a maximal chain {a,} in D such
that the map T':# (N)—+#{a,} such that Te, = é,; i a homeomorphism.
First, we may suppose each g, is a norfn on R, ; then there exist M, > 0
such that 1, < M,J,(g,). Define

Q;(m) = ]Ilf{)‘n(y) +an'm(m_y): S Rﬂ} .

Then g, is equivalent to g, and also is monotone. Furthermore, J,,(¢}) = A,
if m < n. The sequence {¢);} defines the same topology as {g,}. Now let
¥ = {k: gh(ey) # 0}

and

. @ = g@)+ D .

Etvp
gx* is a monotone norm on % (N) and J,(¢,*) = A,. By the technigues of 2.4
there is a monotone norm p, on #(N) such that $¢}* < p, <2ig and
(Jm (pr): me N) is a chain in B. We may further suppose that J,,(9,) = 4,
for m < n. . .
Next, let @, € D, be given by
Wy, == {(Jm(Pn)); (yan{1, 2, “ty m})}
Then (a,,) is a maximal chain in D, and

o® (té tieai) = (;%: tieai) = pk(z tm)
i<m

ievy

<m
and }¢5* < 9, < 3qi". However,
m
i (3 ) =23 1.
ey =1
i< :

Hence the linear span of (¢,) in# (D) is linearly homeomorphie toF (N)
in the topology induced by (g,) as required. '

THREOREM 3.6, Let O, be any Fréchet space with a basis complementably
universal for all Fréchet spaces with bases. Then O = O.

Proot. Wo apply the Pelezyriski decomposition technique as in [13].
I# o (C') denotos the countable Cartesianproduct [ ] (0); 010, then € & o (0)®
DY = (D (0)®X = 000, and similarly € = 0®0;.

Tanormy 3.7, The space C is complementably universal for any Fréchet
space with the Bownded Approximation Property.

Proof. This follows from Remark 1 of [14].

Mazur and Orliez [12] showed that € — oo, oo)is universal for separable
Fréchet spaces. ’
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THEOREM 3.8. The space C is co-universal Sfor all separable Fréchet
spaces. ' ‘ o v ‘

" Proof. Let X be a separable Fréchet space and {z,} a dense sequence
in X. Let § be the space of all sequences (t) such that ¥ t,2, converges
absolutely. If (p,) is an increasing sequence of semi-norms defining the
topology of X, define p; on 8 by. ; ‘

Drl) = D) 1615, (%)
2 1l

Then § equipped with (py) is a Fréchet space with an absolute basis, and
hence is isomorphic to complemented subspace of (. Defino T: S-s.X
by T'(t) = 3t,2,. It U = {u: pj(s) < &} is a neighbourhood of 0, then
T(U) > {m,: p}iz,) < &} and. hence .’F(ﬁ) is a neighbourhood of 0 in X.
Henece I' is surjective by the Open Mapping Theorem, and X is a quotient
of '8 and hence of /0. : : L . ‘ .

Finally; weé remark without' proof that by the Zippin technique
(see [27]), we have - T i T

THEOREM 3.9. There is a Fréchet space with o wniversal unconditional
(absolute) basis for the family of all wiconditional (absolute) bases in Fréchet
spaces. ; : Y

4. Applications to non-locally convex .E-spacea. It is easy to dupli-
cate the resylts for Banach spaces in the setting of p-normed spaces. Weo
omit the proof of the| following:' " ' AT .

TaporEM 4.1. [a) For 0 < p< 1, there is a separable p-Banach space
which is universal for oll separable p-Banach spaces. .

(b) For 0<p<1, there is & unique p-Banach space B, with o basis
which is complementably universal for all p-Banach spaces with a basis.

Remark. There is no ldcally bounded Space universal for all separable
locally bounded spaces (Rolewicz [163, p. 76).

For general F-spaces the situation is. slightly more complicated.
We shall need the following ‘lernma; we shall' say that a metric linear
space X is a BF%space if it does mot contain arbitvarily ‘short lines, i.c.

igfs;liepp(tm) > 0 wheroe p is any F-norm- defining the topology of X.
@ €,

Lmvwa 4.2. Let X be o separable linear metric space and N @, sepu-
rable mormed space’ of infinite dimension. Then X@N containg a dense
subspace which 48 o FF™-space. ' .

Proof. (The following simple proof is due to A. Pelezyniski.) Let
{@na} be a linear independent double sequence with dense linear gpan in N
such that |z, =1 for m,neN. Let {y,} be a dense sequence in X.

Let 2, & X@®N be given by 2, = (yﬁ1 ,;z—m,,m), and let X, be the linear

]
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span of {z,,; meN,neN}. If {twn; m e N, n € N} are not all zero, then
Dlun ™" By # 0 and hence the line generated by Y'u2m, has in-
finite length in the F-fiorm |, )| = @+ |yl on X@N. Hence X, is
a pF-space. Clearly, (y,, 0) = limz,, € X, and hence (0, z,,)
N~>+00

= &y — (Ym» 0) € X, Tt follows quickly that X, = XD,

The next theorem answers a problem posed by Rolewicz in [16], p. 46
(Problem II. 4.1). ‘ '

TuroREM 4.3, There is a, sepurable T—space which' 58" universal (with
respect to linear dimension) for all separable F-spaces. ‘ :

Proof. Consider the class 2 of all F-noims p on & (N) satistying

(1) supp(te) =1, xeF(N), ¢ %0. "
(1244

(2) For each n € N, there exists a neighbourhoed U, of'0 in R, such
that if w e U, and [f| <1, p(iz) = ftlp (). ‘
We first verify conditions 2.4(x) -and 2.4(p). For fixed ne N let

n
Vi ={weR,: 3 |o) <m™}. Let @Q(m,n)

gl

be the set of F-norms p on R,

satistying - :
(1) supp(lw) =1, # %0, weR,.
talR ' ¢

" Then T @ < L) Qm, n).

=]

(2‘)’ It v e Vm’ JtJ \<~ 1,‘ p(tm} = |”P(50) N

We show each @ (m i) Separable for'the

‘ rriétric d of 2.4. Choose in Q (m, 'ny)‘ a ‘coﬁnta}\bxlvé ‘s'ubsgt Q kw.‘hichy is _deﬁsek;ﬁpr

the topology of uniform convergence on compact subsets of R,. If
peQ(m,n) and 0 >0, leti 1l e :

K ={n: oeR,,p(@) <}
By Lemma 3.1 of [7], K is compact as it cohtains no iines.
Also let : " e b

inf p(z). "
L oagnt Py

Then choose ¢ € @ such that
Ip(@)—q(@) <ye*(1—eV), weX..

Now consider throe cases ,
(a) ® ¢ K. Then there exists 1< 1 such that p(tz) = ¢~ and ¢(tx)
2 eV —pemi®(1 — g0 = ¢7°, Then

(%)

1
<1
glm) e’
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and

() 1
m<—e:;7< .

(b) # € K—intV,,. Then
@) ye ¥ (1—e"¥)
(z) p(2)
)

ye - n e ¥ (1—¢"¥)
R P L s U

K2~ V< el < ¢,

q( q(x)
1

_ 0
_m< e <é,

(¢) # eintV,. Then there exists s > 1 such that sw edV,,. Thus

P (s2)
q(sz)

and hence by condition (2) .

P (@)

log <0
| ’ q(@) |~
Thus d(p, 9) < 6 and @ is dense in Q(m, n). Hence J,, () is

2.4(a) is established. ’ ()8 soparable and

To prove 2.4(B), suppose pe? and §ed,(P) are given su
D! : ¥ ch th
a(J,(p), @) = 6> 0. Let i ¢ "

p*(#) = min{e’p(2), 1}.
Clearly, p* €. Then lot

(@) = inf{g(y)+p"(@—y): y e B,}.

‘We omit' the proof that ¢ is an F-norm.

HoeR, p"(x—y)>gw—y) so that =g

- q(®) = g(»). Thus =
Also ¢ < ¢’p and for any z e #(N), y e R, =R, Thas L0 =17
W) +2"(@—~9)> ™" (p(y)+p(@0—y) > ¢'p (),

so0 that ¢ > ¢~°p. Thus d(p, g) = 0. ‘

We must show that g 2. Olearly, for @ e & (N), @ 5 0,

supq(te) < 1.
teR

Suppose sup q(tz) << f<1. Then, for any teR, tr — w v, where
ek, a,nd q ) < B, and also p*(v,) < . The set V = {zeR,: 7()< B}

/
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i8 eompact since it contains no lines (Lemma 3.1 of [7], again) and also
so is W = {zelin(R,, »): p*(2) < B} for the same reason. However,

lin{z} < VW, a contradmmon Thus sup q(tw) = 1.
teR
For condition (2) suppose m = n. Then there exists e, > 0 such that

(a) Ity ek, ﬂ(y < e and [t <1, then F(ty) = [fq(y).

(b) It y € By, p"(y) < &y and [f] <1, then p*(ty) = [tlp* ().

Now suppose y € R,, and’ q(¥y) < &, Suppose [t < 1 If y = wu-+ov,
“ el?n and g(u) +p* (v) < s, then g(tu)—}-p (tv) = 11]( (w) +p" (v)). Hence

q(ty) < 1t1g(y). ‘ :

Oonversely, if ty =wu--v, where 7(u) 4-p*(v) < ltlg(y), then g(u)
< &y lt] and p*(v) < &, 1Y), If s denotes the larges’ real number such that
G(3U) < &y Then §(u) = 87"g, so that s> [¢|™*; thus §(t'u) < &, and,
similarly, p*(47*0) << ¢,,. Hence g(t™"u)+p* (¢ v) < q(y) which is a con-
tradiction.

Thus we have proved that

gly) = ttlgly) i JH <1 and ¢(y) < &
4q is therefore homogeneous on a neighbourhood of 0 in each R,, for m > n.
This clearly implies (2). This completes the verification of 2. 4(@

From 2.4(y) we can conclude the.existence of a countable dimensional
F"-gpace Z with an F-norm. m on Z such that for each p < 2, (# vy, ?)
is linearly homeomorphic to a subspace of (Z, ).

Now let p be any F-norm on # (N) such that (# (), p) is & pF*-space.
We show p is equivalent to some ¢ € 2. We may suppose that p satisfies

p(tn) = Hp(2), M<
To see this foplace p by p @) = sup t“p( )—for stronger results
see [2].) Next replace p by p*, where p ( ) = (p(2))*. Then p* is equiv-
alent to p and satisties
prw) > (o), <L '

Now select any strietly increasing sequence 6, such that 0, = 1 and 6, —2
Datine for xe#F(N),

T
P (@) = it { 3 0" (wy): € By m € N,y oo oty = a}.
Jews X
Thon p* () < p* (w) < 2p* (2). If @ € B,, it is easy to show that
n
™ () = in:t‘{Z 0,0k (u): wy € Byy g+ ovv Httn = m}

ol

and p** (v) < 0," (@).
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‘ Suppose (‘M,Z) is an increasing sequence' of positive numbers and define

alo) = mf{p“‘*u +2M|m Y@l y & (N}

EPRTES

We claim first:that 1f (M ) satisfies p*( .M‘,,1 ,l) 27" then ¢ is equivalent
to p. Clea,ﬂy, g< 9™ < 2p%; now suppose g(z,)—0. Then z, = u,+-v,,
where " (un)—>0 and hm P Mm;n i) =0, It ZM (2, (1)] < 1, then v, (4)]

< Mt for all 4 and. hence, for any o

s (e 437

o bt . Foeml o

‘5o that hmﬂupp ()’ ,<\2*’ Ths. P*(0)~0 and 80 P (2,)->0. e
i Ao, .

Now we turn to the selectlon of (M,: n>=1). Fora given sequonce (M)
and k € N we define an 11’ -norm ¢, on R, by

0s(o) = mf{ = +2M o) =y (i) yeR,o}
: . i=1 . ‘

Let 4, be chosen so that for éach m, the geb Rmm{m 2% 60} iy c()mpaeb
(possible. sinde (F (N), p) is a BF*space). We shall chooso an inereasing
isequence (M) and a décrea,emg sequence (8,):of positive numbers 8o that

(4) #* (M‘ W <2 (meN), | | R

s

! (B)“51<Zaoi‘ i

A
( ) ]f u ERn 1 a,nd p (“) _4" 507 then ¢, (u) = o1 (W) (')’1’;” 2,)7

. D)ituek,, p *(u )\’ 6, and [} <1, then g¢,(bu) = (] gy ()s

To start the induction pick My so that (A) holds and 8, so that (B)
and (D) hold (for details of the latter condition, see below). Now Supposo
M<My<..<M,. L amd 8 > 8, > > §,.,> 0 have been chosen.
‘The seb {z e R,: 6, , < p"(@) < &) is eompact and hence if 4, denotes
. the I;-norm on R, we may choose M, so that (A) holds and if 6.,
<P@) <0 and 1,(y) < M6, then p*(x—y) = 0710, p* (), and

1
') <7

! 1 -
. Now suppose zeR,_; and p*(a) @;[—‘ Oy; SUppose g, (2) < ¢y... ().
It is easy to see that
G (@) = ind{g,  (u) + M, 2, (v) + 0, " (w):
UFv+w =, ue R, v, weR,).
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Thus @ = -0+, where . e e
‘ Gua () + M 2 (0) + 0,9 () < g2 ()
Hence : LT
M2, () + 0,2" (W) < gy (0 w).
Now Gy () < 0, l;p (@) < § 8. Hence %, (v) < M5, and
(""f““ ) = 3( 40" (W) < 3 +E8 < 6y . ‘ . .
Suppose first p* (0+w) 2 6,13 thep P (w) 19,,*,10 v—{—w), and!
hence ‘ '
M2, (0) G 0" () > n-m (v+W) Qo1 (0 +20)

which. iy im;pos&ib].o. : ‘
" Neoxt suppose p* (v-+w) < 5,,,1, and choose 13> 1 so that P ( (v+w))
= §,..;. Then either (tv) > Mu;? 60 or p* (tw) > > G,HO 6 — In e1thel cage

i

M l (MJ) Fon,(p ('t’I/U) n— dn—l
and h(mcu a8 v~|~w €Ryy, S
. -Mn}'n( )+ 0, P (W) m_lﬂw—l 511*1 N S vyt 3
= [~ n—l(tv+#w) —~Qn-1(?>+w) (bY (D)

which. ig ugaan h! (*ontmdw’mon, 1hus We ha.ve proved (0)
B rummm to pick 8, 10 samsfy (D). Leb

: L"’m@x(ZMilw | GeRp’ (w) )

el . L
Pick 6, <2 ymin(S,_q, L7184). If}) (@ )één,‘rhen qn( )< 26 zmnd 1£y el‘ﬁm _
and . . ‘
R |
/) -+ M¢ IW(’L) ( ) < 26,“

P %

2 (y) < 26,, Honce for §OMe l,a 1, p (Ay) = 60 Then d.,é, [£]?
Sy < D < 5o (" ) < 26, L8 ) < 2"

Pt

; P * ) émd "

==

]il'tmo(x e
ZM |¢,(; ..... ZM”m |<p +2M¢|w y('&)l
im,l G} ¢ s e %=1 ¢

T4 follows that g, (x) = 2 Mo (i l, whenever p’ (w") day. zmd 50 gn(tm)
= @) (4<1, Ea )< B

BRI
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To conclude we observe that if z e R,,, ¢(v) = lim g, (). Hence
N>

if p* () < &8, and J#| < 1, ¢(tw) = |t|g(®), by conditions (C) and (D). Thus ¢
satisfies condition (2) of the class 2.

To ensure (1), note that as ¢ is equivalent to p inf sup ¢(&@) =a >0
270 leR

and hence §(w) = min(a~"q(#), 1) belongs to 2 and is equivalent to p.

Now the space (Z,n), constructed above, is countbable dimensional
and universal for countable dimensional SF™-spaces. Its completion is
therefore by Lemma 4.2, universal for all separable F-spaces.

The techniques of Theorem 4.3 can be applied to bases as in § 3, but
they do not yield a universal basis space. Instead we have

TrEOREM 4.4. There is a unique IF-space with a basis and without
arbitrarily short lines which is complementably universal for the set of all
F-spaces with bases and without arbitrarily short lines.

‘We omit the proof in view of its similarity to Theorem 4.3. Uniqueness:
can again be proved by the Pelezyriski decomposition techmique (ef.
Theorem 3.6 —here I,-products of F-normed spaces replace Cartesian
products).

5. A co-universal space. In [16], p. 47, Rolewicz asks whether there
is a separable F-space which is co-universal (i.e. universal with respect
to linear co-dimension) for all separable F-spaces. In this section we con-
struct such a space. First let us, however, point out that there is no separ-
able F-space which is complementably universal (and hence co-universal)
for all separable F-spaces. Our argument i3 a simple version of the argu-
ment of Johnson and Szankowski [4] for the same result in Banach spaces.
(where it is much deeper).

THEOREM. 5.1, There is no separable F-space containing a complemented.
copy of each space L,(0,1) for 0 < p < 1.

Proof. Suppose X is such a space and let (T,,) be a basis of neighbour-
hoods of 0. Suppose for each p, 0 < p < 1, ¥, is a subspace of X isomorphic
to L,, and let @,: X— ¥, be'a continuous projection.

For each p choose m(p) e N such that Uy, N Y, = ¥, and n(p) e N
such that Q,(U,y) < Uy Then since {p: 0 < p < 1} is uncountable,
there exist my, n, € N such that the set 4 = {p: m(p) = my, n(P) = Ny}
is uncountable.

For each pe A pick y,e ¥, such that y, ¢ Un,- Suppose p, re 4
and p <. Then sinee Y, ~ L, and ¥, 2 L,, the map @,|¥, =0 by
a theorem of Turpin ([22], Théoréme 1). Hence §,(y,—¥,) = Yy # Uy~
Therefore y,— v, ¢ U, . This is impossible for every such pair (p, r) since X
is separable and A is uncountable.

- 'We now introduce a class of modular sequence spaces (cf. [25], [26])-
Let @ denote the class of continuous non-decreasing functions ¢: R, >R,

icm

Thus
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gatisfying (a) @(0) = 0, (b) ¢(s-+1) < p(s)+¢(?), () p(s)>0 for s> 0.
Then for any sequence ¢, € ® we define I{p,} to be a space of sequences
t = {t,} such that :

= D) @ulltal) < co.

(H{on}, I-1l) is then an F-space. The class of such spaces will be denoted
by . o may also be considered as the class of F-spaces with absolute
basia; a basis {w,} of an F-space X iy absolute (see [18]) if there is an F-norm

-1 on X defining the topology and such that

| 3 | = 3 ttaal-

ProposITION 5.2 (Turpin [23], 0.3.11). Hvery separable F-space
18 the quotient of a space in class <. ‘

THROREM 5.3, There is a space X e of which is complementably uni-
versal for of. :

Proof. Choosein @ a countable subset @, which is dense in the top-
ology of uniform convergence of compact subsets of R, . For eack rational
aeR,, pedlet

¢ (t) = min(p(t), o,
Let {¢': ¢ e &y, « € Q,} be arranged in a sequence {y,} and let X = I{y,}.
It i{q,) e, let y, = sup @,(t) (cam be +oo). Pick a, €@, such
. Osf<co
that 0< o, <y, and (a) a, =1 if y,>1, (b) y,—0, <27 if y,<1.
Then choose distinet 6, € @, such that

lpn(t) — O ()] < 277 if

(Note that {¢: @,(f) < a,} is compact.) Then let p, = 0z (the m, are
distinet). If ¢,(t) < a, we have ‘

l’/’m”“) —®n (t)J < z—h'
I a, < 1 and a, < @, (1), then a,< @, (1) <y, <1, while a, —27" <, (1)
< ay. Since y,—a,<< 27", we have

|’/’m,,,(t) —g, (1) <2277,

teR,. -

Palt) < 0y

palt) <1.

Z‘pn(tn)< N”Z’Wmn(tn)< 0.

Conversely, it S, (t,) = 00 bub @, (t,)—>0, then [gn(t) —m, (ta)l < 227"
eventually and hence 3 v, (t,) = oo Finally, if 3 ¢, (4,) = co and @, (t,)+>0
choose a,, 0< a, <1, such that g,(a,?,)—0 and 3 ¢ala,t,) = oo. Then
S¥m, (@t,) = oo and hence Fyp, () = o Thus ¥{p,} = {ym,} a8 a se-
quence gpace, and by the Closed Graph Theorem as an F-space. Clearly,
l{w/:,,,n} is isomorphic to & complemented subspace of I(y,) = X.
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[Renmrk The above proof is related to Proposition 2 (b) of [26];
note however that in [26] it is assumed tha.ﬁ lim (%) = oo for all ¢.]

200
THEOREM 5.4. There is a separable F-space with an absolute basis
which is co-universal for all separable F-spaces. :
Proof. By 5.3 and 5.2.

Remark. Shapiro [17], Stiles [19] and Rolewicz [16], p. 65, have
shown that 1, (0 < p < 1) is co-universal for separable p-Banach spaces.

6. Nearly convex spaces, A fopological vector space X is nearly
convex (Klee [11]) if its dual X* is point-separating. In this case tho weak
topology o(X, X*) is Hausdortf on_X. X is gaid to be weakly polar if it
- hags basge of weakly closed neighbourhoods of 0; in general, a vector topology =
on X ig p-polar, where ¢ is also a vector topology, if it has a base of g-closed
neighbourhoods of 0 (see [7]).

' In this section, we shall show that there isno sopam‘ble necnrly convex

F-space universal for all separable neaﬂy conyex P-spwces To do this
we define an invarint of & nearly convex F- space X, an ordinal number
denofed by 5(X) (cf. a similar a,rgumenﬁ in [217]).

Suppose (X, z) is a nearly convex F-space and let 6 be any ordinal
whose cardinality is striétly greater than the cardinality of the set of all
topologles jon X, ‘We define a
dorif. vegtor topologws on X, usmc transfinite induction; Since X is nearly
convex, we let 7 = o(X, x* ) and 7, 1§ Hausdortf. If o is a non-limit
ordinal, 18t 7, be the topology whose base'at zero is given by all 7, closcd
v-neighbourhoods of 0. If ¢ is a lithit ‘ordinal, let 7, = sip (%% < a).
It is clear that a << B implies that v, is finer than z,, From the choice of 0,
there exists a least # << 6 such that Ty = Tygre We define nX) =7
o LEMMA 6.1, Suppose (X ) is anem Ty com)ea;F space and let, 77 = n(X)
Then .

(i) 7, = 7; ‘ : .

for a<m,, whwh 18 mher o coumable o, & non- ~limit (mlmal Ty 18

memzable ;

(iii) ¢f X a p-Banach space, then eaoh Ty 18 looally p-convex and, if a
18 @ non-limit ordinal, is also locally bounded..
Proof. (i) The identity map i (X, r,)>(X, 1:) is almost conti-

nuous, by the definition of 5, and Has continuous mvorﬂe Hence by the
Closed Grraph Theorem ([9], p. 213), T, = T.

(ii) ) and (i) follow easily’ from the observantmn that if « ig a non-'

limit ordinal; then 7, has a base {Un n & N} 'where the closures are Laken
in%, , ahd {U - eN} is'a bage for 7.

From 6.1(i) we observe that X is Weakly polam if ‘md only it n(X)
Note aldo thaﬁ v;(X = 0 1f and on}y if X e

Waad ey

v trangfinite. sequence (742 @ < 0) of Haus-.

icm
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Levva 6.2, Let (X, 7) be a nearly convex F-space and lét XY be a closed
subspace of X. If (v,) denotes the transfinite sequence of topologies on X
and (uy) 8 the oowe&pondmg sequence on Y then ©,]Y < ,uu In particular,
(X)) < n(X).

Proof. Clearly, o(¥,X*) > o(X, X*) | Y s‘inee the restriction of
every p € X* gives a continuous linear functional on: ¥. Thus 7] ¥ 2 43
we prove the result by transfinite induction. If a is'a non-limit ordinal,

" let V be a 7Y neighbourhood of 0 in ¥; then there exists a-z,_;-closed

g-neighbourhood W of 0, such that WnY < V. Then WNY is also s
cloged. and honco i8' & p,-neighbourhood. Thus +,|¥ < u,. If o is & limit
ordinal, it i3 ea.sv to ghow 7)Y < m Thus 7,| ¥ < p, for all « and henoe

7(¥) < n(X).
TLoMMA 6.3. Suppose (X, ) is @ neaﬂy convex F- spawe " Then
(i) of X s locally boundod, n( Jis @ non-limit ordinal;
(i) if X 1s separable, n(X) is countable.

Proof. (i) Suppose 7 is a limit ordinal; then z, zsup{-r ta< ).
Tet U be a bounded neighbourhood of 0 in (X 7) then there exists an o

" less than # such that U e 7,. Thus 7, == 7.

(i) Let w, be the first uncountable ordinal. Suppose U is a 7, -

« cloged r-neighbourhood of 0, then

U=N((U+TV+7V)
Ve ’
where ¥ iy the collection of all open rml-neighbourhoods ‘of 0. Thus

T =N(T+7),
. Ve
where the closures are taken in 7. Since (X — U, 7) is a Lindeldf spa.ce
there is a countable subset ¥, of ¥~ such that

U= ﬂl (T+7).
Fom

Hach V, ig a neighbourhood of 0 in some 7, , where a, < @;. Hence U
ig cloged in 7,, where a = supa, << @y, 80 that U isa Tqq-neighbourhood
of 0. Tt follows that U is a 7, -neighbourhood and 80 7, = Te 41 = T
Now since = has & countable base. (U,), each T, is a 7, -neighbourhood
where. f, < ©y; hence y = supp, < ;-

Lmuwa 6.4, Suppose (X, 1) 18 a aepwmble nearly convew F-space and

et 9 (X) = 4. For each a < 7, let (X,, %) be the completion of (X, ra) Then

each X, is a separable nearly convex F-space and (X = a. .
Proof. Itis trivial that each X, is separable, and that (X, z,)* = X"
Suppose X* does not separate the pom’cs of X ,; then there is a sequence

6 — Studia Mathematica LXI.2
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@, € X -such that p(z,)~0 for all ¢ € X*, but x, is 7,-Cauchy and not
convergent. Let y be the largest ordinal less than o such that @,—0(z,);
it is trivial that y exists. Clearly, @+ O(r,,), but {z,} i a 7,,,-Cauchy
sequence. If V is a v,-closed 7,.,-neighbourhood of 0, then there exists
n e N such that for I > m > n, ©,, —2; € V. Letting 1— o0, we obtain 2, e V
. for m > n and hence.#,->O(,,,) which is a contradiction.

Now let {u: f<n(X,)} be the transfinite sequence of topologies

icm

on (X,, 7,). Clearly, uy|X = 7, and we prove by transfinite induction that

sl X = tpfor B < n(X,). Suppose §is a non-limit ordinal and us_,| X = 75 ;.
Then if V is a pg_,-closed ug-neighbourhood of 0 in X, VNX is a 7,
neighbourhood which is 7;._,-closed and hence a v,-neighbourhood. Con-
versely, if W is a 7;_;-closed 7g-neighbourhood of 0 in X, and let V be its
closure in (X, us_,). Then V contains the 7,-closure of W and hence is
a 7,-neighbourhood of 0; also V is us_,-closed. Hence V is a ug-neighbour-
hood and VNX = W. Thus puzX = v;. The induction step for limit
ordinals is trivial. It now follows immediately that #(X,) = a.

We are now going to show that for each countable ordinal a there
is a separable ‘F-gpace X, such that n(X,) = a. To do this, we require
a result which has some interest in its own right, and we shall therefore
prove it in rather more generality than is actually required.

THEOREM 6.5. Suppose (X, ©) is a p-Banach space where 0 << p < 1,
and suppose o s a metrizable vector topology on X which is strictly weaker
than . Then there ewists a t-closed bounded absolutely p-convew subset K
of X which does not absorb its g-closure.

Proof. Denote by ||| a p-norm on X defining 7. Since ¢ < 7, there
is a sequence w, such that [a,] = 1 but x,—~0(e). By [7], 3.4 or [8], 2.1,
there is a subsequence (u,) of (z,) which is a regular (i.e. bounded away
from zero) M-basic sequence. More precisely (see the proof of Theorem 3.2
of [81), (u,) is strongly regular, i.e., if (p,) denotes the sequence of biortho-
gonal functionals defined on ¥ = lin(w,), then limg,(z) = 0 for z e ¥.

N=r0)

Hence by the Banach~Steinhaus theorem,
SUp [l || = M < o0
n
‘where
”(an ==_sup I‘Pn(a’)['
el < 1

Now let K be the 7-closure of the absolutely p-convex hull of the seb
{wy 4w, n 22}, Then K is also bounded and u, belongs to tho g-closure
of K; we show K does not abgorb u,. Suppose du, € K ; then for any e > 0
there exist (4;: 2 <j<<n) such that [t,)°+ ... + [,/ <1 and g

H éul—ﬁ't,(u1+45,-) H < e.
J=2
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Hence
7 B
| (B = Dty (o) | < M2, 1< B,
Jem2
ie.
4l < Me',  2<j<m,
L
| 6-—«}21,1< M,
=
Now

e h n
‘ X m < 3yl < (max |ty ?) 3y < MU LD < M.
Fper) =] e in J=2

Thus
18] < M (7 + 00D,

A ¢ > 0 is arbitrary, 6 = 0.

In the space l,, where 0.< p <1, any bounded closed absolutely ¢-
convex seb, where p < q < 1, is compact and therefore also weakly closed
(see Stiles [207] and Shapiro [18]). Of course, in a Banach space any closed
convex set is weakly closed. ) ‘

COROLLARY 6.6, Suppose X is a nearly convex p-Banach space, whete -
0< p<l, and that every bounded closed absolutely p-comven subset of X .
is weally closed. Then X is finite-dimensional. . ! i

Proof. Let u be the Mackey topology on X, i.e. the norm topology
on X whoge bage consists of all convex neighbourhoods of 0. Then every
bounded, closed p-convex subset of X i3 u-closed; hence, by 6.5, u is the
original topology and X is isomorphic to a Banach space. Now we may
assume the norm homogeneous. If dimX = oo, there is a net %, guch
that ug]l < 1, u,~>w wealkly where 7+ 0 bub [ju—u,] > 8 > 0 for all a. Let
@ € X* be such that ¢{u) = 1; then for s> 0 there exists # such that,
it a> 8, lp(u,)—1] <e. Since w belongs to the closed p-convex I;ull of
{wgt a> B}, thore exist ay ..., w;>f and ,, ..., % such that [{;°+ ...

coe bl £ 1 and, .
H 2 tmu,l-—-uH < &,
fos 1
Them, for e << 1/(lgll -+ 1),

=z 1—zlel

K
l 2’ b (he,)
i1

and hence

k ‘ 13
Ntz 1—clpl—e 3 14 =1 —e(lgl+1)-
g1

dwad
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Hence there exists 1 <I<FE,

> (1—s(1+ g7,
and then

=t < (U=t || )t |+ < (L=t ZIH te<
i#l

<z(1—(1~e<1+nmu))"“—m)+a.

For small enough ¢ > 0, this contradiets [ — v, > 6

THEOREM 6.7. Suppose 0 <.p <1. Then for a countable non-limit
ordinal o = 1, there exists a separable p-Banach space X for which n{X) = a.
For cach limit ordinal a, there exists a separable locally p-conven F-space
for which n(X) = c.

Proof. Note that #(l,) = 1. Now suppose that (X, ) is a sep-
arable p-Banach space such that (X) = f#; for the special case f =1
we take X =,. We shall construct a separable p-Banach spaee Y for
which 7 (¥) > 8.

By TLemma 6.3, § =y+1 for some . ordinal y>0; now let
(7.t 0 < @ < B) be the transfinite sequence of topologies on X. Let ¢ = 7,
if # > 1, or in the special case f = 1 take ¢ to be the I;-norm topology on i,;
_ thus, in general, ¢ > 7, and ¢ < v. By Theorem 6.5, there is a v-closed
bounded absolutely p-convex subset K of X and a point « in the g-closure
of K which ig not absorbed by K.

Let U be the unit ball of (X, z), and for each n» € N let || ||, be the
p-norm on X whose unit ball is the elosed absolutely p-convex hull of

2(1—1t)+

1 ‘ S
oy U UK. Then let ¥ be the space of all sequence (x,), where 2, € X such
that
- o
(wn)H = 2 2yl < o0,

=l
Let (u: o< Y)) be the transfinite sequence of topologies on Y, Lot
Xy ={(@,): @, =0, m #k} = ¥; X2 X and so | X, < g, by Temma
6.2 (we identify X and X,). Let V be the unit ball of ¥ zmd. let W Do its
py-closure. If #(Y) < B, then W is bounded in ¥. However, % belongs to
the g-closure of K and hence (ud,,) € W; thus

)l = [l < M << 00, neN,

5. .
Hence M~y e K+ — U'and since K is closed, M ~lry e K, confradicting

the choice of w and K. Thus n(Y¥) > f.

icm
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* Thus if B is the set of countable ordinals « such that there exists
a geparable p-Banach space X with 5(X) = q, then supB is a limit ordinal.
If supB < wy, there exists a sequence X, of separable p-Banach -gpaces
for which sup#(X,) = supB. Let ¥ = I,(X,) be the space of sequences (z,)
such that [(«,)]| = X l#,ll < oo. Then ¥ is a p-Banach space and containg
a copy of each X, ; hence #(Y) ZsupB. As 5(Y) is not a limit ordinal,
7(¥) > sup B. Hence supB = wy, and the result follows by Lemmas 6.1
and  6.4.
- TunorEM 6.8. For 0<p<1, there is no sepamble nearly ' convew
T-space X which is undversal for all separable nearly conves p-Bamach spaces.
Proof, By Theorom 6.7 and Lemma 6.2, we would have n(X) > w1,
contradicting Lemma 6.3,

COROLLARY 6.9. For 0 < p<<1, there is no separable F-space which
is complementably emwersal Jor all mm"ly conves P-Banach spaces.

Proot. T X is guch a gpace, let N = {z: " (@) = 0,8" ¢ X'} Suppose

Z ig a nearly convex complemented subspace of X, then ZnXN = {0},
since any.continuous linear functional on Z can be extended to X If
P: X7 is a projection of X onto Z, then for w e N, o* e X*, o*(P=)
= (@*aP)(w) = 0 so that P(N) < N. Thus P(N) = {0}, and it follows
that Z is isomorphic to a wubspace of X /¥ which is nearly convex and
universal for all nearly convox p- anaeh spaces, contradmtmg 6.8. ‘

7. Appmxnnauon properties. An lf‘ sp&ceX is said to have the App-
roximation Property.(AP) if the identity is in the closure of the finite-dimen-
gional operators on X in the topology of uniform eonvergence on com-
pacta, If X iy separable, X has the Bounded App'mmmatww P’mpmy
(BAP) if there is a sequence of finite-dimensional operators. - converging
pointwise to the identity. These approximation properties have been studied
in detail only in the setting of locally .convex spaces. However, 113 is also
possible to study them. in nearly convex spaces.

" Tt follows from the Banach—Stéinkaus Theorem thit (BAP) implies
(AP) for an F-gpace. Cloarly, an: F-gpacé with a basiy has (BAP). "o

An F-gpaco X has o Scehauder decompomtmn into -subspaces
(X wi & N) if thore.cexist a sequence §,: X——s»Xn of continuous’ projechons
such Mmt Q@ =0 for n #m and o= Z Qn® 101 se X. An - space

Nml
with o Sehauder decomposition into finite-dimensional spaces has (BAP).
The following converse results to the above remarks are proved by
straightforward imitation of the methods of Pelezynski and WOJtmz
czyk [1 5] and Potezyhski [14]; wo omib tho proofs. ‘

Tarorem 7.1, Let X be an F-space mth (BAP). Then X is @somorphw
to a complemented subspace of an F- 8_pcwe with a finste- dzmmswnal Sehauder
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decomposition. If X is a p-Banach space, then X 18 isomorphic to a comp-
lemented subspace of a p-Banach space with & basis. .

CoRrOLLARY 7.2. The space B, of Theorem 4.1 is complementably wni-
versal for p-Banach spaces with (BAD).

Our main result in this section is that B, is universal for all weakly
polar p-Banach spaces. Thig is based on the following result.

THEOREM 7.3. Suppose

(a) (X, o) 18 a topological vector space.

(b) @ is a collection of I'-semi-norms on X defining the topology o,
such that q,re@ =>q+rc@. .

(¢) For each qe@, X, is the completion of the Hausdorff quotient of
X, 0.

(d) Y is a subspace of X.

(e) T is a vector topology on ¥ such that (¥, v) is a separable F-space,
722 0|Y and v has a base of o-closed neighbourhoods of 0.

(f) Y, is a dense subspace of (¥, v) which is a SF*-space in the sub-
space topology. : ‘

Then there ewists an F-space W and. a Schauder decomposition (W,)
of W such that each W, is isomorphic to the quotient of a space X, by a finite-
dimensional subspace and (Y, 7) is isomorphic to o subspace of W.

Proof. Let zbe an F-norm defining 7; then for ¢ & @ define ¢* by

¢" (@) = int{m(y)+q(@—y): y e ¥},

Then ¢*<g¢, but if ¢*(m,)-0, then @, = y,-+ (@, —y,) where m(y,)~0
and g(w, —y,)—0. Hence ¢(y,)—0 and so ¢* and ¢ are equivalent.
Next define

a*(y) = sup(¢*(y): €@, ye¥.

Then #* < =, while if n*(y)< 6, y e {y: n(y) < 6} (the closuro in o). By
assumption (e), z* and = are equivalent on Y. .

By (f), there exists 4, and an increasing sequence @, of finite-dimensional
subspaces of ¥ such that U@, is dense in ¥ and {g: #*(g) < 6}n@G, is
- compact for each n. The set {¢*: ¢ €@} is divected upwards by (h) and

h}elance by Dini’s theorem we may find an increasing sequence ¢, €4 such
that . ‘

Gig) =" (g)—2™"  for ge@,, a*(g)< d.

Now; let 7,(@,) be the F-space of all sequences g = (g,), 9, € @,, such that
27" (g,) < oo under the F-norm |g|| = 2a*(g,). Define L: I,(G,)~Y

by L(g) = Zlgn- Then L{g: Y =" (g,) < ¢} contains {y: *(y) < &} for all
: = .
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¢>0 and so L is almost opén. IHence I is an open map and ¥ is
isomorphic to I, (6,)/¥, where N = {gel,(G,): 3g, = 0}.

Now consider the F-space 1,(X, , @) = Z of all sequences z = (,)
e X,,, where

o
loll = Y Gr(m,) < oo
Nl |
(s denotes the F-norm induced on X, by gy, which is equivalent to g,:)
Detine It 1,(¢,)~+Z by T(g) = (B,g,), where R,: Y-X,  is the quo-
tient of the inclusion map ¥ <~ X. Bince §h(R.g,) = ¢ (g,) <a*(ga)y T
is well defined and |Tg| < llgll for g € ,(G,,). ‘
Conversely, if |Tgl< 8/2, then gh(g,)< é/2 and hence 'x*(g,)
< @4 {ga) +27" Tt follows that if [T¢™(—0, then
k o
limsup g™ < limsup M @*(gf) +limsup D' a*(gf") <27
Nr00 mod Pl 00 g IR .
gince lima™(gf) = 0 for each ¢. As % is arbitrary we conclude that T
is an embedding. In particular T (N) is closed and Y is isomorphic to a sub-
space of Z/T'(N) = W. It remains to show that W has the required Schau-
der decomposition. S
As ¢ < g, we may induce a natural map J,: X, -—X, such
that J,Ry., = R,. Detine §8,: Z~Z by :

) Wy, << n,
(Su(‘”))i =1 "!—;gn"n v dp1y,  t=mn,
0, . i>n.

Since G (@) < G4 (@), 8,2 is well defined and 8,2—a for all » eZ.
Furthermore, 8,8, = S -
I g e N, then

Bigi < m,
(5141’(0)); = Rw.!]n“i-k%:;fn oo Ty Brge = -Rn(k%;ﬂk)y b=y
0, i>mn. N
Hence o
8, T(g) = T(glv Joy <oy Gn-vy kz, Y1 0y )
o
e T(N).

Thus 8, factors t0 &,: W W; 8= Buiagn,ny and. Syw—w for % e W.
Thus W possosses & Sehauder decomposition into subspaces Wy = 8;(W)
and W, == (8, — B—y) (W) (n 2 2). Nowit Z,= 8,(Z) and Zy = (Sp— Su-)(2),
then since each Z, is the range of a projection leaving N . invariant,
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it is easy to check that W, an/N nZ,. Now
2y ={{#,0y. me-X }’
z, ={(0,... —Tpa®y 2,0, ..
so that Z, ~ X, . Clearly, dim (N nZ,) <
is 1somorphm to a finite-dimensional quotlent of X, .
Remark. If in 7.3 @ is a collection of p-semi-norms and (Y, v) is
a p-Banach space, then. W is a p-Banach space as constructed above..
THEOREM 7.4. (i) A separable F-space X is weakly polar if and only

if Gt is isomorphic to a closed subspace of an 1’ -spaoe with a finite- damemwnal
Schauder decomposition. '

(i) A separable p-Banach space . X is wealkly polcw if and only if u i
isomorphic to a closed subspace of a _p-Bzmaoh space with d basis.

(iif) B, is universal for all weakly polar p-Banach spaces.

Proof. First observe that it an P-gpace X has a finite-dimensional
Schauder decomposition, there is a sequence P,: X~>X of finite-dimen-
sional projections such that Pﬂw—m for we X. {P,l} is equicontinuous by

J, e an},

dim@,,_, + dim@, < oo so that W,

icm

the Banach—Stemhaus Theorem Suppose V i a closed newhbourhood ‘

of 0 in X; then ﬂP“I(V) < V is also. & nelghbomhood and iy weakly

closed. For if » —>w, wealkly, and a, eP;, (V) since , Py, 18 weakly continuous,
P,x.~P, o, weakly. Sinde dimP, (X)< oo, P,o, P, and 50 » e P;Y(V).
Thus X is weakly polar and so must be any subspace of X.

Conversely for (i), note by Lemma 4.2 that it is sufficient to prove
the result when X has a dense pF* -subspa.eo (clea,rly, X@N is weakly
polar if X is). Then in Theorem 7.3 take ¥Y:= X and the weak topology

for ¢ with @ the family of all Weakly contmuous gemi-norms on X. The-

‘résult follows from'7.3.

For (ii), take @ to be the famaly of all woeakly contmuous p-bem]
norms on X and use the same argument, but then apply Theorem 7.1.
Then. (iii) follows from Theorem 4.1.

= H?HE.}OREM 7.5. (i) 4 separable F-space X is maﬂ Yy convex if and onh
if it is @somorphio to @ closed subspace of a separable F-space with (AP).
o (i) 4 ‘?epamble p-Banach space X is nearly convew if and only if it
is isomorphio o a closed subspace of o separable p-Banach space with (AP).

Proof. (i) If (X) =1, this follows from Theorem 7.4, We proceed
by transfinite induction. Suppose the theorem is proved for n(X)< a.
Then.

(a) X 7(¥) = o, and o is a limit ordinal, consider the spaces (¥t f <a)
of Lemma 6.4. If (3,) is a sequence such that supB, = o; then Y, is iso-
morphic-to & subspace of some separable F-space’ X, with- (AP). Then ¥
ig isomorphic to a subspace of the Cartesian product [[ X with (AP).
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*(b) Suppose #(¥) = o and « i3 a non-limit ordinal. We must first
use Lemma 4.2 to suppose that Y has a dense B F*-subspace. To
do this- 'we clearly require that if N'is a separable Banach space
7(Y@N) = 5(¥). This is proved simply by showing that {1} . and
{ra} are the transfinite sequences of topologies' on: YOV and ¥,
respectively, then a>>1,.4, is the direct sum .topology of Ta and
the norm topology on N.
Suppose then that ¥ has o ‘dense AF*-subspace, and consider I’CH1
A8 9(Y4y) < o, ¥,_, can be embedded in a separable F-space X with (AP).
We take for Q on X the collection {ng: n € N}, where ¢ is an F-norm de-
fining the topology on X. Now apply Theorem 7.3. ¥ can be embedded
in a,space: W.with a Schauder decomposition (W), where each W, is
1somprphm t0 @ quotient of X by a finite-dimensional subspace. As X
is mearly convex (since X has (AP)) if I = X is finite dimensional; X
2 F@G for some &. Thus each W, is isomorphie to a complemented sub-
spaceof X:and so has. (AP). T£Q,: W->W are the natural projections onto
W,,,, then each @, is thie limit of finite- dunensmnal operators for the topology

of qompact convelgenco Hence so is I = Z Q, o0 W and W has (AP)

¥ (u) The- proof. is thually the same as ‘chat of (i), except in the case
when 7(Y) = a, where ¢—1 iy a limit ordinal. Then o — 1 = supfy,
where each f, is a non-limit ordinal and hence ¥, is a p-Banach space.
Then. there exists Z,,, p-Banach spaces’ with (AP), such that each Y, it
isomorphic to a subspace of Z,. Thus’ Y .1 18 isomorphic to @ subspace
of X' = ]’[7n, which 1& locmll‘y p-convex. Talke for Q on X the- famﬂy of

all fmltc sums of p serm norms of the form

Qk{(z )) Ilzkll‘a S

Then. each X, ig 1somorph10 to a dlreet sum Z, 1@ (—DZ and ha,s (AP).
Then apply Theorem 7.8 which *ymlds the result; the space W is a p-Banach
space, . .. W R

OOROLLARY 7.6. Ij 0 < p <1, thtwe is no separable 'meersal F- space
with (AP) for all separable p- Bmwch spaces with (AJ?) C g

8. Remarks. The author has been unable to resolve some obvious
qucﬂtlons which arige in the course of tho paper, :

ProBLIm 1 (soo Theorem 8.4). T8 there a unwersal Ma,rkushewch
Dasgis?

PropruM 2 (see Theorem 3.1). Does the analogue of Theorem 3.1
hold for Fréchet spaces? Or F-spaees”l

PJ-;OBL].«AVL& (see Theorem 4.4). Does Theorem 4. 4 hold w1thcmt the
regtriction op. short lines? '
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PROBLEM 4 (see Theorem 7.4). Is every separable weakly polar
F-space a subspace of an F-space with a basis?

It is not true, however, that every F-space with (BAP) is isomorphie
to a,complemented subspacé of an F-space with a basis. We conclude by
giving an example to this effect.

Exampre. X V is a subset of a vector space we write V* for V4 ...

.. +V (I-times). Suppose for each. n >3 we may find in R a cloged
balanced neighbourhood V,, of 0 such that

(1) eo ¥, = R,

2) lin () e V2" 5= R™

>0

Then we may define an JF-norm {-[l, on R such that V,
= {z: |jol, <1/} and VE = {z: |2, <k/n}, for 2k <<n (cf, [16]).
Consider now the space ¥ =1I,(R", |-|,) of all sequences » = (,), where
7, € R" such that |z} = ) #,], < oo. Suppose X is an F-space with a basis
(1) with dual functionals ¢,, such that X = Y and there is a projection P
of X onto Y. Denote by @, the natural projection of ¥ onto its subgpace
G, = (R |I-1l,) (e @ @y.eey@p,...)=(0,...,,,0,...)). Then - the
operators ¢,®Q,Pu, (n>=3,%k>1) are equicontinuous on X and so
there exists ¢ > 0 such that if v e ¥ and |z|| < ¢, then [jp,(2)Q, Pul < }.

Forz e@,,

2= 3 gu(@)QPu,
fema
80 that {@,Puy: & € N |G, 0} spans Gn. If @, 5% 0, then ¢, (V,) = R
and hence if n > 1/e, {1Q,Pu; te R} < V., where I is any integer such

that I > }n. Hence @, Pu;, € (N ¢ Vo' and fails to span G, a contradietion.
>0
It remains to construet the sets V,,. For each # choose 8 so that ¢ > 4n,

fmd then let u, € R" be the sequence of points:
Up(m) =exp((n—m~+1)k0), 1l<m<n
Let W = 791 {tuy: 11| <1}). We observe first that coW = R" gince if
a;...ay) # 0. '

kmlzwexp( ——j+1)7c(3” = o0,
00

Now let L{ky, ..., ky) be the linear span of a,, ..., 1, Where &y < b
<<k {l< ). Defme o) = e,y 1 <1< 1, and then, for 2 << g1,

[@g_,..w_)._@(ﬂ) 1<ilm
’qu“) = 'vq-)m!-l(‘l) et RS EE

o0, : l—gq+1<i<l.
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(It will follow from rcsul‘us below that vf?,(g) > 0.) Clealy, if j < I—g+1
== 0, By induetion we have

and m < ¢ W (m) =

(L—2qe”

%oxp((n

for j<l—q+1 and m = q.
In fact, asgume the assertion true for ¢; thus j < Z—q and m = q+1

A1V () = off) (m) —

—m +1)%;8) < 2 (m) < exp ((n—m+41)1;6)

2 (1—2¢g6™ )oxp{(n~m+1)k,0}——
— (1= 2¢¢™") exp {(n —m+ 1)l 0 + (m — ) (b — g4 6}

2 oxp{(n—m-+1)k 0} (1 —2¢e~" —2¢™°).

It follows that it §j < l—q-+1, m =g,
o (m) > }oxp {(n—m-+1)%; 0}

In particular, v

Sa)

g

Wy =

ra(m) =0 if m<gq, and

B (m) < 2~ %i-at1 < 26700 m > q.
2 g1 (9) .

1
L
"’5’2“1(4) ot

and ¢, is the gth basis element, then

g — gl = MAX furg (m) — eg(m)| < 2671

Now suppose @& Lk, ...

Li(ky ...

Lot

k) s0

Thoen

Thus

i — il = 2me

il

Ty); then (wg: 1<qg<l) is a basis of

i
@ = anwq“‘.
11
Y == Z Oaaa-

=1

—ky0
¢~ max o, = 2ne 1y

< (L+2ne70) 7 ool


GUEST


190 N. J. Kalton
and 80
k10
= lolhs

— S'——‘-——‘—
e—yl< 752

i.e.
, ‘ ne~"1?
(@, By) < 55—z el
where B, =lin(e, ..., ¢).
Now let V,, = W4 U, where U is a compact convex neighbourhood
~of 0. Suppose we () eVi\ () eV5'; then it is easy to show that z
&> i

&>0

e eW™ () eW', and hence that there is.a sequence ®,,~»2 where
&0 >0

1 ;
Ly = — (tluk(l,m) + . +iluk(l,m))
m ) .
and 1] <1, 1<i<m and k{1, m) < k(2,m)< ... < Kk(l,m). It iy casy
to show that k(L, m)->co. Thus d(x,, B)—+0 and z e ;. In particular,
NeVi'aB, ) #R"

&0

This completes the construction of the example, as co,Vn > coW = R".

Addendum. The author has learned that Theorem 3.2 has been in-
dependently obtained by G- Schechtman ([28]).
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