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On the random ergodic theorem
by
TAKESHI YOSHIMOTO (Kawagoe, Japan)

Abstract. A limiting behavior of random operator averages whic? are subj.ect
to the accidential phenomena varying in space and time is discussed in. connection
i ) tiors.
with the problem of dependence on the random paramete . _
In cfnsequonce, a random ergodic theorem is obtained a8 m‘ext'ensxon of the
Cairoli’s theorem to & case of many random parameters, inelnding the Gladysz
result with the exception of weighted functions.

1. Introduction. We congider a o-finite measure space (¥, #, u)
and the product spaces:
X =Xy XXy X eery B = BXBaX ey M =M XMy X ey
*
X=X X .. xX,, B =X .. XByy M =MX o0 XMy

for an arbitrarily fixed integer » > 1, where (X, #,m) is a probability
gpace and X; = X, &, = 4, mi=m,*i=1,2,... N
Suppose now that to each » € X; there corresponds a positive con-
traction operator U, on the usual Banach space L}(,u), and let the_re b(?
given afamily {U,: @ e X;} of such positive contraction 2perafsors on 1:/1(/1.).
The family {U,: » € X;} is said to be strongly @,-measwable 1f U,
ig strongly %) -measurable as an I, (u)-operator-valued function defined
on X*, that is to say, for any g e L;(u) there are countably L, (u)-valued
functions h, («, -) defined on X such that
1 [, (), ) = (Ua) (ligy = 0 my-ae.
NP .
From now on, if we wish to regard f(y, #*) a8 a function of ¥ fleflngd
on ¥ for an 4* arbitrarily fixed in X*, we shall write f(m*)(y)*fc{r fly, o).
In this note, on the hypothesis that"nhe faqnily {Um: we X, }is strongly
#}-measurable and thereisag>0(g e L,(w)) invariant under {U,: o f i\fﬁ}
for m-almost all », we shall demonstrate that for any f e Ly(u xm’) the

limit function-

I

n .
"y i .
_}_/ U(ml,.,.,wr) e U(zk,.‘A.mk+,,_1)f(mk+1,zk+2,...)(f‘/) f(:el,acz,...)(./)
oo T .

e (Fe Luluxm*)

depends essentially only on the variables ¥, &y, «..y B -
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Now the limit function fﬂ(m () = fly, @) depends ordinarily on &*
and is, in general, not equal to & constant for almost all y. Therefore,
it is ‘an interesting problem to.investigate the conditions under which
the limit function f(y, #*) i§ essentially independent of the variable z*.

Such a problem was first studied by C. Ryll-Nardzewski [3] in which
the random motion is subject to a one-sided Bernoulli shift, and his result
was extended by 8. Gladysz [2] to a case of many random. parameters.
Laer R. Cairoli [1] proved an operator theoretical generalization of the
Ryll-Nardzewski theorem, but the obtained result doos not cover the
extension due to S. Gladysz. Our result is a further generalization of the
Cairoli’s to a case of many random. parameters, including the Grlarlysz
one without weighted functions.

The random motion we shall consider as parameters varying spatially
is, of ecourse, subject to a one-sided Bernoulli shift. Tt is indeed worthwhile
to emphasize the importance of this fact, because the results obtained up
to now along with ours have an essential aspect of the properties of
Bernoulli shifts.

I wish to express my gratitude to the referee for his kind advice.

2. The main result. We consider in the sequel a strongly ;-
. measurable family {U,: e X}} of positive contraction operators on
Ly ().
Fo_r notational convenience, we denote
[ = (@1, ..., ) € X
for &* = (24, ..., @,,...) € X* and by ¢ the one-sided Bernoulli shift on x*.
Now: the random ratio theorem ([4], Theorem 11) applied to
{Us: o€ X7} shows that if fe L, (uxm") and g(y, o) = h(y), b e Iy (u),
k= 0, then for almost all z*

U[m*]r. . U[Wk"‘la«"]r f(vpkm“') (y)

lim %

n->00

Dgs| b2

Ups, -+ Utgh~1an, §(leam) (4)

k=1

exists and is finite almost everywhere on the set B (9), where

E(ac‘) (9) ={y:

2Tt -+ Ui, giom () > 0}

Thus it results from this that under the adcllmona,l agsumption that there
isan h> 0, h € L;(u) such that for almost all #*

Upop h(y) = h(y)  peae.,

icm®
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we have
n
1 7
I%Jm 0—7,4\_/ U, - - U[,,,zc-l,,x]r Tiokary (¥)
o =
kél U ¥y U[wk“lz*],,f(wkw‘) (y)
=g(y,x ) lim
=00
ké Upgrtye s+ Utgh—tomy, Yok (4)
=fuolt)  wae. (FeIy(uxm®)

for almost all »* e X*.

As a matter of fact, this limit functlon fw)(y is essentially indepen-
dent of the variables =,, z, ., and it i3 the aim of the present note
to prove this fact,

The main result we shall present is now stated as follows.

' Tl[LORI‘M 1. Suppose there is a g >0, g e L,(u) such that for almost
all ¥, U[w.hg( Y) = (]('1/ u-a.e. Then for every f e L, ( /zx m*) there exists
o function f e Ly (uxmy_) such that, excepting o set of m*-measure zero,

LY o

N

. 1
f[f‘*]r—-l(' ) = lim — \ U[wo]T ee

n-so0 T

U[,,Jn—- lz-]Tf( plx*) (f’/)
lc 1

almost everywhere on X,

Ag the reader knows, it is verv natural to assume the existence of
{U,: @ e X}}-invariant functions. In fact, considering that many inves-
tigators of ergodic theory have succeeded in solving the problem on the
existence of such invariant functions, this circumstance ean eagily be
understood.

Before proceeding to the proof of the theorem, we deduce some con-
sequences of our theorem just described.

If 7 = 1, then Theorem 1 reduces to the following

CororrAwy 1 (Cairoli [1], Théoréme 3). On the hypothesis of The-
orem 1 let f & Ly (4 X m™). Then neglecting an m*-null set,

H

(fELl(M))

K

1
Tixxy 3 U, U,

et P e o

= f(¥)

U”’?lcf(mln+1-"’ln-l-2l ver) (?/)

almost everywhere on Y. ‘ :

Tt we take {U,: @ € X;} to be the family of operators on L, (u) induced
by a & x #)-meagurablo family {T,: e X} of u-measure preserving
transformations of ¥, then Theorem 1 entails
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OOROLLARY 2 (cf. Gladysz [2], Satz 1). Fo.r every feLy(uxm"
there exists a function f € L (15 X my_,) such that the limit

5 1 n .
f[x*]r-l(y) = lim ﬁ E ftpkz“‘)(T[wk—lw"]r i T[w»]’r:'/) .
nso0 T £= ‘

holds with the exception of a u X m*-null set.
Moreover, if u is a finite measure;

= 0.
Ly(w)

n
i — 1
o ’frw*lr_l(')"; D ot Ligt-tam, -+ Lo, )

k=1

Applying Theorem 1 above and Theorem 4 of [4], one gets the
following convergence in the operator topology:

COROLLARY 3. Besides the hypothesis of Theorem 1, assume that
1Tolpowy < 1 for all @ e X} ond that u is finite. Then for any g€ Ly(w
there exists a function g € L W x my_y) such that '

hml

g[:c‘],. W ZU[z‘], - U1, 9 g(- )

= L]fl‘)

almost everywhere on X*,

3. Proof of Theorem 1. We consider the strongly #*-measurable
positive contraction quasi semigronp {Uf..: «* € X", k> 0} on Iy(p)
agsociated with ¢ ([4]), which is obtained by setting

UEST:‘.) = Identity, Ugc)’w.) = U[ﬁ‘]r U[qw)]r vee U[,,,Ia——lmu]r, k > 1E
and has the quasi semigroup property

, ngt-:i,m‘) = Ug,)w‘) ngfpiz‘)? ":’ J =0
As observed in the preceding section, we see that if, under the agsump-

tion of the theorem, feL,(uxm*), then there exists a function f*e
€ L,(u x m*) such that except for an m*-null set,

f(.c")(y = hm ZUk:c‘)f(q)kw") )

k=0
Udanfkes () = Fom(®)y B2 0,
almost everywhere on Y. Therefore, in order to assure the assertion of
the theorem, it is sufficient to show that there is a function f e I (u X mi_,)
with f(y, (#*],_;) = f*(y, 2*) u x m*-a.e. To show this, let us now consider

o strongly #-measurable family {V,: #e X} of positive contraction
operators on L;(u X m;_;) such that

Vzrf(w’m*)' (?/7 [W*]r-—l) = [U[w'],.f(mz*)] {y)

1

icm®
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for f € L, (p x m*), where the function [U[m‘],,f(m*)](y) stands for the
(y, #*)-measurable version of the function U, f(m.)(y) (see [4],
Lemma 2). Here it should be noticed that the definition of V, is justifiable,
ie., V, does not depend on a choice of a function f. (Note further that

the functlon U f(w)(y) is not necessarily mea,sura.ble with respect to
(y,2).) If we write

f(f’/’ Byy ory Bpy)
S B s By e ) DM ().

Xy Xpp1
we have
J Vs w4y -y 0 dmia)
X

= [ [ e Vel VW @1y ooy @) A () (2,) A (3,) .

X X, Xpoy
= f f (erf(tﬂ,-.;.pmrﬂ,...)) (Y 01y o oey Bpg) dm(@,) M, y). -
Xy Xpp1
- f f oo [Ty floam (@) dm (2, dm () - .
Xy Xyt
= [ [ o Foripire @ @1y -y @) dm(@) A (B4) - -
r Zrp1
=F(Yy @y ooy Boy) X m*-a.e.
and also ~
(V“'r Vﬂ”r-u v '.er+k—1f(;r+lcnmy+k+1,--n)) (Y3 ®ry ey Bpy)

*
= U{m*j,. U{am*],. U[w"“ x’]rf(a:]c+1,xk+2,. . )] ()

= [Usk E‘)f(w"'m"‘)] f(z* “ X m*-a:.e. (k = ].) .
‘Put
V(’f . = identity, VE;)M:‘) =V Voo Vapuer  E=1,

where @** = (a,, @, ...) for a* =,(Byy ++ey By Bpy Byyyy ---) € X, and

denote by & the one-sided Bernoulli shift on X, x X,.,, X ..., which is the

regtriction of ¢. Then {V{Z)m**)} defines a quasi semigroup of positive
Ty

linear contraction operators on Iy (u x mi_,) associated with & And from
what we have already observed the limit function f* is invariant under
the induced contraction semigroup {W, k> 0} on L,(ux m*) of this
quasi semigroup ([4], Theorem 1), which is such that if fe Ly(u x.m*),
except on a set of m, X m,,, X ...-meagure. zero,
(Wlnf)(w")(y7 -[w*]r—l) = )(y$ ["b*]r—-l)
7

(Ia o) (Eay")
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BX M X e x m,_-almost everywhere on ¥ x.X;X ... x X, p, for all
k=0,1,2,... Thus we may apply the Cairoli lemma ([1], Lemme 4)
with {V,: & € X}, to obtain the following assertion

(V9 WD, [07]-0) = flg, [0%)0)  pxm™ac.

for all » = 0,1,2,... Therefore, uging this and applying the Jessen
theorem (cf. for example [1], [2]), we have

fly, (63,0
= lim (V0 Ay, [0°)-0)

N—+00

=tm [ [ (PO, o)A@ dm e -

(M, ) (@5 g

o X Xy
. * *«
= lim f f oo (VE:L),? )f(m —— (Z/: [@"]1) X
0 Xpn Lpgmt1 Tl

x dm (90””) am (@, ppan) - -

= lim f f <um*f¢ 1(y) x
oo Xypin Xpinl

. X dm (@}, ) dm(m;,_]_r+1)

, .
el Bt r =1 B g By o107 )

= lim *

0 Xpin Brgntl

)(yy [@*)1) X

T @ B LBy B e
/ v
X A Dy ) (@ yp1) - -
= f* * ] ’
= f(xr,z,“,...)(yy [#]-)) wXx m*-a.e.,

which accomplishes our purpose. m
Now it follows from the proof of Theorem 1 that for any g € L, (u X m™)

(TR 9km] (W) = g () ~ 4 x m*-ace.

implies that g, ,,,...5(¥) is essentially independent of @,, #,,,, ...

This fact was proved by C. Ryll Nardzewski ([3], Theorem 1) in the
special ca.se where r=1 and {Uf Vet " € X*, k2 0} is induced by
{T{ . " € X*, k> 0} which is the measure preserving quasi semi-
group set up by {T ©e X))

8. Gladysz ([2], Hilfssatz 3') proved a weighted generalization of
the Ryll-Nardzewski’s to a case of many random parameters in the
auxiliary steps to prove the radnom ergodic theorem.

-The proof of Cairoli’s theorem contains an operator theoretic gen- .

eralization of the result due to C. Ryll -Nardzewski but not S. Gladysz.
Bo the result to be stated below is a further extension of the Cairoli
result and the Gladysz one having no weighted functions.
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Because of importance of this fact, we summarize the aspeect of
Bernoulli shifts observed in the proof of Theorem 1 as follows.

THEOREM 2. Let {UE; ot @ € X%, & = 0} be the strongly B*-measurable
positive contraction quasi semigroup on Ly(u) associated with the one- -sided
Bernoulli shift ?, on X* as in the proof of Theorem 1. If for amy g € Ly(p X m*)
and, almost all ¥,

(Ugc),m-jg(rpkz')) @) = gemly) p-ae.,
then there emists o function § € Ln(u X mP_,) such that

Gy Doy oy Bpg) = (Y, By, B, -0 X M0
: s
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