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Spectral radius characterizations of commutativity.
in Banach algebras

. by
TAROBLAV ZEMANER (Praha)

Abstract. We prove that if the spectral radius is subadditive or submultip]ica.ﬁ-‘
ive on a complex Banach algebra, then the algebra is commutative modulo the radical.

1. Introduction. It follows from I. M. Gelfand’s theory of commuta-

tive (complete) normed algebras that the spectrum of elements in such
algebras possesses some nice algebraic and continuity properties. In view
of the general importance of the notion of spectrum, it should be quite
interesting and desirable to examine, conversely, to a what extent these
nice properties can affect the commutativity, the essence of the Gelfand
theory. .
As regards purely algebraic properties, namely the subadditivity
and/or the submultiplicativity of the spectral radius, we shall show here
that the effect is absolute: each one of these two properties itself implies
the commutativity of the algebra (moduloe the radical, of course). Accord-
ingly, these two properties of the spectral radius are, in fact, equivalent
with each other, a phenomenon which seems to be rather surprising and
interesting by itself. . .

With respect to continuity properties of the spectrum, the problem
remaing open; nevertheless wefeel that the results and ideas of the present
paiper can be used also in studying various continuity properties of Spectra,
including further characterizations of commutativity. We discuss briefly
some eonjectures at the end of this paper. ’

Coneerning our present purpose, significant steps have been made
by C. Le Page [8], and R.A. Hirschfeld and W. Zelazko [6]. But the main
characterizations obtained there, involving the norm, are not purely
algebraio (let us recall the familiar experignce that a linear algebra strue-
ture can be endowed, in. general, with different, i.e. non-equivalent, com-
plete algebra norms). Moreover, they are not quite satisfactory since the
algebra in question is @ priori assumed fo be function (uniform), while
the general commutative algebra, of course, need not be function. Never-

“theless, on p. 198 in [6] it is stated: implicitly that hoth the properties
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258 J. Zemdnek

together, subadditivity and submultiplicativity (supposed on a general
Bamnach algebra), imply the commutativity of the algebra modulo it§ rad-
ieal. Our madn contribution here consists just in showing that each one of
“these two conditions alone makes the same effect as well. Clearly, the
Hirsehfeld—Zelazko characterization of function algebras appears then
immediately, in & more natural way, from this general result.

As to the submultiplicativity, the result has been recently announced
without proof also by B. Aupetit [1], but. we have had no oceasion to
compare his proof during the preparation of the present paper. In our
proof, we show at first that the submultiplicativity implies the subaddi-
tivity, and then from the latter we derive the commutativity. However,
let us mention at this point that it is possible to overleap from submulti-
plicativity to commmutativity directly and even move eagily, though at
the cost of losing the equivalence with subadditiviby. For if the spectral
radins is submultiplicative, it is then immediate that its kernel coincides
with the radical, while, assuming subadditivity only, this step requires
a proof that represents, indeed, the deepest part of the result. Therefore
we cannot be sure about the way taken by B. Aupetit. As to the subaddi-
tivity, some attempts have been made by Gh. Mocanu [9] and K. Srini-
vagacharyulu [13], under certain superfluous hypotheses like entire lack
of quasi-nilpotents or even completeness of the spectral norm.

Let us quote one more remark. Although the spectral radins on a rad-
ical algebra, being zero constant, possesses all the best qualities, no coramu-
tativity properties in the algebra, however, can be recognized. Therefore
any spectral characterization of commutativity, in general, should be
expected modulo the radical, as confirmed also by the present paper.

Besides methods developed in the papers cited above, also a recent
idea due to V. Ptik and the author [11] plays an important role in the
proofs below. '

2. The main result. We consider an arbitrary Banach algebra A
over the complex field. The spectrum. of an element x in 4 will be denoted.
by o{z), and the spectral radius by |#|,. (If the algebra 4 does not have
a unit element, write 4, for its nsual unitization [2], p. 16; in this case,
by the spectrum of an element in 4 -we mean its gpectrum. in 4,.) The
spectral radius (since the spectrum) is completely determined by the
purely algebraic structure of A ; on the other hand, it is one of the highly
fageinating features of the Bamach algebras theory (ef. W. Rudin [12],
p. 237) that the spectral radius can be, at the same time, expressed by
means of the norm as follows

o], = lim Jae,

However, the reader should be warned that this formula will be used only
in the proof of Lemma 5.
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We say that the spectral radius is subadditive on A if there is a (posi-
tive) constant x such that the inequality

(1) [»’H‘yla< ”([mla“i‘kl/la)

holds for all #, y in A. Similarly, the spectral radius is said to be sub-
multiplicative on A if

2) lwyte < v lolslyls

for all », y in A, with some (positive) constant y. Clearly (if the algebra
is not radical), the constants must be > 1.
The. (Jacobson) radical of 4 will be abbreviated to rad.4. The unit
element will be denoted by 1, and often left out in expressions like A — .
The main result of the present paper can now be summarized in the’
following

THROREM. Let A be a complex Banach algebra. Then the followmg}
three conditions are equivalent: '

10.the spectral radius is subadditive on A;
20 the spectral radius is submultiplicative on A ;
30 the algebra A [rad A is commutative.

Observe that if A has a unit, then it is almost trivial and well known
that the spectrum of a clags in the Banach algebra A /rad A4 is precisely
the same as the spectrum of any of its members in 4. Hence the same is
true also for the spectral radii so that, by Gelfand’s theory, condition 3°
implies both 1° and 2o,

If A does not have a unit, let us recall that rad A = 4 nrad.A; (cf [2],
P. 126). Therefore if 4 /rad 4 is commutative, then so is 4,/rad 4,, and the
preceding argument can be repeated to show that the spectral radius
is subadditive and submultiplicative on 4., hence on A as well.

Thus, to complete the proof of the theorem, it will be sufficient to
.veri.fy that 2° =10 and 1°0=3°, for algebras with unit or not. And this
is accomplished in what follows.

Before embarking upon that proof, however, one could now feel
that the constants » and y used in the definitions of subadditivity and
submultiplicativity were, in fact, illusory. This is indeed the case since,
by virtue of the theorem just now stated, both the properties of the spectral
radiug oceur either simultaneously with » =y = 1 (if A/rad4 i3 com-
mutative), or never with any constants (if A4 /rad4 is non-commutative).
But the introduction of the constants was necessitated by the method
of proof, namely by our endeavour to pass simply from. algebras without
unit to algebras with unit adjoint; otherwise they play no essential role.
Nevertheless, even the fact that, for example, a (formal) subadditivity
with some positive constant x entails the subadditivity with » = 1 seems
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to be by no means trivial, and may be of independent interest. Also, this
more general respect will be useful in applications.

Finally, we are able to pass to the proof of Theorem. It is divided
into five lemmas.

3. The proofs. In the first two lemmas, let A be a Banach algebra
without unit.

TEmmA 1. If the spectral radius is subadditive on A, then it is subaddi-
tive also on A;.

Proof. Suppose (1) on A with » > 1. Take a, b in A. Then, whatever
complex numbers «, § might be, we have

[(a+ @)+ (b+B)ls = [(@+D)+(a+Ble
< lat-bl,+ a1 < #{lal,+ blo) + lal + I6]
< w{jals+ o) 4 #{[b] o4 181) < 3% (la-+aly+ b -+ Blo),
where the lagt inequality is a consequence of the fact that
alo+ lal < 3la+als,
of. [2],p.77. Fo see this, observe that o (a) contains zero, so that ¢ & o(a+a),
hence |o| < la+al,. Furthermore, lal, = |e+a—al,< o+ al,+ lal <

2ia+al,. OConsequently, |al,+la] <3la+al, a8 desired. We have thus
obtained subadditivity on. A, with constant 3.

Norarion. If A is a complex number, and -§ a non-empty compact
subset of the complex plane, we denote by d(4, 8) the distance of the point 1
from the set 8, ie.

a(A, 8) =inf{|A —s|: s € S}.
‘We employ this notion in the proofs of Lemmas 2 and 3.
LevMA 2. If the spectral radius is submultiplicative on A, them 4t
is - subadditive on A,.
Proof. Suppose (2) on A with y > 1, Fix a,b in 4. Take a complex
number 4 stch thatb

(3) a2, o(@)) >y lal,
and, at the same time,
(4) a(2, a(1) > 77 b,

Then A—a has an inverse in A,; write (A—a)™" = ¢+ 4 with ¢ in 4, p
complex,. From the equality (A—a)(u-¢) =1, one has u == 1/, hence
, o ={(A—a)" —1/A. ‘

Algo, observe that ,

(B) 1Al = (4, o(b)) > 97 bl, = 1L,

©
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gince o(b) contains zero. Now we have
A—(a+b) = (A—a)—b = (A—a)[1—(A—a)~"b]
=(A—a)(L=b/A—cb) = (A—a)[1—cb(L—b/A)" (L —b/i);

here the element 1 —b /4 is invertible since, by (5), the spectral radius of b/
ig strietly less than one.

Since A is an ideal in 4,, we have, by assumption, that

leb(1 =037, < ylels b (1 —b/2) 7",
But now : ‘

o(0) = {—):—1_:; - %: aela(a)} = {a%)—i: o€ a(a)},
8o that

lals 1
6 — e
( ) lﬂo‘g [Md(/’l, 0'((1/)) < IM v

Similarly, the spectrum of the element b(1—5/4)"! is the set

{ﬁ(lwgi)"l': peot)) = {% peod),

—1/2

8o that

™M Ib(L—=b/A)7 s < 121 Bl/d(2, o (b)) < 141y~

Multiplying the estimates (6) and (7), we obtain
leb(1—b/3) 7, < 1,

and so the element A—(a--b), being represented as a product of three
invertible elements, is invertible as well. -

Thus, we have proved that if 2 satisfies both (3) and (4), then it cannot
lie in o(a-+b). It follows, however, that (imagine a picture!) ‘

la-+bl, < (L+ ") max (lal,, [bl.),
and all the more’
ek bl < (L") (al+ 181,

. forall a, b in 4. By Lemma 1, the spectral radius is now subadditive on 4,

with % = 3 (1'%, o

In view of the (already mentioned) fact that radd = Anrad4,,
we have reduced the problem completely to algebras with unit. There-
fore suppose from now on that 4 is a Banach algebra with unit. In this
cage, it is possible to give a slightly simpler proof to.the following

LEMMA 3. If the spectral radius is submultiplicative on A, then it
is also subadditive on A.


GUEST


262 J. Zeméinek

Proof. Fix a,bin 4, and take a A such that
a2, a(a)) >y bl,.
Then .
A—(a+b) = (A—a)—b = (Z—a)[].—(l«a)"lb],
‘where

b
(A—a)"ble < ¥ I(A—a)albly =¥ A%, o(@) <1,

50 that this 1 does not belong to o(a-+b). Consequently,
[a—|-‘b!,_., < |a|a'|“y |b\c < 7(|“|a+ !b!a)I

which says that the spectral radius is subadditive on A, this time even
with the same constant » == y.

Thus we are now in a position when the implication 20=-1° is proved
in general, and it remaing to show that 1°=3° in the case of algebras with
unit. The following key lemma is analogous to Proposition 6 in C.
Le Page [8].

LevMA 4. Let A be o Banach algebra with unit. Let ¢ be o fized regular
element in A. Suppose that \eve™ — |, = 0 for oll @ in A. Then the elements
ewe™! — g lie in rad 4 for all » in A.

Proof, Wehave to show that the elements exe™" — 2 lie in all primitive
ideals of A. Recall that a primitive.ideal P is defined as :

P=IL:A={acAd: ad c L},

where T is a maximal left ideal in 4. Denote by a—m"iﬁhe canonical mapping
of A onto A —I, the Banach space of cosets modulo L. Then the corre-
sponding left regular representation T': a—T(a) of the algebra 4 into the
Banach algebra of bounded linear operators on A —I, defined by the
formula S

T(a)w™ = (ow)™, wedAd,

is known to be strictly irredﬁcible, and its kernel coincides ﬁusﬁ with P;
see [2], p. 123. Also, T'(1) is the identity operator on A — L (this is trivial).
Since, clearly, '

o(T(a)) = o(a)
for all o in A, we see that all the operators
T(e)T(2)T(¢™") —T () = T(owe™ — )

are quasi-nilpotent.
We wish to show that the operator 7' (¢™*) is scalar. If this were not so,
then. there is a vector v~ in 4 —TL guch that w~ = T'(¢™")v™ ig linearly
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independent of v~. The representation T' being strictly irreducible, there
is an operator T'(y), for a suitable y in A, such that
Tyyw™ =v>, Tyv~ =0.
Then we have
(LT (T (™) ~T (Y]~ = T (T (y)u~ =
: = T(e)T(e o™
=T (L)~ =2~ # 0,

T(c)u™

50 that the operator T'(ecye™ —y) is not quasi-nilpotent.

This contradiction reveals that T(c™) is indeed a scalar multiple
of the identity on 4 — I, hence it commutes with anything. Thus T (eme™t
— @) is always the zero operator on A — L, which means that the elements
under congideration lie in the kernel of T, i.e. in P.

Since the radical is the intersection of the primitive ideals (cf. [2],
p. 124), we are done.

Now it remains to prove the last

TmwMA 5. Suppose that the spectral radius is subadditive on A. Then
the algebra A [rad A is commutative. )

Proof. Take a, b fixed élements in 4. We have to show that ad —ba
lies in rad 4. Define a function f from the complex plane into the Banach
algebra 4 as follows

F(3) = “be™™,
for all . complex.

T would like to thank B. Kirchberg who pointed out me a gap in
the first version of this proof. An elementary proof proceeds as follows.
For each A # 0 put

g(3) = |f(3)—b)A

and let g(0) = ab—Dba. Then ¢ is an ‘entire function with values in A.
Tt 4 be fixed. From the Oauchy integral formula for ¢" we obtain the
estimate

®) lg(A)lo < Ig" (A" < malg" (@)™
. e
where I' is a circle centred at A.
Tt &> 0 be given. From the subadditivity we get
g ()] < 2% 1014/ |4l
for all g 5% 0. Thus we can chooge I' (centred at 1) so large that

lg(u)l, <e for all el
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Letting now » = 2%, we can find (by & simple topological argum.ent

like in the Dini theorem) an index %k = m such that |g"(u)¥" < & for all -

we ', with n = 2™. Then (8) yields. |g(2)[, <'e, 80 it must be |g(4)[, = 0.
Thig conelusion being true for all b in A, we infer, from Lemma 4, that

&he~ —p erad 4.

At

Multiplying this inclugion from the right by €', we obtain

€b—be* e rad A
for all 2 complex. Accordingly, in the Banach algebra A frad. A we have
D] = [b]¢™

for all 2 complex, where [x] denotes the class of » € A modulo mdA
Expanding both sides (in .4 /rad4) ) into. powers of A, comparwon of the
coefficients of 1 yields

[a][b] = [b][a],

or
ab—ba erad A

a8 desired. This completes. the proof of Theorem.

4. Two applications. We now exhibit two (previously known) com-
mutativity criteria, having effect, however, only on a narrower clags of
" function (or uniform) algebras. The first one is due to R. A. Hirschfeld
and W. Zelazko [6]. :

CorOLLARY 1. Let A be a (complex) Banach algebra such that |u]
< w [@]; for all zin A, where w is a (positive) constant, Then A is commutative.

Proof. From assumption we have rad 4 = 0, so it suffices to verify
that the spectral radius is, for example, subadditive:

l5-+yl, < [2+y] < |2l + |y < o(j@l,+ Yl

Alternatively, one could verify also submultiplicativity in the same easy
way.

TFor the second application, let us recall the notion of numerical
range. That is defined, for ¢ in 4, as the set

Vi(a) = {p(a): o(1) =

where the unit is to be added if A does not have it (i.e. consider 4, in place
of 4 in the above formula). Then the numerical radius is naturally

lg| =1, @ linear functional on 4},

lal, = sup{|A|: A e V(a)}.
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The following observation (in the case of algebras with unit)' iy due

" to F. . Bonsall and J. Dunean [3], p. 41; see also K. Srinivasacharyulu [13].

JOROLLARY 2. Let A be o (complew) Banach algebra such that |u|)
< olw|, for oll  in A, where w is a (positive) aonsta,nt Then A is cemmuta-
t'we
Proof. We have radAd =0 since |#l, = 0 implies # = 0, see [2],
p. 56, Further, always [u|, < |2|,, see [2], p. 53..S0 we have

-9, < le-+yl, < Jol,+ lyl, < o((@l,+1y],)

ay expected. Note that, this time, submultiplicativity of the spectral
radiug is not obvious at a first glance.

In. view of the well-known inequality lw[ ez, (see [2], p. b6), Cor-
ollary 2 is also an immediate consequence of Corollary 1. And conversely,
if |#] < wl2l;, then [z, < o], since obviously ||, < [z|. Thus, thé con-
ditions stated in Corollaries 1 and 2 are, in fact, equivalent with each other,
and each of them characterizes the clags of function algebras.

5. Some open problems. It follows from the Gelfand theory that
the spectrum (and the spectral radius as well) on a commutative Banach-
algebra is Lipschitzian in the sense that

(8) dist (o (a), o(D)) < la—D

Here dist stands,

for all a,b.

naturally, for the Hausdorff distance of spectra, i.e.

dist (o (a), o(b)) = max{sup d(a, o(b)}, sup d(8, o(a))}.
' ’ Bea(b)

aso{a)
It is therefore quite natural to ask whether, conversely, this necessary
condition (or some ity modification) ensures the commutativity of the
algebra modulo the radical. In the light of the ideas presented in this paper,
it seems to be very plausible that even a uniform continuity of the spec-
tral rading might be sufficient. However, we can support this conjecture
only by the case of finite-dimensional algebras, as easily seen from the
claggical Wedderbuwrn structure theorem. for such algebras (recall that
the spectral radiug on the full # by » matrix algebra is not uniformly

say, for (-algobras,

On the other hand, let us mention that conditions like (8) can be
satistied on large non-commutative sets (not being algebras!). For example,
wo have proved in [117] that on the set of all normal operators on & Hil-
bert space just the nmqua,lltv (8) holds true. This is one more reason for
our question.

To indicate another kind of related qnestnons , suppose that, in a Banach
algebra 4, the set N = {weA: ||, = 0} is a closed linear subspace.
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It then follows, by a result of I. N. Herstein [6], p. 228, that N is a Lie
ideal, io. cx—ueeN for all zeN, ¢e A. Moreover, N is also a subal-
gebra. To show this, take a, b arbitrary elements of N. Then by assumption
we have a+b e N, hence also (a+b)? e N and 8o, again by assumption,
ab+ba e N. But by Herstein’s result also ab—ba e N. Therefore, once
more by assumption, we obtain ab € ¥ as claimed. (Note that closedness
of NV plays a role in Herstein’s result only.)

Conversely, let the set N of quasi-nilpotents be such that «,belN
implies ab € N. It is then possible to show, by a similar method. as 'we have
used in the proofs of Lemmas 2 and 3 (see also V. Ptak [10], p. 268) that N
is a linear subspace (i.e. subalgebra) of A. Indeed, let a,b be arbitrary
elements of IV ; it is enough to show that, for example ,—1 does not belong
to o(a+b), in other words, to prove that 1-a+b is regular. Since both
1+a and 1-4-b are regular, we can write

1+atb = (1+a)(L+d)—ab = (1+a) (L —uv)(1+D),

where % = (1-+a) "¢ and v = b(l—f—b)“f have zero spectra. Since, by
agsumption, wv is quasi-nilpotent, the assertion follows.

These remarks lead to a question whether, under some of the above
hypotheses, N must be an ideal of A, ie. N =radd. If codimlN =1,
the conclusion follows immediately from the Gleason-Kahane—Zelazko
theorem (see W. Rudin [12], p. 233). But is there any deeper
relation?

An affirmative answer to our question follows easily also, for example,
in (*-algebras. Moreover, by a well-known theorem of I. Kaplansky (see
J. Dixmier [4], p. B8), every C*-algebra without nilpotents is commuta-
tive. Accordingly, for C*-algebras we can formulate the following
strengthening of our main theorem.

ProposITION. Let A be a OF-algebra. Then the following three condi-
tions are equwvalent:

10 the sum of arbitrary two quasi-nilpotents is again o quasi-nilpotent;

20 the product of ‘arbitrary two gquasi-nilpotents is again' a quasi-nil-
potent; )

30 A is commutative.

Thus, in the class of C*-algebras, the result of I. Kaplansky seems
to be more powerful than our general characterization.,

However, in. general, the equality N =rad.d alone, which would
be a weaker condition than the subadditivity or submultiplicativity of
the spectral radius, does not ensure the commutativity of the algebra
A[rad A. For this there is an elegant example, originally due to A. S. Nemi-
rovskij (see a footnote on p. 294 in the Russian edition of the book [12];
cf. also [2], p. 254, where essentially the same example is attributed to
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J. Duncan and A. W. Tullo). But is it possible to complete appropriately
this natural necessary condition, N = rad 4, to obtain a commutativity
criterion? In [6], Problem 2, R. A. Hirschfeld and W. Zelazko proposed
continuity of the spectral radius. Therefore it would be worthwhile to
investigate continuity properties of the spectral radius in examples of the

‘mentioned type.

To conclude the paper, the most important remark should be made.
The algebra A /rad A being semi-simple, its topology is uniquely determined
(aceording to a well-known theorem of B. E. Johnson, see [2], p. 130)
by the purely algebraic structure of 4. Therefore, the continuity or the
uniform. continuity of the spectral radius (or of the spectrum) on 4, which
is the same as on A/radd, is, in fact, also an algebraic property. Thus
we have some justification to hope that our main results on the spectral
radiug may be closely related to the problems discussed in this last section.
Moreover, this observation shows that any spectral characterization of
commutativity, in the sénse of the present paper, should be essentially
rather algebraic. Among them, the subadditivity or the submultiplicat-
ivity of the spectral radius are, of course, the simplest ones. Nevertheless,
it would be interesting to express various kinds of continuity of the spec-
trum explicitly by means of the algebraic structure.

Added in proof. The conjecture comcerning uniform continuity of the spectral
radius can be confirmed by similar ideas as in Lemma 5. For another elementary.
approach (ineluding, in particular, a direct proof of the implication 1°=-2°) see [18].

In the meantime B. Aupetit [16] has independently published proofs of
these and other similar results based on certain deeper properties of subharmonic
functions. Some partial results (including the implication 2°=39) had B. Aupetit
announced without proof alveady in [15]; we regret we have learned about this

- notice only from the paper [16] when it has appeared.

The conjecture concerning the stability of the set N wunder addition or
muliiplication hag heen confirmed in [19]. Indeed, in any Banach algebra the
following threo conditions are equivalent: 1° z, ye N>a+y eN; 2° 2, ye N=zyeN;
30 N == rad 4.

Turther related rogults can be found in [14], [17] and [20]-[23].
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On the Fejér-F. Riesz inequality in L?
by 4
YORAM SAGHER (Rehovot, Israel)

Abstract. Using the Lions-Peetre interpolation fheory, various generalizations
of a clasgioal theorem. of Wejér and F. Riesz, are proved.

Introduction. The inequalityl under consideration is:
1 ' ! . b
([ 1ftr, @)™ < a,( [ifOFde)", 1<p< e,
0 —TT

where f(r, 0) is the harmonic function in r< 1 whose boundary values
aro f(0). Seo [3]. Fejér and Riesz proved the inequality using complex -
function theory so that their methods do not extend to R™

N. du Plessis was the first to generalize the theorem to R". Another
proof and. a somewhat stronger generalization (for n = 3 only) was given

" by F. R. Keogh. See [5]. ‘

TUsing interpolation theory we shall present a method for proving
strong versions of the various theorems. The proofs are considerably
simpler, and the results apply not only to the Poisson kernel, but to
others as well. Bven in the classical case we get, without any added diffi-
culty, a stronger inequality:

1 [
(f Maxif(e, 0| < 4,( [ 1702 as)”.
0 O=cgssr —n

The note is divided into two sections. In the first, we shall prove the
spherical Fejér-Riosz inequalities, and in the second, the half-space
Versions.

‘We shall nge freely the language and results of interpolation theory.
Tor an outline of the theory, see for example [4], [6]. An interesting
aspect of the application of interpolation theory “se make here is that
L(p, ¢) spaces with p < 1 are used in a natural way, to get results' for
I? with 1< p.
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