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On the Fejér-F. Riesz inequality in L?
by 4
YORAM SAGHER (Rehovot, Israel)

Abstract. Using the Lions-Peetre interpolation fheory, various generalizations
of a clasgioal theorem. of Wejér and F. Riesz, are proved.

Introduction. The inequalityl under consideration is:
1 ' ! . b
([ 1ftr, @)™ < a,( [ifOFde)", 1<p< e,
0 —TT

where f(r, 0) is the harmonic function in r< 1 whose boundary values
aro f(0). Seo [3]. Fejér and Riesz proved the inequality using complex -
function theory so that their methods do not extend to R™

N. du Plessis was the first to generalize the theorem to R". Another
proof and. a somewhat stronger generalization (for n = 3 only) was given

" by F. R. Keogh. See [5]. ‘

TUsing interpolation theory we shall present a method for proving
strong versions of the various theorems. The proofs are considerably
simpler, and the results apply not only to the Poisson kernel, but to
others as well. Bven in the classical case we get, without any added diffi-
culty, a stronger inequality:

1 [
(f Maxif(e, 0| < 4,( [ 1702 as)”.
0 O=cgssr —n

The note is divided into two sections. In the first, we shall prove the
spherical Fejér-Riosz inequalities, and in the second, the half-space
Versions.

‘We shall nge freely the language and results of interpolation theory.
Tor an outline of the theory, see for example [4], [6]. An interesting
aspect of the application of interpolation theory “se make here is that
L(p, ¢) spaces with p < 1 are used in a natural way, to get results' for
I? with 1< p.
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1. Fejér—-Riesz imequalities for the sphere. f(s) e I'(X,_,). Let

1|
) = j T6) G Bona9) (@l < 1),
We shall use the followmg notation: s = (£y...L0u)y 82 = (&a... L), 8
S
= e.=(1,0...0).
0= (1,00

THBEOREM 1. 1< p< oo,
1

(fa-

0

) 2Manx: [1(06) [”d'r)
0oy

U sin"~ 20( f |f(cosB, smf)sz)]dawg(sg)) ow)]/l7

"71"2
Proof. Tf(r) = Max {Ju{pe)|0 < 1—7r}. Write
’ g(6) = [ |f(eos6,sin@sz)lda,,,_z(s;»
Zn—g
‘We have
™ 1_ 2
(el <7 [ 9(0 : i~
| el <7 J"‘,) T 5T auegp S 040.
Since .
(el < 19(6)leo s
2y
lu(oe)l < g ()] ——-—”~———~
g(0)1; 1=yt

(We congider the funetion spaces on the right, on [0, =
‘with measur
8in®"*6d6.) Therefore, © ] P

, 87 83—>L (o0, o),
S8L(1(n—1), o).

The spaces on the left are the mixed norm spaces. The norm of f in 87 8% 18

(ﬁ[ (1500 o0l i),

Wl%ere'a the meavsure spaces (S, du,(s;)) are clear from the context. In
this instance: 8y = X, _,, the unit sphere in R", du,(s,) = da,_y(83);
Sl__[ 1,1], with the following measure: write s, = cosf. Ay ()

m"“zﬂdﬁ A similar mixed norm space will appear in the proof of
Theorem 3.

Fejér—T, Riese inequolity in LP
Therefore,

P
T: 828i—+L (M('n——l) , p).
Explicitly,
1

(Oj (1—

=M fu (go) [ dr)

Ozgsr

01,( f sin”“gﬂ( f |f(0080,sin@s;)}dan_g(s’z))z’ ow)”p
5 ;

“n—2

and. the proof is complete.

This, for » =3 and without the Max on the left-hand side, was
proved. (differently) by Keogh [57.

Note that

(f qlnn—°0( f [f(cos @, sin 0s;)| doy_s (so)) d@)m

Zpg

<4, [ if®)Pdo, o))"

Zp—1,
50 that we have a strengthening of du Plessis’ theorem.
Using an interpolation technique similar to that employed. for the
proof of Theorem 1, we can prove the following :
THEOREM 2. For 1< p< o0, 0 q< 00, OF P = { = 00,

1

(fa

0

y)(n— a/p—-lMa,xlu(gm )gadr) p'q\fILp o \
‘We shall omit the proof. This, for ¢ =p again gives the weaker
congequence of Theorem 1.

When # 2> 3 one can. also prove planar mequa,htles Denote by D,
an n-—m dmmmmnal diametrical plane section in jw|< 1. Du Plessis
proved.: :

( Ja
Dn—«m

‘We shall prove a strong version of this inequality. Denote for 1<

<n—2

o) (@) ) T < Oyl flpy 1< < 0.

sinn—m—-l /]

Ca)-

— §in™2 0, 80" 0, . ..

- Lm)s

Orp)

8y = (1.

Sinn(oh“', m)

$a = (Cpgr oo
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THEOREM 3. For 1< p < oo, let & = (0y..., 0, &ney ... &), Then
1
(fa—mrMax ([ ju(ea)Pdoyps (@) dr)" < Cylfly-
[

00 "y iy

Proof. Write

’ v\
Tf(r) = Max ([ (e8P0 pes(@)'".
! <o —r Eﬂ—-m-—l
‘We have
™ ki ) ]_‘02
wew) = [ o [000) [ floay w0 iy B
1] o X L‘“ et 1 2

X A0y n1 (82} A0y .. A0y,

where s, = (cosf,, 8inf;c080s, ..., 8inf, ... sin 0, _,co80,,), |s,| = sin b, ...
.. 8ind,,.
Nowlet e = (0,..., 0, 1). R, isa rotation of Z,_,,_, such that B e = @,
. and R, leaves fixed all vectors perpendicular to o, and e. Clearly, for every
" fixed s € X,_,,_;, themap of Z,,_,,_, onto itself x—>R, ¢ is measure presery-

ing so that for any ¢

[ 0(Be8)dopmes(@) = [ 0(8)domsls)-
Zpmm—1 L1

Let 1, be defined by s, = R,t,. We have
u(oa’) = ynf.‘-fsmn(eu
0 0
1—p2

X 9
(1+e*—2¢(ts, o))
Using Minkowski’s inequality,

( f '“(9”')1‘”61%_7"'_1(90'))”‘“

Zp—m—1 “

™ 'rr. R - 1_‘@2
<o [am(@ b [ Gt i

0 0 Zpemtm—1

f Fls1y Byts) X

Zpem—1

([ 1o BP0 s @) A0 (50, . 20,

Lppm—1,

([ v RaPac, @) =( [ if(e w0, )

Zpm—1 Zpmeme—y i
= |f(s1, sa)lsp-
2

do‘n—m—l(t;)(zgl ce dom'

Fejér-F. Riese inequality in L¥
Thus,

( f W(Q“f")[”ddn_m_l(m,))llp

=z
. . 1—p2
<an...fsmn(01... 0,) f @ %
P "t =20, o)

n—-m—1

273

X 1f (81, sg)lsz,, Ay ()20, ... A6,

and we have
' TI0) < fl o)

On the other hand we have:

| Fre—te
(1—!—9 —20(t,y,

)n/2 03—y (1)
z

n—m—1
1 1—¢

<g=7 | 2 oy iy () < —— 1

R N e O e
Therefore,

T

| F) < ifl s
Le.,

T: 8188~L(1/m, o),

T: S?"Sf—hﬂ(oo, 00).
Interpolating, we get

T: 878f—~L(p/m, p).

Bxplicitly, ‘
1
(1 —ry"Max ? lp
(of ) Iesry, £ 1 ‘(gm Wdo _m—l(m d?‘) ’
Co (of--~ofsinn(01 e B) [ 1f(8ay 8217 A0y (s B, ... ae,,)"
En-m-l
= Op f lrge,_p)-

Replacing the left-hand side of the inequality by the smaller

1
(fa=rmr [ o (') oy gy ()" |2

51
“n-m-1

=( [ a-la) @) da, )"

n—m

we get du Plessis’ theorem.

6 — Studia Mathematica LXIL3
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The constant C, both in Theorem 1 and in Theorem 3 satisfies O, THEOREM 7.
4 . i .
— e. 4], Theorem 3.2. m—1
<y a8 po1t and G, <Ap a8 poeo. Soey e [4) [ Q=)™ @) dn, < A [ 1f(5)[log" [f(5)]doy(s) + B

Dy,
nm 1

(The theorem is stated there for linear operators. However, the. proof
Finally, applying the first part of Theorem XII 4.41 of [7]. (Here

goes through for quasi-linear and certainly for our operators.) This is

important for it implies Orlicz space results: ;:i;;ei%xlsm cl;tanges Although the theorem there is stated for linear oper-
TEEOREM 4. Suppose 0 < Tf, T(f+g¢) < If+ Ty, T(Af) = |A|Tf. Sup- " part goes through verbatim for sublinear omes.), we have
pose also that HEOREM 8. There ewist 0< 1, K such that
A 1 '
Tf ooy, ) S =iy 1f lzo(xtg,m0)1 (a) [ (@—r)* exp (2 Max lu(ee)l)dr < K
P 0 0o !
where u;(X;) < oo, for all 1< p < po. Then (b) f (1 — |o))mexp |Au (@) dv,_, < K
n—m ~=
Tfdp, < A [ 1fl(log* If1) du+ B P e
Jm <4 f to if fo) <1
The proof of Theorem XII, 4.41 of [7] goes through with minor : 2. Fejér-Riesz inequalities for the half space.
changes here. In [7] the operator is agsumed to be linear, but on the THEOREM 1. 7(x) € L NL™, Define fort>0
other hand there is of course no assumption of positivity. Theorem 4 ‘
applies in other contexts as well, most importantly to the Hardy-Tittle- T, fit) = sup f )y
wood maximal function. With this observation we get immediately:
THEOREM 5.
1 Then, for 1< p< 00, 0< g o0 and for p = ¢ = oo,
™
J (@t Max u(oe)dr < 4 [ sin**0g(6)log* ¢(0) @6+ B, il b < Ol zta.-
H ogesr H Proof.
where | iﬂhlfloo
g(0) = [ 1f(cos6, sin 65y do,_y(s). ]”““ ff ( ) 1
an ; 8i0.05;)| Ao,y (8} —Inlwlfh
Applying Jensen’s inequality to Theorem 5 or else applying Theorem ‘Therefore,
4 t0 a weak form of Theorem 1, we get the weaker 7 L(1,1)=>L(1/n, o
THBOREM 6. - \ " {0, 00)=L(co, co),
1 ) 80 that
[ =y Mox 1 (ga')|dr < 4 [ 17(s)110g* | f(5)} dory—1 (8) + B : T: L(p, 9)~Lip/n, q).
0 Ip1 Explicitly,
This is a strong form of a theorem of P. 8. Bullen (seo [2]). o0
Next, considering the operator ( j =1 gup | = f fl@)yn(@/u) dos dt i <0
t<u < Opalflp.a:
F: f—u,
we have

The we‘a‘ke?f regult one gets by dropping the sup. on the left-hand side
of the last inequality, specializes for ¢ = p and

1
80 that we get du Plessis’ theorem: .ome) = " L F oy

A
VL1 2P (D 1= Ly ) S Py 1f ez, _p)
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t0 du Plessis’ result:

]

(U @y oo s BP0 @) < 0 [ @)

0 R"

where f(i,, ..., #,,t) is the function harmonic in R* x I -whose boundary
values are f(x). We can, however, prove a still stronger result under an
additional requirement on 7 () — satisfied by Poisson’s kernel:

THEOREM 2. () € L*nL®, and 7 (x) s radial. T,f(f) is defined as
before. Then, for 1< p < oo,

oo

( fwt""l(T,,f(t))”dt)”’K G ([ ([ 1f(ea)ldoyos (@) do)"™.

0 Zp1

Proof.

0

[ ([ e %) donao) ag

0 Zp—1

:{"‘

I

= [rom(Lw=2
R" v
= [ enls) J seiaswie

‘where ¢ = (1,0, ..., 0).

‘Write
N o0 , , /
Sleon = ([ ([ 1f(ea)ldo, (@) dg) ™"
: 0 E'n—-l
‘We have
1T, f(8)] < OIf!LWLllle’
T, F ()] < 1F g 1] ot
Therefore:
I° LT (oo, ),
" DIA~L(1n, «),
80 that

Ty LP(LY—L(p/n, p);
ie.,

( fwwl(mﬂf(z))m)"’-"<op( J ([ 1f(ea) oy (@))” do)”.
0 o *n—1

The theorem is proved.

icm

Fejér-T. Riesz inequality in L? 27T

Since

(f A (zf Fle)ldo,, (")) dg)"”
0 n—1

<Opu(f 7 [ 1f(e0)Pd0, (@) de)"” = O, f,e

) 0 p—

‘We have, for radial %, a strong version of the cage q = p of Theorem 1.
The inequality for harmonic functions is

oo

([ #=5up 170, ey iy i1 )™
0 (221

Ll
. ) ’ ’ /
<([ e ([ 1fty—oido, ()7 ag)".
° Zp-1 .
Theorems 1 and 2 correspond to radial inequalities, We next prove >

the planar inequalities. We again use the mixed norm notation.
THEOREM 3. Write 4, = (£, ... p)y ¥y = Cmgr-v- o)y By =g, ...

-or @y, ele. Assume n(w) = n(w,,m,) € X2 for cach v, € R™, and that

E@)= [ Inl@,)dr, e X nX>,
RN—M
Write
1 &y Yp— 1y
= - —_ do| .
751 = sup uﬂfn( ) oy,

Then, for 1 <7< 00, 0< g 00 and for r = q = oo,

(of .ynqlr—l(T]t-(t))gzdt)ll(:l< Op,q,r ]f]xz,qu'
Proof.

1 By Yo—
& [T e

»n
' 1 @
<7 Ihle
Rr

P
¥y

(f [f (=, ya“mz)lpd’!/z)llpdm

rn-m
— [w(] w) ([ 17—, voran)”
i

0y
nl—, z,
w b
RTL"“m Rn—m-

- [x (w*) ([ 17-0 vairay)"” ao..
in

w w
rA—m

@
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Therefore
XPX;—>L (o0, oo),
, " XIXPL(1jm, oo).
Interpolating,
T: Xyt X5 —~>L(r/m,q).

The theorem is proved.
Again, taking r = ¢ = p and = Poisson kernel, we get

(J (50 [ 170 Yy 0P By - ) 77 8)™ < O f Loy
0 I<% paem ‘
We can strengthen the last conclusion somewhat by applying the
following theorem (the notation is the same as in Theorem 3).

) TEEOREM 4. Under the assumptions of Theorem 3, if K(w,) is also
radial

(f e wsopea”

.

<G @ [ (] 1flesh o0 drade)”
o RN Zpy

We omit the proof.
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‘Weighted norm inequalities for
parabolic fractional integrals

by
ROBERTO A. MACIAS and CARLOS SEGOVIA (S0 Paulo, an)

Abstract. Norm inequalities are obtained for parabolic fractional integrals of
digtributions whose maximal functions belong to L?(R,, w (s)ds), where 0< p < o0
and o (#) is & weight satisfying an AP-type condition and an anti-Hélder condition.

§ 1. Introduction. In this paper we obtain weighted norm inequalities
for parabolic fractional integrals of distributions. The explicit definition
of this fractional integrals and their existence are given in Theorem 2.
The norm. inequalities are stated in Theorem 5. The unweighted case
hag already been considered by A. P, Calderén and A. Torchinsky (see [1],
[2] and [10]). For the classic case of harmonic functions and p > 1 weigh-
ted norm inequalities were obtained by B. Muckenhoupt and R. L. Whee-
den in [9]. )

The basis of our method is a generalization of a result due to L. Car-
leson. and extended by P. L. Duren (see [3] and [5]) and the result stated
in Theorem 4. Theorem B is obtained from Theorem 4 by applying some
techniques developed by L. I. Hedberg in [7] and G. V. Welland in [11]
for the weighted case. A similar method but technically much simpler
was already used in [8] in order to extend the results of B. Muckenhoupt
and R. L. Wheeden in [9].

§ 2. Definitions and notations. Wo ‘shall consider an »xn real
matrix P, satistying (Pz, #) > (#, #) for every » € R, where (y,#) indi-
cates tho ordinary inner product in the m-dimensional Euclidean space
R,. The transpose of P with respect to this inner product will be denoted
by J’* P defines the continnous group of transformations {i¥},.,, where
£ m P, For @ e R, ® # 0, the function ¢(») is defined as the unique
vu.lue of ¢ such that [¢~Fw| = 1 ‘where |7 demgmdses the norm of #z in R,
and ¢(0) = 0. The function g( ») satisties o(tT2) =te(z) and o(z+y)
< o(w)+o(y), thus it defines a translation invariant metric o(2—¥).
Likewise, since (P*», #) = (», Pz) > (z, ), We can associate to P* a func-
tion o*(@). We shall say that a function Q(») is o-homogeneous of degree m
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