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On the heredity of weak compactness in biprojective tensor product spaces

by
LEONIDAS TSITSAS (Athens)

Abstract. For a fairly large class of locally convex spaces, it is therein verified
that the usual variations of the notion of weak compactness are hereditary on bi-
projective tensor product vector spaces.

1. Introduction. Let B and ¥ be locally convex spaces, ¢ = EQF
their biprojective tensor product vector space and let 4 and B be subsets
of B and ¥, respectively. In this article we are interested in a verification
of the various usual typs of weak compactness on 4 ®B, which are
derived by heredity from those of the factors 4 and B. Thus, it is first
proved, without restrictions to ¥ and F, that (relative) weak sequential
compactness and weak conditional compactness are hereditary (cf. Prop-
osition 4.1 and Theorem 4.4 below). On the other hand, if F (or) F is
a Smulian space (Definition 2.1) and A and B are (relatively) weakly
countably compact (resp. relatively weakly compact), then AQRB is
(relatively) weakly countably compact (resp. relatively (weakly) o‘(é, &)-
compact, where @ is the completion of @) (cf. Theorems 4.2 and 4.3
below). In particular, Lemma 3.1 and Theorem 4.3 below constitute,
for the case under consideration, extended forms of the results of Lewis
([4]; Lemma 2.1) and Junghenn ([1]; Lemma 3.1), respectively, which
also motivated the present work. Moreover, the techniques applied therein,
being interesting in themselves, are essentially different from those of
[4] and [1] indicated above.

2. Preliminaries. All vector spaces considered in the following are
over the field € of complex numbers. The topological spaces involved
ave assumed to be Hausdorff unless otherwise indicated. If # is a locally
convex space, in the sequel we denote by B* and B’ the algebraic and
the topological dual of F, respectively. On the other hand, we use the
leter N for the set of natural numbers.

Now, let B be a locally convex space. Then, a subset B of F is said
to be (relatively) couniably compact if every sequence in B has a cluster
point (in B) in B. B is said to be (relatively) sequentially compact if each
sequence in B possesses a subsequence converging to a point (of ) of B,
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B is called relatively compact if its closed hull B in ¥ is compact. It is
immediate that (relative) compactness of B and (relative) sequential
compactness of B both imply (relative) countable compactness of B.
Furthermore, if B is relatively weakly countably compact, then it is
also bounded (cf. [3], 24.1 (1)). On the other hand, B is called conditionally
compact if every sequence in B has a Cauchy subsequence. In this case,
following the arguments of Theorem 7.7 of [2], it is not difficult to show
that B is precompact and hence bounded.

We now state the following

DEFINITION 2.1. By a Smulian space we mean a locally convex space
E with the property that each relatively weakly countably compact
subset of E is relatively weakly sequentially compact.

A locally convex space (E, v) such that there exists a metrizable
locally convex topology on B, which is coarser than 7, is a Smulian space
(cf. [3], 24.1 (3)). Thus, in particular, if ¥ is a metrizable locally convex
space, or a strict (LF)-space, or F has weakly separable topological dual ¥,
then B is a Smulian space (cf. also [3], 24.1 (4) and 24.1 (2)).

3. On convergence of sequences in biprojective tensor product spaces.
In this section we obtain certain interesting results, which also will be
essentially applied in the next section.

Thus, let (B, F> be a dual pair of vector spaces and let & be a (di-
rected) family of o(F, H)-bounded subsets of F, which covers F. We
consider the (Hausdorff) locally convex topology = of &-convergence on
X and- the topological dual B’ of the locally convex space (H, z). By the
definition of 7, the (absolute) polars 4° < F of the members 4 of &
constitute a local base for  and hence F' is a vector subspace of '. On the
other hand, as is known, a subset M of E' is rz-equicontinuous if and
only if it iy contained in the bipolar 4°° (with respect to the duality (&, E'))
of some A €. Thus, in particular, each 4% is r-equicontinuous so that,
by [5] (IIL, 4.3), any A e& is o(E', F)-closed if and only if it is o(B*, B)-
closed.

First, we get the following result which extends the corresponding
part of [4], Lemma 1.1:

LeMMA 3.1. Let {<H, Fy be a dual pair of vector spaces and let & be
a (directed) cover of F, consisting of o(F, B)-bounded and o(H*, B)-closed
subsets of F. We consider the locally convex topology v of &-convergence on
E and the topological dual E' of the locally comvex space (B, ). Then the
topologies o(E, F) and o(E, E') have the same v-bounded null sequences in E.

Proof. Let (z,) be a r-bounded, o(F, F)-null sequence in H. Then
the sequence (@,) is clearly uniformly bounded on each Ae#, because
A i3 v-equicontinuous. On the other hand, by hypothesis, the preceding
. comments, and the theorem of Alaoglu~Bourbaki, each Be¥ is o(E', H)-
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compact. Moreover, if z'<E’, then, by the foregoing comments and the
theorem of (absolute) bipolars, there exists Bes such that 2’ e B™ = I'(B),
the absolutely convex o (¥, B)-closed hull of B. Now, by the hypothesis,
one has: lim {(m,, "> = 0 for every «'<B so that, by [5] (IV, 11.3), we

finally have lim <z,, 2’ =0, so (z,) is a o(F, E')-null sequence which
n

clearly yields the assertion.

On the other hand, by Proposition 1.4 of [6] and the preceding lemma,
we also obviously have

LeMMA 3.2. Under the assumptions of Lemma 3.1, the topologies o (L, F)
and (B, B') have the same v-bounded Cauchy sequences in E.

Let & and F be locally convex spaces and let B@F be the corre-
sponding tensor product vector space. Then the respective biprojective
(tensorial) locally conven topology is the topology & of S-convergence on
B ®F, where & is the family of the sets A’'®B’ with A’ and B’ weakly
closed equicontinuous subsets of B and F’, respectively. The locally
convex space G:= @F thus obtained is referred to as the (respective)

biprojective tensor product space. Now, by the comments preceding Lemma

3.1, each set A’ ®B’ is s-equicontinuous. On the other hand, by the fact

that the.canonical bilinear map ®: B X F' 1> (B QF) is clearly weakly
&

continuous, it is easily verified that A’ ® B’ is (weakly) (@', G)-compact
and hence (weakly) o(G', G)-closed. Moreover, if 4 and B are subsets
of ¥ and F, respectively, both containing non-zero elements, then, by the
continuity of the canomical bilinear map ®: Ex F |—>E®;F, it easily

follows that 4 ® B is e-bounded if and only if both 4 and B are bounded.

Now we are in a position to prove the following interesting result
which allows an extention of [1], Lemma 2.1 (cf. also Theorem 4.3 helow)
and will be essentially applied in the next section. That is, we have:

ProrosrtioN 3.3. Let B and F be locally convew space, G = EQF
8

the respective biprojective tensor product space and let G be the topological
dual of G. Moreover, let (x,) be a weakly null sequence in E and lot (¥,) be
a bounded sequence in F', having a weak cluster point y in F. Then 0 = 0 Ry
in G is a (weak) o(@, G')-cluster point of the sequence (z, ®4,,)-

Proof. First, let (2,),.4 be a subnet of the sequence (¥,),«x, defined
by the map g¢: 4 — N, which net converges weakly to 4. On the
other hand, we consider the subnets (%p)per and (vp)gep, Where B = Nx A,
of (#,)pen aNA (2,)0e4, Tespectively, with Up = Dppypy o0d v = Ya(oryd)s
which converge weakly to 0 and y, respectively. Now the neb (u; ®vy)sen
converges weakly to 0 = 0 ®y in G. In fact, suppose this is not the case;
that means, there exist &> 0, an element ¢ of the topological dual G
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of @ and a cofinal subset D of B such that
(3.1) (s @Vs) > &

Now, by the definition of the topology & on B®F (cf. also the related
comments before Lemma 3.1), there exist weakly closed equicontinuous
subsets A’ and B’ of the topological duals B’ and I, respectively, such
that pe(4’ @ B")” = I'(4' ® B'), the absolutely convex (@, @)-closed hull
of A’®B'. Moreover, by the comments following Lemma 3.2, 4'®B’
is s-equicontinuous and oG, @)-compact. Now M :=pry(D) is clearly
a cofinal subset of N such that for every weM there exists d,ed with
(#y 0,)eD. Thus, we may consider the sequences Z, = Ugg) = %y and
T = Vo) = Yo, Tn this respect, we remark that (Z,), being a cofinal
subnet of (#,), converges weakly to 0 and, by the equicontinuity of A, B
and A’ ® B’, the sequences (7,) and (Z, ® 7,) are clearly uniformly bounded
on B’ and A'®B', respectively, so that let 2> 0 with [K7,, ¥ <1 for
every y'<B’. Now we have

1B, @ Fr @ ®Y'D| = KTR, 301 [<Fpy YD1 < A<y, @)1 0

for every (a',y')eA’ x B’ so that, by [56] (IV, 11.3) and the foregoing,
- we get lim ¢(%,®%,) = 0, a contradiction o (3.1) above.

for every deD.

n
Finally, as it is easily verified by the definition of the net (us® v)sems
0 = 0@y is a (weak) o(G, G)-cluster point of the sequence (@, ®y,) and
the proof is completed.

4. On weak compactness in biprojective tensor product spaces. Now,
by applying the results of Section 3, we are in position to state and prove
the main results of this paper, concerning hereditary variations of the
notion of weak compactness on biprojective tensor product spaces.

Thus, we first have

PRrOPOSITION 4.1. Let B and F be locally comvex spaces, G := H@F

the vespective biprojective tensor product space and let A and B be relatively
- weakly sequentially compact subsets of B and F, respectively. Then A®B
is relatively (weakly) o(@, G')-sequentially compact.

Prootf. Let (»,) and (y,) be sequences in 4 and B converging weakly
to # and y in B and F, respectively. Then for every «'e ' and y'eF’ it
obviously follows

{0y @Y~ B RY, 2 @YD = By — 5, &)Yy YD + <2, @ Y ¥, ¥,

that is, (#,®y,) converges to #®y in the topology ¢(E®I, B'Q®IF"),
so that by Lemma 3.1 above (%, ®y,) converges to #®y in the (weak)
o (G, G')-topology, which clearly yields the assertion.

THEOREM 4.2. Let B and F be locally convem spaces such that E is
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o Smulian space, G := B QF the respective biprojective tensor product

space and let A and B be relatively weakly countably compact subsets of B
and T, respectively. Then A QB is relatively (weakly) o(@, G')-countably,
compact.

Proof. Let (z,) and (y,) be sequences in 4 and B having the elements
o and y of H and F as weak cluster points, respectively. By the assumption
that E is a Smulian space, we may suppose that z,—x weakly. Then, by
the relation

Cn®Yn—TRY = (%, —2) @Y+ 2 ®(Yn—¥),
the (separate) weak continuity of the tensors and the Proposition 3.3
above, it obviously follows that #®y is a (weak) o(@, G')-cluster point
of the sequence (%, ®y,) which proves the assertion.

On the other hand, we also get the following result which, by the
comments following Definition 2.1, extends-it ([1], Lemma 3.1). That is,
we have

THEOREM 4.3. Let B and F be locally conves spaces such that B
is a Smulian space, G := B @F the corresponding biprojective tensor prod-

uct space and let A and B be relatively weakly compact subsets of H and
T, respectively. Then A ®B is relatively (weakly) a(é, @')-compact, where
G is the completion of G. ‘

Proof. By the preceding theorem, A ® B is relatively (weakly)
¢(@, G')-countably compact and hence, clearly, relatively (weakly)
a(é, G')-countably compact, so that the assertion is now obtained by
[5], IV, Theorem 11.2, and the proof is finished.

Moreover, we finally prove

TaEOREM 4.4. Let B and F be locally convex spaces, G:= E@F the

respective biprojective tensor product space and let A and B be subsets of B
and T, respectively, both containing non-zero elements. Them, the following
assertions are equivalent:

(1) Bach of A and B is conditionally weakly compact.

(2) A®B is conditionally (weakly) o(@, G')-compact. :

Proof. (1) implies (2). Lebt (%, ®@Y,)new De a sequence in AQ®B,
where (x,) and (y,) are weakly Cauchy sequences in A and B, respectively
and let ' ¢E' and y'<F’. Then, by the fact that each of (@,) and (y,) is
bounded, there are 2> 0 and x > 0 with [<x,, #">| < 1 and 1ty YOI < 11
for every meN. Thus, for every n, meN we obviously have

Kwn@yn_mm@ymy ml®y'>[
< K(wn_a’m)@yn; m’®y,>l+l<mm®(yn_ym): w'®y’>L
< p 8y — Ty %3]+ AKYn —Yms Yyl
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that is, (2, ®y,) is clearly a (weak) ¢(EQ®F, B’ ® F')-Cauchy sequence.
On the other hand, by hypothesis (cf. also Section 2), it follows that
A ®B is s-bounded, so that, by Lemma 3.2, (z, ®¥,) is a ¢(G, &)-Cauchy
sequence in 4 ® B, thatis, 4 ® Bis conditionally (weakly) ¢(&, G')-compact.

(2) implies (1). Let (2,)y.x be a sequence in 4 and let y<B with
9 # 0. Then there exists by hypothesis a subsequence (z,) of (2,) such
that (z, ®y) is a (weakly) o(&, G')-Canchy sequence. Now if 2’ B’ and
y' e B’ with |[<y,y’>| = 1, then for every n, meN obviously follows

K @Y — 2, Y, 8 QYD = K(@, — ) ©Y, 2" YD
= I<wn'_ m!w/>!'[<y7 ?/l>| = Kmn"—‘”m’ wl>['

Thus, (#,) is clearly a weak Cauchy sequence in A and hence A is condition-
ally weakly compact and the proof is completed.

I
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The algebra of finitely additive measures on
a partially ordered semigroup

by
J. 8. PYM (Sheffield) and H. L. VASUDZEVA (Chandigarh)

Abstract. The algebra of all finitely additive measures on a discrete semigroup
which is a product of totally ordered sets provided with the multiplication max is
studied. It is found that all proper maximal left ideals are the kernels of complex
homomorphisms, and that the quotient of the algebra by its radical is isomorphie
with the usual measure algebra on the almost periodic compactitication of the original
semigroup.

The algebra of all finitely additive measures on a discrete semigroup
is in general very difficult to study. This is in part because any other
algebra of measures (finite or countably additive) on the same semigroup
provided with any topology can be obtained as a quotient of this one,
and 5o we are in a sense asking to study all these algebras at once. Success
therefore depends on severely restricting the class of semigroups under
consideration. This policy was followed in [5] where we treated the case
of a totally ordered semigroup (that is, a totally ordered set given the
multiplication max). In the present paper, we offer similar results for
finite direct products of such semigroups.

In Section 2, we show that every maximal left ideal of the algebra
(which is, of course, non-commutative) is the kernel of a complex-valued
homomorphism, and thus is two-sided. The exact form of the complex
homomorphisms is in fact given in Theorem 2.9. The quotient of the
algebra by its radical is therefore commutative; it turns out to be the
algebra of countably additive measures on a certain compact semigroup.
This semigroup is the almost periodic compactification of the original
semigroup (and in fact coincides with the weakly almost periodic com-
pactification, which we found in [3]). Moreover, it is a finite product of
compact totally ordered semigroups.

Our justifications for presenting these results are first, that the
appearance of the almost periodic (rather than the weakly almost periodic)
compactification should be recorded. Secondly, the proofs we gave in [5]
do not extend to the present case. Moreover, although the greater gener-
ality gives an appearance of greater complexity, the.methods of this
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