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Therefore
XPX;—>L (o0, oo),
, " XIXPL(1jm, oo).
Interpolating,
T: Xyt X5 —~>L(r/m,q).

The theorem is proved.
Again, taking r = ¢ = p and = Poisson kernel, we get

(J (50 [ 170 Yy 0P By - ) 77 8)™ < O f Loy
0 I<% paem ‘
We can strengthen the last conclusion somewhat by applying the
following theorem (the notation is the same as in Theorem 3).

) TEEOREM 4. Under the assumptions of Theorem 3, if K(w,) is also
radial

(f e wsopea”

.

<G @ [ (] 1flesh o0 drade)”
o RN Zpy

We omit the proof.
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‘Weighted norm inequalities for
parabolic fractional integrals

by
ROBERTO A. MACIAS and CARLOS SEGOVIA (S0 Paulo, an)

Abstract. Norm inequalities are obtained for parabolic fractional integrals of
digtributions whose maximal functions belong to L?(R,, w (s)ds), where 0< p < o0
and o (#) is & weight satisfying an AP-type condition and an anti-Hélder condition.

§ 1. Introduction. In this paper we obtain weighted norm inequalities
for parabolic fractional integrals of distributions. The explicit definition
of this fractional integrals and their existence are given in Theorem 2.
The norm. inequalities are stated in Theorem 5. The unweighted case
hag already been considered by A. P, Calderén and A. Torchinsky (see [1],
[2] and [10]). For the classic case of harmonic functions and p > 1 weigh-
ted norm inequalities were obtained by B. Muckenhoupt and R. L. Whee-
den in [9]. )

The basis of our method is a generalization of a result due to L. Car-
leson. and extended by P. L. Duren (see [3] and [5]) and the result stated
in Theorem 4. Theorem B is obtained from Theorem 4 by applying some
techniques developed by L. I. Hedberg in [7] and G. V. Welland in [11]
for the weighted case. A similar method but technically much simpler
was already used in [8] in order to extend the results of B. Muckenhoupt
and R. L. Wheeden in [9].

§ 2. Definitions and notations. Wo ‘shall consider an »xn real
matrix P, satistying (Pz, #) > (#, #) for every » € R, where (y,#) indi-
cates tho ordinary inner product in the m-dimensional Euclidean space
R,. The transpose of P with respect to this inner product will be denoted
by J’* P defines the continnous group of transformations {i¥},.,, where
£ m P, For @ e R, ® # 0, the function ¢(») is defined as the unique
vu.lue of ¢ such that [¢~Fw| = 1 ‘where |7 demgmdses the norm of #z in R,
and ¢(0) = 0. The function g( ») satisties o(tT2) =te(z) and o(z+y)
< o(w)+o(y), thus it defines a translation invariant metric o(2—¥).
Likewise, since (P*», #) = (», Pz) > (z, ), We can associate to P* a func-
tion o*(@). We shall say that a function Q(») is o-homogeneous of degree m
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if for every ¢>0 and o %0 Q(i°2) = ™ Q(z). For more details about
this metric o see [1].

Given a set A = R,, CA represents the complement of A in R,
and if 4 is Lebesgue measurable, by |4| we mean the Lebesgue measure
of A. Let B,(#;1) = {y e R,: o(w—y)<<r}, be the p-ball with center z
and radius ». If y denotes the trace of the matrix P, it follows that | B, (x5 7)]|

-1 .
= n”/zl’(%ﬁ) ¥, Let R, be the upper-half space defined as R,

={(@,?): v e R,,t> 0} The g-cone, with vertex at » and amplitude a,
will be the set [7(w) = {(y,?) e Ri: o(w—y)< at}). Given a subset
4 = R, I}(A) indicates the union (J{I'¢(w): we 4).

Let § be the space of the infinetely differentiable, rapidly decreasing
funetions and let 8 be its strong dual, that is to say, the space of temperate
distributions on R,,. By ¢,(z) we denote the function ¢ (1% z), For peld
and fe s, (pf)(®) will stand for <{f(y), p(x—y)>. Given a function
p e S we define the norm .

ligllte = {Rf (L+e@)t 3 omp(o)da)”

0 Imi<lk

and denote by 4, the class of all the functions ¢ such that Melll < 1.
To a function «(w,?) defined over R;,, we associate the non-tangential
maximal function

2.1) M (a,u; ) = sup

W Herga)

[u(y, B)].

Given fe 8 we consider

(2.2) Ni(f5 2, 1) = sup|(p+f) ()|
Gedy

and the “‘grand maximal”, of amplitude 1:

(2.3) Gy (f, @) =Me(11Nln(f§f'/:t)7m)-

Let (2) be a non-negative, measurable and locally integrable func-
tion on R,, the w-measure of the Lebesgue measurable subset 4, of R,,
is given by m,(4) = [w(2)ds. We say that any such a function o ()

. A
belongs to the class A,,1 << p < oo, if there exisgts a finite constant (O
such that

(2.4) (TE(;,T f w(w)dw) (I_BQ(%WTJ_B f w(m)w;—lifdm)m~1<0

] Bar) (i)

©
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for every r > 0 and ¢ € R,. By 4., we mean the class ‘Whi(}h is the union
of all the classes 4, for L < p < co. We define the clags (AH), 40 >0,
as the class of all the weights w(x) belonging to A4.,, such that

(o [ owra I P

R e w(z 7 <0 ———- f o (x)dw

JBQ (“"7 7)' Ifufm;r) IBg (wi 7)| B i)

holds for every w e R, » > 0 and ¢ a finite consbant depending only on w.
We point out that i is a simple congequence of the definition of 4.,

that for any « e 4., there exists a finite constant O such that

(2.5) m, (15"Z (a; 27‘)) < Omy, (B, (x5 1))
holds, for every » >0 and zeR,. 7

Pinally, we wish to remark that for a measure » satisfying (2.5),
the L? norms, 0 < p < oo, with respect to » of G.(f, )y and G,(f, ®) are

equivalent if % and h are large enough. The proof is the same as that given
by C. Fetferman and B. M. Stein in [6] for » equal to the Lebesgue measure.

§ 3. Resulis.

Ligvva 1. Let » > 0 be a Borel measure on R,, such that »(R,) = + o
and
(8.1) ¥ (B, (w; 20)) < 0% (B, (w5 7))
holds for every we R, r > 0, with C a fived finite constant. Let A be an
open subset of R, with v(4) < 4 o0. If {B,(8): 8 €4} is a family of o-balls
satisfying

(3.2) (1) B,(8) = 4,

() WU{B,(8): ded} =4,
then there exists a sequence {B,(5,): 8, € A} such that
(3.3) B (8)NB,(8,) =B if i #j
and
(3.4) UB;(8) = 4,

where ‘B;‘ 18 the ball with the same center as B, and radius five times as large.

For a proof of this lemma see [4].

In the following theorem we extend, to the parabolic case and more
general moasures, a result due to L. Oarleson and L. P. Duren, see [3]
and [5).

Trrmowem 1. Let » be a Borel measure as in Lemma 1, and let u be
a Borel measure on R, such that for every oylinder @ (z; ) = B,(z;7) X (0, r)
R}, satisfies

(3.5) #(Q(@; 7)) < OBy (e 7)),
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where B = 1 and C is a finite constant independent of @ (; r). Then, if w(z, 1)
is @ Borel measurable function on RF., such that M, (1, u, x) belongs to
I?(R,, dv), we have thai

(3.6) (ff (e, QP du)* < C- (fM (1, %, ) |

. n+1

holds, with C & finite constant independent of u(w, ).
Proof. Let 1> 0 and consider the sef

LA = {w: M (1, u, z) > A},

This set 4 is open and, sinee M, (1, u, ») € L* (R, dv), we have y (4 )< +oo.
For every point @ & .4, we choose a positive number r(z) which satisties
B,(z;r(2) = 4 and B (z;7(@) NCA # @ This number r(v) exists
because, by hypothesis, 4 is open, »(4)< oo and »(R,) = -}-oco. The
family {B,(#;r(#)): © € A} of open o-balls satisfies the assumptions of
Lemma 1, and therefore, there must be a sequence B; = B, (u,; 7(x;))
satisfying (3.3) and (3.4). Let @, denote the cylinder B, (mi; 10-r(mi))x
% (0,10 7(2,)) and consider a point (#,t) e CI3(CA). For this (x,t) we
have that ¢(z—2) >t holds for every #z e C4. In particular, this shows
that # € A. Since by Lemma 1 the sequence {B;} covers 4, there exists ¢
such that # € B;. From the definition of »(wx), we know that there i3 a point
#2e Bfn CA. For this point 2, we have

1< o{@—2) < o(@— @)+ o (0, —2) < 10-7(w,)
thus,
(%,%) e Bf x (0, 10-7 (%)) = Qq.
Therefore, we have proved that .

(3.7) : CriC4) = Ug;.

Now, let D = {(z,?): |u(z,t)] > i}, We shall show that the set .D is

contained in CI}(CA). Take (x,1) ¢ CIy(CA), then (x,?) belongs to
I'y(2) for some 2eCA. By definition of 4, this implies that |u(w,?)|
< M1, u%,2)< A, which shows that (x,?)¢D. Therefore, considering
(8.7), we get

D CryC4d)y = U,

: <) ul(@)
and by (3.5), we also have
(3:8) pD)< D) wl@)< O 3 »(Blog; 107, ()

which implies

icm®
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The assumption made that » satisties (3.1) and g > 1 applied to the term
on the right-hand side of (3.8) gives

#D) <0 (3B

and since, by definition and (3.3), {B;} is a disjoint family and B; = 4,
we get
(3.9) u(D)< 0-(11(1,‘1))"3.

Next, wo shall estimtmte the fp-norm of » with respect to u. We have

[[ lut@, ) du »«ﬂpf 2P ({(w, 1) w(w, 1)) > A})da

o
nnll

By (3.9), this is bounded by

(310)  O-fp [ 207w (fo: M (1,0, 0) > HP @
0
< C-sup (v ({o: M (1, u, 2) > 2})- A7)~ x
xﬂpfoﬂ‘"l-v({m: M, (1, u, z) > A)dA.
0

But, since
v({o: My(L,u,0) >23) 2 < [ M (1, u,0)Pdv
. Rn
and
oo
p [ (for M1, u,0) >i1})dd = [M,(1,u, 00 dv,
0 Ry

from (3.10), we get
o e, ) ap < 0-(RfM,,(1, u, oy ds)’

L) g
which is equivalent to (3.6).

JOROLLARY (b0 Theorvem 1). Let p € 8 and o € (AH),,,. Assume that
fel and satisfies that M, (1, prf, 2) € I?(R,, o (x)da). Then, there ewists
a finite constant O, mde,pmdent of f, such that

(311)  [(gf) (@)] < O {m(By(a; 1))} 00 =7+ I (L, gyx f, @ llpm

holds for every t = 1.
Proof. Let u be the Dirae d-measure at (z, 1) and @(r) = By(y; ) X
X (0, 7). For this 4 and Q(r) we have u(Q(r) =1 or 0 dependmg on
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whether (z,{) e@(r) or not. By definition of Q(r), if (#,?) e Q(r), then
e(z—y) < r and t< 7. Thig-implies that B,(x;1) = ‘B o(¥; 27). Therefore,
My By (5 1)) < (B, (y; 27)
and by (2.5), we also have

M, (B, (@3 1) < O-my, (B,(y; 7));
thus, .
#(Q() < O-my (By(w; 1) om,, (By(y; 7))

which shows that the measure u defined here, and the measure dy(i)
= o (»)dz, satisfy the assumptions of Theorem 1 for § = 1. Then,

ff (s f) (y

n+1

< C-m,(B

(3:12)  lg*f)(@) WP du

g(mit))—l . fJVIg(:L;‘Pa*f: y)pw

n

(y)dy.

Now, since w(z) € (4H),,,, we have

My (By (@5 1) < O-my, (By(w; 1)~ -4=70+)

for ¢ > 1. Therefore, from (3.12), we obtain

@ f) @) < C-my (B, (w; )7 477109 [ M (1, g, 4, 2)? o () der,
R,

which is equivalent to (3.11).
Letg e Sand fe §'. Fory > 0 and a > 0 we define the function Som a8

71

Fan@®@) = [ (@41 (@)

7

s™ds/s.

Of course, this definition depends on the ¢ € § chosen.

THEBOREM 2. Let fe 8, peSand 0< p < + co. Assume that o €(AH),.,,
and M,(1, @+f, ©) € L?(Ry, o (0)dw). Then, if 0< a< o/p(l+o o), the
limit of fa,, for u tending to zero, ewists in 8' and the action on § of the limit
distribution f, is given by

(3.13) vy = [ 87 [ (@) @p(@)da)dss,

Rn

Jor every ye 8.
HMoreover, if f € 8, the Fourier transform of f, coincides with the Junetion

~

f(@)¢" (@)™ - Q(a),

icm
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where Q(x) is the ¢*-homogeneous Junction of degree zero given by

flp(SP*w)~8°‘7d8/8.

0

Proof. In order to prove (3.13), it iy sufficient to prove that for
every ye S the integral

o
J
0

(3.14) Q) = ¢*(a)”

(3.15)

@) @)y da] dsjs

is finite. It can be easily shown that

(3.16) Rf (o) @y (@)d = [<f(a), p(@+y)>0.(y)dy
n By

Now, since f € 8, there is a positive integer N and a finite constant O
such that

IKf (@), w@+9)>] < O -{ely)+-1)7,

therefore, the absolute value of (3.15) is smaller than or equal to a constant
times

s (e + 1V lpts™y)ldy = [ (se()+1)¥p () dy.
B, 4

If we assume 0<< §< 1, the last integral is uniformly bounded in s by

[le@)+1¥lp@)dy < +oo,
Rn

therefore,

1 .
fs"” )dw'ds/sgc’-fs“”ds/s< + oo,
0
Let s > 1. By Corolla,ry to Theorem 1, we have
l f (pe*f) (@

& O -gmrolpt+o, fm
K,

f (%) (@

Yy (®) dm’
By (@; 1)) |y ()| deo | Mo (1, g +F, )10

Simple oomputations show that, from (2.5), we can get a 6 such that

M (B, (@5 1) < 0+ (o(2) +1)°
thug
, Yo (o dml < 0-smvoldta),

| f (o) (@

" Then, since by hypothesx‘s, a< o/p(l+0), we get that

[ (pexf) @) p(@) o] dsfs < +oo.

0
[om
1 Ry,


GUEST


286 ’ R. A. Macias and C. Segovia

Thus (3.15) is finite and (3.13) is proved.
Iffe8, yefl, we have

s ¥y = f 5 ( f (go+f) (@) (@) dw) ds s

= f s"y( ff (m)-e}a(s”*m)-w(w)dw}ds/s
; E,

= [f @ ¢"@ " (@ [ p(s*"a) 5" ds]s)p (o) do
0
Therefore,
ful@) = f(@)-* (@) Q(a),
which ends the proof of the theorem.
We observe that the set of all the functions given by (3.14) for pel,

coincides with the set of all the o*-homogeneous functions of degree zero
which are C* in R, — {0}.

TemorEM 3. Let fe 8. There ewists a consiamt O, independent of f,
such that

-(——~—’) Wolf, 2 8

Ni(fyy,t Ok(l +
for every y, z and |s—t| << t/2.
Proof. Let ¢ e 4; and consider (2, §) € R}, with [t—s¢| < /2. Tf

D(§) = (T sVp(t7" (y—2)+ (179)7E),
then, :

(peef)(y) = (Dxf) ()

Simple computations show that
-1
18111, < 0 (1+ el J)) ,
where Cy is a finite constant independent of f. Therefore,

ooty 1<o(1+-(————’)Nk<f,z,s>,

or still,

Nk(f,y,t><0(1+ﬁ-(1t-l) Ny, 2 9),

which ig the statement of the theorem.

icm
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Lemma 2. Letfe 8 and a > 0. The function

To(fy ) = sup{(t-+ )" lppk pyxf(y)
ele—y)<t+s, ped,, ped,s>0,1t>0}
satisfies, for h big enough, the inequality
I, @) < O [[Nulf, 2, r)re— dear) ™,
l‘;(w)
with O a finite constant independent of f.
Proof. We observe that the expression defining I,(f, ») is symmetric

in ¢ and ¢, thus it is enough to consider only the supremum for, say, s > ¢.
If ¢ > t, wo have

(848)* | (e yarf) ()] < 2767 |( w*%*f .
Let M > k. If b is big enough since ¢ € Ah, we have
lp(2)] < C-(L+ e (@)™

" with ¢ finite and independent of ¢ € 4. Therefore, i y(r) is the charac-

teristic function of (0, 1), we get (see [1])

<0 32y

lpe(y —2)| - |(wexf) (2)| d=
0 2 f (e (y —2)/2%) lpyrf) (2) e

() [2).

Then,

(B17)  |(@ ) (W) <
<

Let £ and » be such that p(y — &) < s, |s—r| < §/2. By Theorem 3,
we have
£
(efta) < 01 £E ) Nulf, &)
¥) + oy~ &) < 2+ s < 275, we get
2)| < O2HL-N(f, &, 7)

But gince o(z— &) < ¢(—y
(paxf) (2

Then, (3.17) implics :
ey ) @) < € 3) 247 ) N (F, &, 7).

Thus, since we choose M such that M > k+y, we have that the series
on the right-hand side is convergent and we can write

(3‘18) ‘pt*‘/’a*f \ O—N/a f, E,
for o(y— &) < s, ls—r|<8/2.
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Let g(a—y)< s-+t< 2s, then o(z— &)< 35 and (3.18) implies
(8:19) & llgprpaf) W) < Os™ (s~ [ Wy(f, &, ryagar)”.
i
8~ 8

Still, applying Theorem 3 once mdre, we can see that the right-hand gide
of (3.19) is smaller than or equal to
Os (s—(ﬂ-l) ff Nou(f, &, r)qdfd'r)l/q

" o(z—£)<28/3
|g—r]<r/2

with a new constant 0. Since #/2 < § << 37/2, we can write all the powers
of s inside the mtegra.l, getting
ff Ni(fy &, T)q'rum“(w-l)déd?)l/a-

g(z—6)<2a/5
|8—rj<r/2

Finally, observing that o(s—&) < 25/3 < 7, we obtain that the last
integral above is smaller than a constant times

(f f N (f, &, 'r‘)qrayq"(”l)dfdr)l/q.
)

This expression is independent of s> >0, ¢ and pedy, and y such

that g(z—y) << t+s. Therefore, we get

T4, @) (ffmma“w“wwmw
r (x)
which proves the lemma. :
TEmoREM 4. Let we(AH),,, and feS such that Gy(f,a)

€ I*(R,, w(2)dz). Let 0< a<l/p-o/(1+q) Then

the function IM(f, ) satisfies

([ 145, ) UWMW<0U%L

with a constant O independent of f.
Proof. In Lemma 2 we have shown that

IMNf, )< O (f f Nu(f, E’,T)a,qam—-(wl)dfdr)l/a_

Tz

and 1/qg =1/p—a.

)dm)llp

Then, taking the ¢-power, multiplying by o (@) and integrating on R,,
we get

ﬂ@ mwmojwafmmamwwwm

Tl(w)
= ff{Nk(fy &, 7))} “”‘(7“)( f co(w)‘”“’dm)d&dr.
R;{H Bylé,r)

©
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Now, if we define the measure u ag

(3.20) dp = pera=v+1) o(2)"? dw) d& dr,

Bol:7)

we get that, for a cylinder @(z;s) = B,(z; 8) x (0, s), its y-measure is

8

(3.21) ,u,(Q (#; s)) = f f Tayq—(rﬂ)( f w(a:)‘ﬂpdw) dedr
0 Byzs) By(&r)
< O™ f o ()20 dy

Byleey

But since ¢/p = 1+qa< H—qa/p (1+0), it follows (¢/p) < 1+ 0. There-
fore by Hélder’s inequality and smee we(4AH),,,,

( f qlpd ) ( 1 1+ Hate
w( 2] <|i— fco(w) "dw)
[B,(#; 23 B(”s) [By(2; 28)] B2
o |
wdr
1B, (25 28)] B )

Thus, applying this to (3.21) and recalling that B, (z; 2s)

#(@(;8) < 05 [

By(z29)

= (5%, we get

o (2)UP dp < Qgoratr-avie ( ) dm)q/p
Be(z;zs)k

— ¢ o (@) da)",
By(z;28)

which by (2.5) is smaller than or equal to
C( f d,ﬂ)q/ﬁ

zs)

This shows that the measures du defined in (3.20) and v, defined as dv
= cu(a:)dm, satisfy the hypothesis of Theorem 1. Therefore, since .V, w(fy & 1)
is a Borel measurable function on R;,, and M, o(1s Nlf, &, 1), @)
= G (f, ®), we can apply Theorem 1 with B =q/p to u(x,t) = N,(f, =, t)

obtnyining
fI (fy 2, Y w{@) do < O ffN,, ridp < 0+ fG,,f, @) o (w)da,

which proves the theorem.
TuporEM 5. Let w e (AH),,, and p > 0. Consider an a such that

0<a< a/p( —}—o) and let q satisfy 1/q = L/p—a. Let fe§ with G (f, )
e L?(R,, w(@)dw), & big enough. Then, if f, is the distribution defined in

7 — Studia Mathematica LXI3
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Theorem 2 for @ ¢ € Ay, > 2(k+v), we have that
1
( [t 0@ d) "< 0-( [4(), 0 0 (@)d0)”
R, ) R,

Tolds with a finite constant O independent of f and ¢ € Ay
Proof. Take y € 4;. By (3.13), we can write

(perf) () = [ 7 (poxoaf) () ds/s.
0
Then, for any d > 0, we have
) =]
lpfd W< [+ [ 7 (wirpef) ()l ds/s.
L] L)

Let % be a positive number satisfying

(3.22) - 0<amy< a+n<%-1ia,
we get ‘ - - 5o
I(w*fu)(y)Ki&%)s“'”’l(%*%*f )(y)l%— -Filigsa’Jr””l(wt*(ﬁa*f Yw)l P
which, by definition of I%(f, ), implies that, if ¢(z—y)<?,
s F 4
G(fay ®) < Iy (f, -'»)—W + 1, (f @) o

Choosing & = {It,,(f, ®)*7 - {I_ (f, ®)} "™, we get,
Gl far @) < () Ty (fy @) Topn (Fy )12
Then, taking the g-power, multiplying both sides by o(2)%? and inte-
grating, we obtain .
(8:23) [ Gu(fur 0F (@) P8 < O [Th_,(f, o) Iy (f, 97 0(0) P der.
Let g, and g, be such that

1p—(a—n) =1/gs, 1lp—(a-+n) =1/g,
then
qlgy = 1+ng, ¢/ =1—ng.
Now, by (3.22), 0< n< 1/p—a. Then, 0< g/g,< 1+ g(L/p—a) = 2and
0 =1—(1p—a)g<l—ng<1 Then 2gjg>1,20/g>1 and ¢/2g+
' +q/2q, = 1. Therefore, by Holder’s inequality, from (3.23) we get

[ G4(far 0 (@) Ao
<O ([ 4T, (F, )00 ()2 o)™ ([ (T (F, )} 20 ()27 do) 0.

icm® '
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Hence, by Theorem 4, we obtain
S @fe 0@ a0 < 0-( [a(f, o o (@) daf”,
R, H,

which. proves the theorem.
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