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that is, (2, ®y,) is clearly a (weak) ¢(EQ®F, B’ ® F')-Cauchy sequence.
On the other hand, by hypothesis (cf. also Section 2), it follows that
A ®B is s-bounded, so that, by Lemma 3.2, (z, ®¥,) is a ¢(G, &)-Cauchy
sequence in 4 ® B, thatis, 4 ® Bis conditionally (weakly) ¢(&, G')-compact.

(2) implies (1). Let (2,)y.x be a sequence in 4 and let y<B with
9 # 0. Then there exists by hypothesis a subsequence (z,) of (2,) such
that (z, ®y) is a (weakly) o(&, G')-Canchy sequence. Now if 2’ B’ and
y' e B’ with |[<y,y’>| = 1, then for every n, meN obviously follows

K @Y — 2, Y, 8 QYD = K(@, — ) ©Y, 2" YD
= I<wn'_ m!w/>!'[<y7 ?/l>| = Kmn"—‘”m’ wl>['

Thus, (#,) is clearly a weak Cauchy sequence in A and hence A is condition-
ally weakly compact and the proof is completed.

I
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The algebra of finitely additive measures on
a partially ordered semigroup

by
J. 8. PYM (Sheffield) and H. L. VASUDZEVA (Chandigarh)

Abstract. The algebra of all finitely additive measures on a discrete semigroup
which is a product of totally ordered sets provided with the multiplication max is
studied. It is found that all proper maximal left ideals are the kernels of complex
homomorphisms, and that the quotient of the algebra by its radical is isomorphie
with the usual measure algebra on the almost periodic compactitication of the original
semigroup.

The algebra of all finitely additive measures on a discrete semigroup
is in general very difficult to study. This is in part because any other
algebra of measures (finite or countably additive) on the same semigroup
provided with any topology can be obtained as a quotient of this one,
and 5o we are in a sense asking to study all these algebras at once. Success
therefore depends on severely restricting the class of semigroups under
consideration. This policy was followed in [5] where we treated the case
of a totally ordered semigroup (that is, a totally ordered set given the
multiplication max). In the present paper, we offer similar results for
finite direct products of such semigroups.

In Section 2, we show that every maximal left ideal of the algebra
(which is, of course, non-commutative) is the kernel of a complex-valued
homomorphism, and thus is two-sided. The exact form of the complex
homomorphisms is in fact given in Theorem 2.9. The quotient of the
algebra by its radical is therefore commutative; it turns out to be the
algebra of countably additive measures on a certain compact semigroup.
This semigroup is the almost periodic compactification of the original
semigroup (and in fact coincides with the weakly almost periodic com-
pactification, which we found in [3]). Moreover, it is a finite product of
compact totally ordered semigroups.

Our justifications for presenting these results are first, that the
appearance of the almost periodic (rather than the weakly almost periodic)
compactification should be recorded. Secondly, the proofs we gave in [5]
do not extend to the present case. Moreover, although the greater gener-
ality gives an appearance of greater complexity, the.methods of this
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paper are basically simpler than those of [5]. Thirdly, there is good reason
to believe.that if any infinite product of totally ordered semigroups is
considered, the structure of the algebra of finitely additive measures
is very much more complicated. There are suggestions of this in the works
of Baartz [1] and Newman [3], and we have further evidence which we
hope to publish elsewhere. Incidentally, the method described in the last
section of [5] for obtaining results about measure. algebras on locally
compact semigroups from results about finitely additive measure algebras
can be used here to recover (with new proofs) the relevant part of Baartz’s
work; as the idea is described in [H], we have not included the details
here. ' .

1. Preliminaries. Let T, ..., T; be totally ordered sets each with
the semigroup structure obtained by defining sy = max {», ¥} and each
with a minimal element and a maximal element. Provide 8§ = 7', x ... x T,
with the product structure; then S is a lattice, has the multiplication
max, and has a minimal and & maximal element. We shall denote. the
minimal (resp. mazimal) element of any partially ordered set by 0 (resp. );
this will cause no real confusion. We can regard each T (1 <4 < k) as
@ subsemigroup of § by identifying it with its image under the map
2+(0,...,0,%,0,...,0) (where the » appears in the ith place). In this
way, 8 is seen to be the direct sum of T7,..., T.

A prime subsemigroup of a semigroup is a non-empty subsemigroup
whose complement is an ideal, and so 0 belongs to every prime sub-
semigroup. A prime ideal is the complement of a prime subsemigroup.
A segment U, in the totally ordered semigroup T, is a subset with the
properties

(1) 0T,
and

(2) if 3eU; and y < @, then yeU,. ‘

It is easy to see that the prime subsemigroups of T are just the
segments.

ProrosrrioN 1.1 ([1]). (1) U is a prime subsemigroup iff there are
seqments U; in T; (1< i< k) such that

U=U;X..x Uy (= Uy Uy U).
(2) I is a prime ideal in 8 iff there are prime ideals Liin T, (1<i<Ch)

such that

k
I= UTlx...fo_lxI,mex...ka.
i=1
Proof. (1) Obviously if U is of the prescribed form it is a prime
subsemigroup. Conversely if U is a prime subsemigroup, UNT; = U, is
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a prime subsemigroup of 7; and so a segment. Thus, U2 U,-U, - U,
= U;X...x Uy. On the other hand, if » = (@1 )¢ Uy X oo X Uy,
then for some 4, #;¢ U, i.e. y = (0, <3 0,2,0,...,0)¢U; since S\T is
an ideal, 2 = ay¢U.

(2) follows immediately from (1).

- Let U be a prime subsemigroup of §. In the notation of Proposition
1.L,if T = 8\U, we write U=Ix..x I, and call it the ideal opposite U.
Notice that U may be empty even though U = S.

‘We shall need a notation for certain subsets of S. We put

[0,2] = {y: y<a};

and, if # = (2, ..., 2,

[#, 0] = {y: y> a};

[0,2 ={y = (y1, ..., ya): O<wy<om 1<i<h})
los 0]l ={y =(y1, -, 90): &, <y, < 0 (1<i<E)}.

Thus, it U =[0,2], T = Jo, 0]; 2nd if U = [0, [, T = [z, w].

We shall denote by # = #(8) the space of all complex-valued
bounded functions on § made into a Banach space with its usual (su-
premum) norm. Its dual space, # = # (8), is the Banach space of all finitely
additive measures on the discrete space S. The semigroup structure of
8 gives rise to an algebra multiplication * in %: : )

per(f) = [ [flay)d(y)-du(@)  (fea),

where it is convenient to use the integral notation, though in general
the Fubini theorem does not hold (i.e. * is not commautative). This multi-
plication will be called conwolution.

There is a natural embedding @+, of § in &, where 6,(f) = f(=)
for fe#. This map is an injection and preserves the semigroup structure
of 8. It is also easily checked that 8 #u = p* 0, for wel, pesF. Thus,
&, with its dual norm, becomes a Banach algebra with identity &,.

A set B is said to carry pe# iff u(f) = 0 whenever f vanishes on E.
This is the same as saying that u(yzf) = u(f) for all fe%, where yp is
the characteristic function of B. For any B < 8, uc#, fe#, we write
pe(f) = w(xgf) = [ fdu, and we call ug the restriction of u to E.

£

PRrOPOSITION 1.2. If p (resp. ») is carried by B (resp. F), then X3
is carried by EF.
Proof. This is easy to see since, for fes,

wer(f) = [+ [ flay)is(y) du(o).
E ¥

A special role in our work is played by certain measures which are
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located at the vertex of the prime subsemigroup U, ie. at tile corner
opposite 0. An inner vertex measure of U is a member of the se

F(U) = {peF: for each ve U, w is carried by Unlz, ol}.

Thus, if ues(U), the restriction of u to U(\]w, w] for me'U is ;ndgpez:r(llelét
of @ and is always equal to z. The intersection of the carrleri o‘ pise 111)1 3;
(so p is entirely withoub gupport in. the sense of [4]).-If U 128 {a) mz:)x;l ?—1
element, say U = [0, y], then any measure in J(U) .],S carried 1y [ &y] N
Ny, o] = @, and so F(U) = {0}. If U, is a segment in the totally or ereg
semigroup T, and if U, has no maximal_ element, t'hen Uir\]'.cn, c;;]d%b .
for each weU, and S (U,) # {0} (any linear functional dominated by

the sublinear f—limsup |f(#)] is in (). Moreover, if #(U) # {0}
<U; . . ‘
we can find ,uef(gf) with p(1) # 0; for wes(U) iff |ulef(U), and

=0 i = 0.
’ W(lim c?utlef: gertem measure is an element of )
O(U) = {ueF: for each zecU, p is carried by UN[O, [}
Similar remarks apply to this collection of measures. Notice that 4(U)
= 0(U) = {0} is possible; for example, it U= 1[0, m] and U = [g! (:]
(which, in the totally ordered case, means that ¥y is the immediate
successor of m).

We shall need to calculate some convolutions later, and it may be

helpful if we give some typical examples here.

PROPOSITION 1.3. Let U be a prime subsemigroup.

(1) If wis carried by U and, for each weU,» is carried by [®, ®], then
uxy = u(1)y. . .

(2) If, for each xelU, p is carried by [0, ] and » is carried by
yep = u(l)v

Proof (1) We have, for fe4,

prr(f) = [+ [ Fsyan()-du(s),

U [z,0]

ﬁ, then

where & is any element of U. In calculating the inner integral, s is fixed,

and is taken from the range of the outer integral, i.e. from U. We.may

therefore take # = s, and then since # < {, we have s = t. The inner
integral is therefore simply »(f), and the result follows.

is proved in a similar way. ‘

g[?n) psarl‘zicular, the result of Proposition 1.3 (1) holds if u,vef ?U),

and it can be seen that if #(U) is large enough, # cannot be commutative.

2. Maximal left ideals. We fix a proper maximal left ideal & in Z.
The primitive ideal 2 associated with & is defined by

H = {u: pxF < Z}.
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Notice that as # has an identity, # < &, and also that & is a»two-sided
ideal. We shall need the following elementary result about primitive
ideals, whose proof we include because it is short (see [6]).

PrOPOSITION 2.1. Let &, be as above and let F, F be left ideals
n F.

(1) If S 7 = A, then cither £ < F or ¢ < A

2) If F.F = 2, then either & < 24" or F 2

Proof. (1) Suppose £ & X, 80 that #F & #. The linear span [AF]
of ## is a left ideal, not eontained in %, so that [FF ]+ &% =&F since
£ is maximal. Hence SF = S[FF|+SL c A +L < %. Thus & < A

(2)If # £ 2, then £+ % = # and the argument can proceed as before.

We now begin to discover the structure of .. :

PROPOSITION 2.2. {weS: 6,e#} = {weS: 0,e %} = K (say) is a prime
ideal in 8.

Proof. Observe first from the definition of #° that if uxF =Fxu,
then pet” iff pe. Since 6, is in the centre of # for each z, it follows that
the two sets we are considering coincide. Obviously K is a two-sided ideal
in 8.

Now let », yeS and suppose aye<K. Then

ﬁ*éz*g’*éu =g‘*9‘*5z*5”gﬁ*5zv c .

Thus, by Proposition 2.1 (1), either Fxb, €A or Fxd, = A, ie. either
#wel or yeK. It follows that K is prime. . .

We see from this proposition that @ = S§\K is a prime subsemigroup,
and we may use Proposition 1.1 to conclude that G = Uy X...x U, where
each U, is a segment in 7;. We now partition the index set A = 1,...,k}
by writing

A, ={i: F(U;) #{0} and #(U,) = K};
4, ={i: 0(U)) {0} and O(U;) = E}\Ay;
Ay = AN(4,V4,).

In the definition of 4,, 4,, 45, by #(U;) (resp. 0( U,;)) we mean the inner
(resp. ouber) measures of U, when it is regarded as a prime subsemigroup
of T;. We also put

Ga = ” U¢

8o = HTn
ded,

ied,

1<ax3)

and identify § with 8;x 8, x 8, G with Gy x @, xG;. We shall have
occasion to refer o, for example, # (,), regarding G, as embedded in §,.

In order to avoid consideration of many special cases in what follows,
we shall restrict our attention to one situation only.
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We shall assume that A, # @, Ay # 0, 43 #0O and that S (
for iedy, 0(T;) # {0} for icds.

This restriction applies except to the statement of our main
Theorem 2.9, in which the general situation is deseribed. (To deal with
the other cases, if #(U;) = {0} for some ied,, then U; = [0, ;] for
some #;eT; (see the remmks before Proposition 1.3), and we replace
pe(U;) in the proofs below by Og- 1L O(U3) = {0} for some ieds, we
replace o<0(T;) by e<f (T or, if thls is not possible, by &, as before.
Proofs will need some altelatlon)

We now continue under our general agsumption. We require some
more convolution formulas.

LeMmA 2.3. (1) Let pef(G,)
= g(L)ux*e. ,

(2) Let ce0(G,) and let u be arbitrary. Then oxpxo = o(1)o*p.

Proof. We shall prove only (1). We take « = 1 for convenience,
and we regard 8 as S X (8; X §,). Since, for each xe@y, ¢ i3 carried by
I, 0]% {0}, u*g is carried by

(S1 X (83X Sa)) (J#, @] % {0})
. Now, for any f,

F(8ytyy Sata) dux 0 (fr, Ta) - dg(81, S2),
Gy x{0} ]sl,w]x(szxsa)

U;) # {0}

and let u be arbitrary. Then gxpu%g

= Iz, 0] X (83X Ss),

using Proposition 1.2

expxe(f) =

where the argument of Proposition 1.3 has been used to write the range
of the inner integral as Js;, @] x (8; % S,). In this inner integral, ¢, > sy,
and because of the range of the outer integral, s, = 0. Hence s;t; =1,
8,8, = ty; the inner integral is uxo(f), and the result follows.

We can now prove a key lemma.

- LEMMA 2.4. Let 2e@y, 0ef(Gy), 0c0(Gy) and let o(1) # 0, o(1) # 0.
Then dy%o+0¢L.

Proof. We suppose &,*c#*pe?, and we show first that either Oget”
or ge” or ge. Indeed, we have

(F )% (F#0)%(Fxpg) = FrFkorF xdproxg = &L

using Lemma 2.3(2) and the fact that d, commutes with everything.
By Proposition 2.1, either Fxd, S A" or Fro € A or Fxg € L since
& has an identity, this means either d,ed” or oeX or ge.

Suppose (to obtain a contradiction) that g¢e but g¢. Then
FroxF & £ by definition of # and hence the linear span [F xg*F ]
is a left ideal not contained in the maximal left ideal .#. Hence &

= [FxoxF]+L. A3 Sy, there is ge[Fro+F] such that b —ee?.
As & is a left ideal, o—o(l)p = o*(d)—9)e¥ (using Lemma 2.3(1)).
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Since ¢<.£ and ¢(1) # 0, we conclude that ¢, and hence (as d,—ge L)
that dge.#, which is false.

" We next show that §,e¢x" is impossible. Indeed, this is equivalent
to zeK, which contradicts z<@; < @ = S\XK.

To obtain a contradiction from the assertion ge" is harder. First
observe from Proposition 1.3 that since " iz an ideal, pex implies
F(Gy) & A Now suppose that ¢, = U, x...x U, (ie. that 4, = {4, ...

, %p}). Choose Z,ef(Uij) (L<j<r) with 4; (1) # 0. An easy argument
about supports shows that A, * ... x1,.ef(@,). (It might be worth remarking
at this point that this convolution product depends on the order in which
the /s are taken.) Now using Lemma 2.3(1),

(Fxd) k.o (F#d) =F (A% ... %) 2F xdox ... s F %A © A,

as A is an ideal. So by Proposition 2.1, # x4« for at least one j. But
this implies A;e#" and hence that #( U,-j) < . This means i;¢4,, a con-
tradiction since 4;e4.,.

The assertion oe” leads to a contradiction in a similar way. This
completes the proof of Lemma 2.4.

We shall need one more convolution formula. .

LeMMA 2.5. Let Gy, Gy, Gy be as above. Fiz xeGy. Suppose that, for
every yeGy, u is carried by [0, 31X Gy X [0, y[. Let geF(Gy), 0eO(Gs), and
let v be arbitrary. Then

oxukvk Oy = u(l)oxvxdyxg.

Proof. We first put v = v* 8, 0. Since 4, is carried by [@, @] x {(0, 0)}
and for each z¢@,, g is carried by {0} x ]2, ] X {0}, we see that = is carried
by [#, ] X ]2, @] x 85. Therefore, for any fe%,

oxuxt(f)
= f s f : f F (81810, Salaths,y Salatis) AT (141, Usgy Us) X
{0,001 x @y [0z xGax[0.830 [ @] x]ty, 0] xSy

X A (tyy tay 1) - do (81, Ss) 8s),

where the argument of Proposition 1.3 has been used to replace y in the
range for the middle integral by 3, and 2 in the range for the innermost
integral by f,. Considering ranges for the various variables shows us
that #, < & < uy, 80 that syt u, = $1u,; that £, < wp 50 that sytaus = $3Us;
and that f; < 85, 80 that sgleuy = S3us. The ¢ variables therefore disap-
pear, and the integral therefore has the value w(1)ox*z(f).

LoMMA 2.6. Let G4, Gy, G5 be as above. Fiw xeG,. Suppose that for
every yeby, u is carried by [0, 21X G X [0, y[. Then peZ iff u(l) =0.

Proof. Let gef (@), 0e@(Gy) with ¢(1) # 0, o(1) # 0, =0 that g, a'qwf.
Then d,%o0% g ¢ %, by 2.4, and ¢ ¢.Z (for ce.Z implies ¢(1) o+ F = oxF xce &
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using Lemma 2.3 (2), whence ce"). Therefore F *d,*0xp-+Z is a left
ideal properly containing %, and is thus & itself. Since d,e#, we can find
veF 50 that 8 —v#d,x0%pe £ From Lemmas .3 and 2.5 we deduce
that

(i) oxp—o(L)p(l)o#vk O k0 = chkuk(dy—vkJyx0o%0)e?
and also that
(if) a o—o(L)oxy b,k = o%(8,—vd,x0%0)e .

Now suppose pe. We see then from (i) that u(l)oxvxd,%0e?.
Ag 042, (i) shows that o*vx % ¢.2. We conclude that u(1) = 0.
Again, if (1) = 0, (i) shows that o+ u 2. Then, again from Lemma 2.3

(Fro)x(Fru) = FxoxFxoxu S &,

and so from Proposition 2.1, either ceX = & or pe?. Since we know
that ¢¢.#, our conclusion follows.
Our final result is similar to the one we have just proved, but re-
quires the taking of a limit. We next establish its existence.
PROPOSITION 2.7. Let Gy, Gy, G be as above. Let ueF. For meGy, ye Gy
denote by p,, the restriction of w to [0,] X @y X [0, y[. Consider @, as
a divected set ordered by < and @, as directed by >. Then the three limits

lim lim gy, lim lim p,,,, lim u,, ewist in the sense of morm convergence amd
z v v =z zy

are equal.

Proof. First, each measure is a linear combination of four positive
measures and so we may assume x> 0. We begin by considering the
convergence of u,,(f) for fe#, and again because each .fe# is a linear
combination of positive functions we may assume f> 0. Observe then
that if @, < @, we have [0,2,] < [0, z,] whence Yy < Mgy Tor each y.
Hence, for a fixed 9, (uyy(f)) is an increasing net; it is bounded above
(by w(f)) and so hm .%u( f) exists. Clearly, lim Uy 18 2 positive element

of # and for eaeh By Yoy < hm Yy - Therefore

”(hm :”’xy) —sz” = ((11111 /un:ﬂ) '—luam) (1) -0,

and the convergence is in norm.
For similar reasons, (ug) is decreasing in y, and the limit exists.
We therefore have, for each z, y,

By < gy < 1D gy
v P

The left-hand member of this chain is increasing in @, and the right-hand
member decreasing in y; therefore the iterated limits hoth exigt in the
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norm and

hm lim gy, < 11m Ilm oy -
v

If we can show that these limits are equal, it will follow from the above
inequalities that the double limit lim u,, also exists and coincides with

xy
them. To this end, notice that if y, < y,, the restriction of (lim sy ) — py,
to 8y x 8, x[0,9,[ is just (Ijm Hayy) — Moy, Therefore ®

(‘hm Hayy) — Mgy S (hm Hayy) — Hayy s
and hence

0 < (Hm Hm prgy) — (M frgy) < (B fhgy ) — -
v z v z

We now take limits over 2 to find
< (lim lim ) —(lim lim p,,) < 0,
v £ T v
and the proof is finished.
LevMA 2.8. For any pefF, p—lim pyed .
xy

Proof. To begin, fix 9@, and put v, = p—lim pu,,. We claim that
x

for each @eGq,», is carried by the complement of [0, 2] x G X [0, y[.
Indeed, for each z, > @, the restriction of u— gy B0 [0, 2] X Gy X [0, Y[
is zero, and so the same is true for y—hm Moy - Therefore, for each ze@,,

v, is carried by a union of sets of the followmg three types:

Jog 0]x [[ Ty Oox [T e 0)x [[ 75
Es i 7
We will show e by proving that measures carried by each of these
sets are in .
We start with the easiest case. Let 1 be carried by [y, ©]x [] Tj.
2]

As yely, yeK and so y,K (remember that K is a prime ideal), or equiv-
alently, 6,,#". Then 1 = By xhel using Proposition 1.3(1) and the fact
that o is an ideal.
Next take A carried by ﬁix [17T; with ¢e<d,. Take oe0(U;) with
i

o(1) 5 0; since fed,, oeX. Then o(1)1 = AxoeX using Proposition 1.3
2) and that o is an ideal.
Finally if 2 is carried by ], ©]X H T; for every x;eU; (where

ied;), we take pef(U;) with (1) # 0, EO that pet’, and we find that
@(1)4 = pxled” using Proposition 1.3 (1) and that o iy an ideal.
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We have now shown that v,e". Bub o is closed [6], and so lim vy
This is the required result. v
We now give our main theorem. We state the full result (though we
shall only prove the case in which 4, %@, 4, # @ and 4, # @). We need
some more notation to do this. If 4, =@ (resp. A, = @) we denote by
e (resD. ) the restriction of u o [0, 21X @, for zeGy (resp. @, x [0, y[
for yey), or simply the restriction to [0, #] (resp. [0, ¥[) if also 4, = @.
TrmorEM 2.9. Bach maximal left ideal of # is the kernel of a complen-
valued homomorphism. With the above motations
L =4 = {p: lm uy, (1) =0} if 4, %@ and 4, + O;
L= = {u: lim (1) =0} if A, £ 0 and A, — O
@z
Z = = {p: lim u,(1) =0} if A, =@ and 4, + OG;
v

¥ =A = {u: g, (1) = 0} if Ay =43 =0.
Proof. Let ues. Consider the measure
(K. 1) — () f1) (1) 8.
v v
For every ye@, this is carried by [0, 2] X @, % [0, y[. Moreover, its value

at the function 1 is 0. By Lemma 2.6, it belongs to .%. Since % is closed,
the limit over z also belongs to %, i.e.

(1. fry) — (Um pagy) (1)- 8062,
xy xy

Now, if (lim u,,)(1) = 0, we see that lim HayeZ and so, from Lemma,
xy xzy .
2.8, ueZ. Conversely, if ue?, from Lemma 2.8 we see that lim Moy e,

xy
and since &, ¢, we conclude that lim Ugy (1) = 0. Hence & is the kernel
of the map u>lim u,,(1).
ay

We next show that it g, (1) is a hornomorphism. Let x be the
characteristic function of the prime subsemigroup ' [0, #] X @, x [0, y[.
Then y is a complex homomorphism of §. Hence fot> (%) = (1) i8

a complex homomorphism of #. Then wu > lim ligy(1), being a limit of

homomorphisms, is itself a homomorphism.

As 2 is now seen to be two-sided, it coincides with .

3. The quotient of & by its radical.

TemorEM 3.1. Let & be the radical.of . Let alS denote the almost periodic
compactification of S (when S has the discrele topology).

(i) a8 ds a direct product of compact, totally ordered, totally discon-
nected semigroups.

(ii) The algebra M (a8) of bounded regular Borel measures om af is
isomorphic with #|4%. :
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Proof. We show first that af = al'y x.. x aly (a fact which can
be deduced from the very general considerations in [2]) and that each
aTy is totally ordered and totally disconnected.

Let T be any totally ordered semigroup with both maximal and
minimal elements and with the discrete topology. Form a new set al'
by adjoining a supremum (resp. infimum) for each segment (resp. comp-
lement of a segment) which has no maximal (resp. minimal) element;
give al' its natural order. An alternative description of T is this: for
each segment U of T' take two points sy, ty; i U =V, write sy <ty
< sy < lp; identify ty with s, if and only if for some %ef, U = [0, o[
and V = [0, ]; embed T in aT by mapping £ to sy . Bvery seb in ol
clearly has a supremum and an infimum, so a7 is compact in the order
topology. Moreover, if U is any segment in T, then [0, sy] = [0, &5
and Jsy, o] = [iy, ] are both open and closed in aT, and as these sets
form a sub-base for the open sets of o, this space is totally disconnected.

To see that ol is in fact the almost periodic compactification of T,
we prove it has the universal mapping property. Let ¢: T — W be a homo-
morphism of 7' into a compact jointly continuous semigroup W. As W is
jointly continuous, the closure M consists entirely of idempotents, and
as T is totally ordered, ¢(7) has a natural structure as a totally ordered
semigroup. Since @(I) is compact, every set in it has both a supremum
and an infimum. We extend ¢ to a map @: o »m by defining

P(sy) =sup{p(@): ael, o< sy},

Plty) = inf{p(eh: wel, o> 15},
It is easy to check that @ is well defined, continuous, and is the unique
continuous extension of ¢.

We now prove (i). The canonical map § = Ty X...xTh, —alyx...
X aT extends by the universal mapping property to a continuous map
a8 —aly x... xaly,. Since T,X...x T, is dense in al; x...x aT, and
a8 is compact, this mapping is surjective. To find an inverse map to it,
first consider the composition (for 1< < k)

Ti>TyX...xTy =8 1T,

consivting of a canonical injection into the direct sum followed by the
projoction from the direct product. It is the identity, and so its extension
al; — a8 — T,
must also be the identity. Thus T, may be considered to be a subseb of
a8 for each i. Since multiplication in &8 is jointly continuous, the map
ol X ... x aT), — a8 defined by (,, ..., &) = &, ... @ (the product in af)
is continuous. Its image is compact and contains the image of T, x...
X T}, = 8 which is dense, and so the image is the whole of 8. But now

2 — Studia Mathematica 61.1


GUEST


18 J. 8. Pym and H. L. Vagudeva

the composite map
aly X ... xaTy — a8 —aly X ... x aly
can be seen to be the identity on 7, X ... X T; and since both maps are
surjections, they must in faet be isomorphisms. :
We now proceed to (ii). Let U;= T, (1 < i< k) be a segment. Let %
be the closed subspace of # spanned by all the characteristic functions

% = YUyx..xUy- Ve map % into the space % (a8) of all continuous functions-

on a8 by sending y to the characteristic function 7 of [0, sy, ] X ... X [0, sy, ]
(by the proof that aT is totally disconnected, y is the characteristic
function of a set which is both open and closed, and so is continvous),
and we extend to # by linearity and continuity. Moreover, the collection
of all #’s separates the points of af, and so we may apply the Stone—
—Weierstrass theorem to see that the map # — % (a8) is an isomorphism.

It is well known that . (af8) is an algebra. The kernel of ¥ is a prime
ideal of ‘a8, so that x - u(¥) iy a complex homomorphism of .#(aS).
Again since the linear span of the #’s is dense in % (aS), we see that if
u(%) = 0 for all ¥, then u = 0. Hence #(a8) is semisimple.

Next, the map % (a8) - % < # is a isometric embedding; hence the
adjoint p: #F — A (af) is a quotient map. We complete the proof by

showing Kery = %. Now if ueKer v, then y(p) () =0 for each 7 of .

the above form; thus, u(y) =0, or u(Uyx...x Uy) = 0 for all segments
Us,y ..., Uy. In particular, with the notation of Section 2, if ze@y, yeGy,

#([0, 2] x G, x[0,y[) = /u':n/(l) =0,
and so also lim u,, (1) = 0. By Theorem 2.9, this means that ue%. On

zy
the other hand, as 4 (a8) is demisimple, # < Ker », and the conclusion
is achieved.

The theorem corresponding to Theorem 3.1 which we gave in [5],
asserted that when § was totally ordered (i.e. & = 1) % /% was isomorphic
to the measure algebra on the weakly almost periodie compactification
of §;in the totally ordered case, then, these two compactifications coincide.
In fact, this is also true in our present, more general, situation. We hope
to publish the proof elsewhere.

Aclnowledgement. The authors would like to thank the Science
Research Council for the grant which supported this research.

References

[1] A. P. Baartz, The measure algebra of a locally compact semigroup, Pacific
J. Math. 21 (1967), pp. 199-214.

[2] P. Holm, On the Bohr compactification, Math. Annalen 156 (1964), pp. 34-36.

[3] 8. E. Newman, Measure algebras on idempotent semigroups, Pacific J. Math.

31 (1969), pp. 161-169.

icm

The algebra of finitely additive measures 19

[41 J. 8. Pym, Positive functionals, additivity and supports, J. London Math. Soc.
39 (1964), pp. 391-399. .
[5] J.8. Pym and H. L. Vasudeva, An algebra of f&
~ Math. 54 (1975), pp. 29-40.
[6] C. E. Rickart, Banach Algebras, Van Nostrand, Princeton 1960.

itely additive measures, Studia

DEPARTMENT OF PURE MATHEMATICS,
THE UNIVERSITY, SHEFFIELD, ENGLAND
and

DEPARTMENT OF MATHEMATICS

PUNJAB, UNIVERSITY, CHANDIGARH, INDIA

Received February 3, 1975 (944)


GUEST




