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tn | P (Of (@)t = f(0)
A0 g

a.e. for feL,(m). We note that fel,(u) implies f/heL,(m). Also

f e~ P (1) (fh)dt ﬂ{ f e*8(4) f(m)dt}/h(m) ae

and fwe""S(t) f(@)dt = By, f(w). Thus
lim AR, (2) = m(3-+1) By () = (o) i (1+1) fe""P VF /) d
20
) {f(@)/h(2)} = f(x) 2e. w

Added in proof: Theorems 3 and 4 hold for pseudo-regolvents. The author has
learned that an indicect proof of Theorem 4 for pseudo-resolvents was published
in 1974 by C. Kipnis. The technique used in proving Theorem 4 may be adapted
to obtain a direct proof of Kipnis’ result.
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Corrigendum and addendum to the paper
“In general, Bernoulli convolutions have independent powers”

Studia Math. 47 (1973), pp. 141-152
by
GAVIN BROWN and WILLIAM MORAN (Liverpool)
Abstract. In this paper we point out an error in our earlier paper with this

title and prove that with a slight modification of the definitions the results remain
true. Explicitly, we show that for virtually all (in the sense of Baire category)

sequences (z,)el? the infinite convolution

v(®) = *1%(5(—$")+ ()

has the property that the o (L*®(»), I! (v)) closure of {¢": n.cZ} contains all constants’
in [~1,1] , M

1. Corrigendum. We are indebted to Professor 8. Saeki for pointing
out to us that Remark 4 on p. 142 of [1] is false. In addition, we have
subsequently found an error in the proof of the main theorem of [1].
The error arises in the final paragraph of the proof of Lemma 4 because
the sets M;'U; are not mecessarily open in the relative topology of B.
Nevertheless the main theorem of [1] remains true as stated and an
appropriate variant of Remark 4 is obtained when, for example, the set
F is replaced by the set F' defined by

F=km:§m<&b

>0 (n=1,2,3, ...)},
n=1
where £ is any irrational number in [0, 1].

Since generalizations of the theorems stated in [1] will appear with
full proofs in the forthcoming paper of Lin and Saeki [2], we refrain
from giving the details of the corrections needed in our original arguments.
Instead we wish to state and prove a variant of the main theorem of [1]
which admits a simple direct proof and which yields a more natural
interpretation of the title result of that paper.

2. Addendum. For any sequence (#,)>_, of real numbers consider the
(formal) Bernoulli convolution

n=1

1) ‘ v(@) =
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where 8(x) denotes the probability atom at the point #. Interpreting .the
limit in the sense of weak* convergence, one sees that the appropriate
condition for (1) to define a probability measure in M(R) is that & belt?ngs
to 12 In [1], measures were regarded as elements of M(T) (the clr.cle
group T being realized as [0, 1[ with addition modulo one) and attention
was restricted to the set B of those sequences & with the properties that
oo
cyand Yo, <L
=l
B was then regarded as a subset of the metric space [0, 1]% with
the relative topology and the phrases “virtually all Bernoulli convolutions”,
“in general, Bernoulli convolutions” were taken to refer to subsets of
B which are residual in the sense of Baire's category theorem. The fact
(which was overlooked in [1]) that the subset of all ® in B such that

0<s,<1, for n=1,2

3’ 2% =1 is already residual makes such a use O:E language appear
n=1
artificial.

Moreover, if one regards measures as elements of M (R) ib is entirely
natural simply to interpret “virtually all Bernoulli convolutions” to mean
all measures of the form »(x) as @ ranges over a residual subset of the
metric space 12(R). The object of this addendum iy to demonstrate that
"the statements of [1] reinterpreted in this way admit simple proofs.
However, it is necessary to pay for this simplifieation by making an
explicit discussion of the method fo%transferring the results from the
line to the circle. }

As a prerequisite we require a distinguished embedding of the
integers in the maximal ideal space AM(R) of the measure algebra of
the line. To this end observe that each element 7 of the dual group R is
induced by an element ¢ of R according to the formula

7(x) = exp (2nitw) (weR),

and regard the integers embedded in R by restriction of the correspondence
t — 7. Since R* can be embedded in AM (R) by the formula

() = [ (@) dp(@)

we have an embedding of Z in AM (R). Let us denote the image of Z in
AM(R) by ®. Defining the quotient map 0: R —~T by 6(2)<[0, 1],
0(x) == (mod 1), we obtain induced maps 0*: M(R) - M(T), 0**:
AM(T) - AM(R). Obsgerve that & is the image under 0** of (the canonical
image of T") in AM(T).

For x in M(R), we define S(u) to be those constants which arise
as u-coordinates of generalized characters in the Gelfand closure of @ —thus

(ue M(R)),

S(u) = {a¢0: ¢ =qgp(v) (4 a.e ) for some ¢ in cl O}.
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We shall be concerned. with results which describe S(u) for all 4 in certain
subsets A of M(R). It is now clear that such a result may be transferred
to a result about M (T), which describes properties of the u-coordinates
of generalized characters in elT” in A4M(T) as u ranges through 6*(4).
‘With this point clarified we confine the discussion of the new theorem
to the case of the real line.

TeROREM. There is a dense Gy-subset G of 1* such that for each x in

@, the measure v(®) = % }{6(—wu,)+ 8(x,)) has the property that S v(x))
=[-1,1]. n=1
There is a dense Gy-subset, &, of I' such that for each % in @', the measure
o(®) = % $(8(0)+ 8(x,)) has the property that S(w(®)) is the wnmit disc.
n=1

Proof. Enumerate the rationals in [0,1] as (Pr)oey - For positive
integers, g, 7, s, t let G'(g, , s, 1) be the open subset of all @ in I* such that

(2) Bz, < ¢ 's™h, 1< n<<s—1;
(3) ' 6 (lz, —p,) < q_l;
8
(4) (el < D) w2 +172g7".
n=1

(Here || ||, denotes the I2norm and 6( ) denotes residue modulo one.)
We ‘define G by
Lo oo oo
(5) 6= N (UUGQgr,s,1).
T U V=1 E=0 §=y
G is evidently a Gy-subset of 12 Now fix ¢, r, u, v, and some neighbourhood
V in *. Choose s> % and ® in V such that @, #,, ..., 4, are rationally
independent and such that #, = 0 whenever n > s. It is now possible
to choose ¢ > v such that (2) and (3) hold; meanwhile (4) is trivially true.
Thus we have verified that G is dense and it remains to check that
8(v(x)) = [—1,1]. Because S(v(e)) is clearly a closed semigroup, it will
suffice to check that cos (2np,)eS (v(m)) for each r. Comparing with
Lemma 1 of [1], we see that this, in turn, amounts to checking that there
is a sequence (t())jm, of positive integers such thab

" (6) , w(@)" (t(k)) — cos (2mip,);

(7) exp (2nit(k)m,) -1, for each n.

But for each &, we choose ¢ =v = u = k and (5) guarantees the exist-
ence of ¢ = t(k), s = s(k) such that xe@(q, r,s,t). For definiteness we
choose the least such #(%k) (which is, of course, no smaller than k). It is
evident from (2) that (7) holds for this choice of (t(k)),‘;"_r Moreover (2),

™~
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(3), .(4) give rise to the inequalities

81
|1 — ncos (2ni(k)a,) I < 2nk7Y,

n=1
|cos (27p,) —cos (2t (k) @) < 2=k,
11—— H cos (27t (k) a,) | < 2wk,

pemg-1

and these combine to give (6). This completes the proof of the first as-
sertion of the theorem.
For the second part we proceed in a similar way but replace (4) by (4",

8
() lelly < ) ol +17207%,
n=1
and work with }(1+ exp (2nip,)) in place of cos (2mp,).
Remark. The statements of Corollaries 1, 2, 3 of Theorem 1 of [1]
remain valid when the phrase “virtually all” is interpreted in the sense
of “residual in 72”.

References

[1] G. Brown and W. Moran, In general, Bernoulli convolutions have independent
powers, Studia Math. 47 (1973), pp. 141-152.
[2] C.Lin and 8. Saeki, Bernoulli convolutions in LCA groups, to appear.

DEPARTMENT OF PURE MATHEMATICS,
UNIVERSITY OF LIVERPOOL

Received November &, 1975 (1084)

STUDIA MATHEMATICA, T. LXI. (1977)

Semi-stable probability measures on RY

by
R. JAJTE (Zbds)

Abstract. Let {£,} be a sequence of RN-valued, independent and identically
distributed random variables. Consider the sums
(0 An(E+ -+ Ery) +ene

where 4, are non-singular linear operators in R, o, e RY and &y 'ky 41—y, The limit
law for sums of the form (0) is called semi-stable. The aim of this paper is to describe
the class of all full semi-stable measures in RY.

1. Introduction and notation. We begin with some notation. By M
we denote the set of all Borel probability measures on the real Euclidean
gpace RY. We regard M as an Abelian topological semigroup with the
convolution as a semigroup operation and the topology of weak conver-
gence of measures.

We denote the convolution of two measures 4 and » by u#v. Through-
out, the power u” is taken in the sense of the convolution. Moreover,
by &(x) we denote the probability measure concentrated at the point
xeRY. The characteristic function (Fourier transform) z of a measure
pe M is defined by the formula

ay) = [ expile, y)u(dn).
. RN

The group of all non-singular linear opemtor{ acting in RY will be
denoted by G. .

For a Borel mapping F: RY —RY and a measure u from M we denote
by Fu the measure defined by the formula

Fu(Z) = p(FZ)
for any Borel subset Z of the space RY. In particular, it is easy to verify
that the mapping (4,u) — 4y from G x M onto M is jointly continuous
and the formulas
A(pwr) = Apxdv,  Aply) = f(4*y)

hold, here A* denotes the adjoint operator. Given we M, we define &
putting @#(Z) = u(—Z), where —Z = {—y: yeZ}.
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