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(3), .(4) give rise to the inequalities

81
|1 — ncos (2ni(k)a,) I < 2nk7Y,

n=1
|cos (27p,) —cos (2t (k) @) < 2=k,
11—— H cos (27t (k) a,) | < 2wk,

pemg-1

and these combine to give (6). This completes the proof of the first as-
sertion of the theorem.
For the second part we proceed in a similar way but replace (4) by (4",

8
() lelly < ) ol +17207%,
n=1
and work with }(1+ exp (2nip,)) in place of cos (2mp,).
Remark. The statements of Corollaries 1, 2, 3 of Theorem 1 of [1]
remain valid when the phrase “virtually all” is interpreted in the sense
of “residual in 72”.
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Semi-stable probability measures on RY

by
R. JAJTE (Zbds)

Abstract. Let {£,} be a sequence of RN-valued, independent and identically
distributed random variables. Consider the sums
(0 An(E+ -+ Ery) +ene

where 4, are non-singular linear operators in R, o, e RY and &y 'ky 41—y, The limit
law for sums of the form (0) is called semi-stable. The aim of this paper is to describe
the class of all full semi-stable measures in RY.

1. Introduction and notation. We begin with some notation. By M
we denote the set of all Borel probability measures on the real Euclidean
gpace RY. We regard M as an Abelian topological semigroup with the
convolution as a semigroup operation and the topology of weak conver-
gence of measures.

We denote the convolution of two measures 4 and » by u#v. Through-
out, the power u” is taken in the sense of the convolution. Moreover,
by &(x) we denote the probability measure concentrated at the point
xeRY. The characteristic function (Fourier transform) z of a measure
pe M is defined by the formula

ay) = [ expile, y)u(dn).
. RN

The group of all non-singular linear opemtor{ acting in RY will be
denoted by G. .

For a Borel mapping F: RY —RY and a measure u from M we denote
by Fu the measure defined by the formula

Fu(Z) = p(FZ)
for any Borel subset Z of the space RY. In particular, it is easy to verify
that the mapping (4,u) — 4y from G x M onto M is jointly continuous
and the formulas
A(pwr) = Apxdv,  Aply) = f(4*y)

hold, here A* denotes the adjoint operator. Given we M, we define &
putting @#(Z) = u(—Z), where —Z = {—y: yeZ}.
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For any ue M the measure u = u#fi is called symmetrization of e
A closed subset Su of RY is called the support of a measure u if the comp-
lement of Sy has wp-measure zero and w(U,) > 0 for any neighbourhood
U, of #, where » runs over Su. It is not difficult to see that for ue M the
support Su always exists and is unique. A’ measure u from M is said to
be full if its support S is not contained in any (N-1)-dimensional hyper-
plane of RY. In the excelent paper [3] M. Sharpe introduced and exam-
ined the notion of an operator-stable measure in RY. Namely, a prob-
ability distribution x from M is called an operator-stable measure it it is
a weak limit of measures of the form
po=lim 4" (ax,),
n—oo
where ve M, 4,¢@, z,<RY. In [3] the class of all full operator-stable
measures has been characterized. Recently, in [1], B. Kruglov considered
the set of all limit distributions of the form

g = lim ¢, 9" 8(z,),

where p runs over all probability measures on R, ¢,> 0, @,¢R and
the sequence &, <k, < ... of positive integers is such that &y k,,; -y
for some 1<y < co. The author gave a description. of that class of
measures which is larger than the class of stable measures on .R!.

Our purpose is to describe the class of all full measures in RY which
are the limit laws for sums of the form

-An( El"l’ cee §kn)+cn’
where {&,} is a sequence of independent identically distributed random
variables, 4,¢G, ¢,eRY and k;'k,,, -y for some 3> 1.
We can treat this problem regarding M as a metric semigroup. Then,
we introduce the class of measures in question by the following

DEFINITION 1. A measure x4 from M is said to be semi-siable if it is
a weak limit of measures of the form

wo=1im 4,9 5(b,),
N~+00
where A4,¢@, ve M, b,eRY and the sequence k, < kg <.

. of positive
integers is such that k;'k,,, -y for some 1<y < co.

2. Characterization of full semi-stable measures in RY . In this section
we shall prove the following theorem.

THEOREM. 4 full probability measure ufrom M is a semi-stable measure
if and only if it is infinitely divisible and there ewist a number 0 < ¢ < 1,
a vector beRY and an operator Be@ such that the formula

() u° = Bux (D)
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holds. The spectrum of B is contained in the disc {|z|* < c}. Eigenvalues
of B satisfying |A]> = ¢ are simple, i.e. the elementary divisors of B associ-
ated with these eigenvalues are one-dimensional.

Furthermore, the measure p can be decomposed into & product u = uu,
of two measures p, and p,, concentrated on B-invariant subspaces X and X,
respectively, and such that RN = X; ® X, u,is a full semi-stable measure
on X, of the Poisson-type (having no Gaussian component) and u, is o full
Gaussian measure on X,. The spectrum of B|X; is then contained in the
disc {|2|? < ¢} and for the eigenvalues of B|X, the equality |2|* = ¢ holds.

The proof of our theorem will be preceded by several lemmas. In
proofs of Lemmas 1 and 2 we use the technique developed in the funda-
mental work [4] by K. Urbanik.

LeMMA 1. Let u be a full measure for which the formula

1) © u =1lim 4,9 6(b,)
N~->00

holds, where ye M, A,<@, b,e RN and k;* xk”"‘l -y < oo, Then A, — 6.

Proof. Let us suppose the contrary and choose ze RY such that
el = 1, 145 2l = 144l Without any loss of generality (passing to a sab-
sequence, if necessary) we may assume that [|4.]l = 6> 0, yi/llyell — v,
where y;, = Ax#, and z;/|l4,]| — «. By symmetrization of measures occur-
ring in (1) we obtain
2%y,

la(y)[* = lim [#(47y)]

Hence A, (y) -1 = 8,(y) almost uniformly on RY and, consequently,
A (t2,/1144]) — 1 for teR.
On the other hand, we have

ol e\ sl Y\ 3
” (m’“ uAku) ’ (t nyku) =)

8Ky,

Thus, we get fz(ty) = 1 and, consequently, » *(ty) = 1 for {<R and y <RV,
Let us remark that z, = (A}) 'y # 0 because y # 0.
Denote by @ an arbitrary limit point of the sequence ay/ll,l. Then,
since An;'k" - i, we obtain, passing to a subsequence, if necessary

N &
At (t O )-w (tu)

ll

On the other hand,
Ak (A% Yy) = po(y) = 1.
Thus we obtain

u(tuw) =1 for teR and || = 1.
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By Proposition 1 in [3], #is not a full measure what contradicts the as-
sumption. The lemma is thus proved.

LeMumA 2. If p is o full measure for which the formula (1) holds, then
the sequence of operators

(2)- (A9 450)}

s precompact in 6.
Moreover, if € is o limit point of the sequence (2), then the formula
(3) () = [a(Cy)T ey
holds.
Proof. First, we shall show that the sequence (2) is precompact in
the space of linear endomorphisms of RY.
Let us suppose the contrary, i.e. that the sequence of norms
(A3 45,, is unbounded. Let us choose vectors 2, in RY such that
el =1 and (A5 TApazl = (AR Af 0. Taking a subsequence,
if necessary, we may assume that

HAD ™ Afall > 0 and  yy/lyall >y, where  yp, = (A7) AL
Then for every teR we have, by (1),
¥, .
tAp—" ) — | (ty)l.
( "l #y
Simultaneously,
. b oy,
Y, ~ 2, 1 1 .
A* ") - v(tA* ——"-) RO =1
(i g, w0

for every teR. Hence it follows that the characteristic function of the
symmetrized measure 4 is equal to one on the subspace {tu: {<R}. Conse-
quently (see [3], Proposition 1), x is not a full measure, with contradicts
the assumption. Now it is easy to see that the compactness of the sequence
(2) in @ follows immediately from (3). Indeed, since the support of Cu
is contained in the image C(RY), we infer that the operator ¢ is non-
singular. Thus it remains to prove (3).

Let O be a limit point of the sequence (2), say € = lim (A,

LA
7,
Then, by (1), we have oo F

Mat1”

Fepg 41 iay, &Y

Bly) = lm v (47 o)

00
I ’("n ) =14 ) k"8+1”“118 )
: T —1 4% 8 ns -1 Abgu)
= 18111010 {7 (4%, (4%) Awsﬂy) o } ¢

B
for some sequence {b,} of vectors in RY. It is almost evident that b, con-
verges weakly, say to a vector be RY.
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Thus we get formula (3) and our lemma is proved.

DEFINITION 2. A Borel measure M on RY is called a Lévy—Khin-
tohine speciral measure (or briefly LK-measure) if M is a semi-finite measure
in RY concentrated on R¥ —{0}, finite on the complement of every neigh-
bourhood of zero and such that

4) [ lolpM (d2) < .

llell<1

Lemyma 3. Let M be a non-trivial LE-measwure concentrated on the
trajectory

= {B*z, keL},
where <BY, Be@, L —the set of all integers and let the formula
(5) BM =

hold for some 0 < ¢ < 1. Denote by %, o cyclic subspace generated by . Then
the spectrum of the reduced operator B|%, is contained in the disc {|¢]% < c}.

Proof. From (4) and (5) it follows that M is of the form
(6) M({B"»}) =de™, d>0, neL.

Indeed, we have M({B"w}) = B™"M{z} = ¢ "M{z}. In this case the
condition (4) is equivalent to

(M D 1B a|te™ < oo,
) n=1
where ||| is an arbitrary norm in RY.

In the sequel the game letter g will denote a natural extension of
817, o a linear operator acting in the complex Euclidean space Z spanned
over .

To define in (7) a suitable norm [|-|| we shall use the Jordan theorem
about the canonical representation of linear operator acting in a complex
Euclidean space. By this theorem there exist a basis 2,,2,,...,2, in Z,
a system  of integers mg,My, ..., My, 0 =n,<n,<...<my =n and
a sequence of eigenvalues 1y, ...,4; (not necessarily different) indexed

80 that
Bz, = Mjzy+#  for

Bz, = Aty

Ny < 1< Ny,
(8)

Let us establish a norm in Z putting
n

(9) = Dl for g = Y az,

§=1 g=1

3 — Studia Mathematica 61.1
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As the norm in (7) we accept the norm (9). Trom (8) and (9) it easily
follows that each eigenvalue B of B|Z satisfies

(10) |B*x| = alf®, a>0.

Comparing (10) with (7) we obtain |82 < ¢, what ends the proof.

IevmA 4. If M is an LE-measure and the formula (5) holds for some
0<c<l and BeG, then M is concenirated on a subspace X < RY such

that X is B-invariont and the spectrum of BIX is contained in the open

disc {|z|2 < ¢}

Proof. From (5) it easily follows that the support of M ix B-invariant.
Thug it is a sum of trajectories 7,.

Let us denote by A(e,B) a set of LK-measures satislying () and
by V a real linear space of finite measures on RY with the topology
of weak convergence. i

The set
2(e,B) ="
{ﬁeV: N(RY) <1 and N(dw) = l——l}_wsl%ngM(dm) where M ¢ A(c, B)}

is a compact convex subset of V. A support of every measure from
0 is a sum of some trajectories v,. Hence it follows that extreme points
of © are measures concentrated on single trajectories z,. Thus the set
of convex linear combinations of such measures is dense in £2. Ience
it follows that in 4(c,B) linear combinations of measures concentrated
on single trajectories 7, lie densely in /(c,B).

Now, let .
RN =X®Y
be a decomposition of RN into B-invariant subspaces such that

.spectrum B| X < {|z|* < ¢},

spectrum B|Y < {[z* > ¢}.
We can obtain such decomposition wsing the decomposition into ecyclie
gubspaces of B. '

Tet zeRY and 2z = x4y be a decomposition of 2 such that weX,
ye¥. The trajectory v, may be a support of a LK-measure if and only
if 4 = 0 (comp. Lemma 3). Since linear combinations of such measures
lie densely in A(¢,B), every spectral measure from (¢, B) is concentratied
on X, which completes the proof.

LeMMA 5. If a measure w48 full and

p = lim B 8(b,)
n—+00

icm
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where B,e@, b,eRY, k [k, —1, then u is operalor-stable in the sense

Proof. Let us notice that by Lemma 1 the measure u is infinitely

di.visible and thus its powers with any positive exponent exist. Tet ae(0,1).
Tix a sequence I(n) of integers such that

k.
e

n

as % —> oo,

Then
- “ oy U
[f(3)]* = lim [3(Bly)] " Fn ¢i@nt)
N—>00

= lim f:(B}'Zn) [(B;‘(n))‘l B:y]"l(n) Hun)(Bim) " B1v) o))
7~>00

Y A~
=ii.?i Co P (y) 0(a,) (),
o ) *Bn and the sequence of the measures P, =
By v ™ 8(by,,) converges to a full measure u. .

The limit measure of the sequence u® = lim C, P, é(a,) is also full.

By the compactness lemma of Sharpe ([3], p. 55) the sequence of
operators {C,} is precompact in @, and the sequence of vectors {a,} is
precompact in RY. Denoting by €y, and a, the limit points of these se-
quences for which

1® = Cyjuxd(ay)
and putting « = 1/n, we obtain

po=Cupsd(c,),  cqeRY

which means operator-stability of u in the sense of Sharpe.
Proof of Theorem. Sufficiency. Let u be an infinitely divisible
measure satisfying .

(%) 4 = Buxd(b)

for some 0 < ¢ <1, BeG and beRY. From () it easily follows that there
exists a sequence of vectors {b,} of RY such that

p = (B u)" x8(b,),

holds. Putting %, = Entier (+"), we obtain

(11) where y =1/c> 1,

(12)° @ = lim B m6(b,),

n—00
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where, obviously,
stability of u.

Necessity. Infinite divisibility of 4 follows immediately from Lemma 1.
The condition (*) in the case where y > 1 follows from Lemma 2. If y =1,
then g is stable by Lemma 5 and Sharpe’s formula holds:

= LA'/"*‘S(bt)z

Taking an arbitrary 0 < ¢ <1 and putting B = ¢4,
also in the case where y = 1.
Let us write now the Lévy—Khintchine representation of ,u

[ K@, y)M@w)],

RN —{0}.

t> 0.

b, = b, we get (x)

(13) aly) = exp [i(@ety) —4(Dy, ¥) 4

where z,eRY, D is a symmetric non-negative linear operator in RY,
M is a Lévy-Khintchine spectral measure and the kernel K is defined by

(@, "/)1 .

o T+l

E(o,y) = 60 -1 —

Writting (#) in terms of characteristic functions and taking finitenes
of the following integral into account

(Bz, y) |l

e [ Be el
o Ri TENFIETRNT =R

we get, by uniqueness of the representation (13) of a infinitely divisible
measure, the following conditions:

(15)
(16)

BM =c¢M,
BDBj = cD.

Let RY = X@®Y be a decomposition of R¥ into a direct sum of
B-invariant subspaces such that

spectrum B| X< {#I? < ¢},
spectrum B| Y {|2| = ¢}.

By virtue of Lemma 4 we have M(Y) = 0. In particnlar, if X = RY,
then the measure u is a full measure of the Poisson-type (without a Gaus-
gian eomponent). To simplify the notation we assume for a moment
Y = RY. In this case u reduces to a Gaussian measure with theeharac-
teristic function

an

¢

#(y) = exp [i(xq,y) —4(Dy,y)1,

%, A 0o and ky'kyy, -y >1, which proves semi-
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where the operator D satisfies (16). This implies immediately that the
spectrum of BIZY lies in fact on the circle {lz]2 = ¢}.

By X (or A) we denote a natural linear extension of X (or 4 acting
in X) to the complex case. Often the sign “~” will be omitted if it is
clear what case we deal with. Talking about spectral properties of. oper-
ators we always mean the properties of their natural complex extensions.

We shall show now that all the eigenvalues of B|¥ are simple.
First, let us notice that the Gaussian measure defined by (17) is full and
thus the operator D|¥ is non-singular in ¥. From this it follows that
the sesquilinear form

(18) @ 9)p = (D5,y), @,ye¥,

is an inner product in ¥. For such a product we have, by (16),

(19) {B*z, B*yyp = ¢, ¥p

and thus B B* = cI, where A’ denotes the conjugation of 4 in the
unitrary space H = (f ¢, ). Thus B is normal in H. This implies
existence of a basis in (¥, ¢-,-)) such that for this basis B is of the dlag-
onal form.

Summing up, there exists a decomposition of RY into a direct sum
RY = X @Y such that u can be represented as a product u = py¥u,, where
u; is a semi-stable full measure on X without a Gaussian component
and u, is a full Gaussian measure on Y. The spectrum of B is contained
in the disc {|2| < ¢}. Moreover, spectrum B | X< {[2|* < ¢} and spectrum
B | Yc{|?|* = ¢}. This ends the proof of necessity.

Remark. The pairs (¢, B) which can occur in the formula (x),
u® = Buxd(b), are characterized by the connection between the constant
0 < ¢ < 1 and spectral properties of B described in Theorem. More pre-
cisely, if (¢,B) is such that 0 <c¢ <1 and spectrum Be{|21< ¢}, where .
the elementary divisors of B corresponding to the eigenvalues lying on
the circle {|2|* = ¢} are one-dimensional, then there exists a semi-stable
measure x for which (x) holds.

Indeed, let a pair (¢,B) have the properties mentioned above and let
RY = X @Y De a decomposition of R¥ identical with the one in the proof

of Theorem. Moreover, let X = @ X; be a decomposition of X into a sum
jeI

of elementary subspaces cyclic with respect to B. Let us fix vectors

#y¢ X;(jel) and put

(20) M{Ba}) = ¢ hel, 1=0,41,+2,...

It is easily seen that I defined by (20) satisties the condition BM = ¢M.
We shall show that M is an LK-measure. To do this it suffices to show
that for some norm ||-|| in X the inequality

for
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. .
(21) DB e < 400, @e X,
n=1
holds.

From the spectral properties of the operator B|X, in particular
from the fact that the spectral radius of B|X iy smaller then yc, we
infer that there exist constants y and ¢ < ¢ such that

(22) IB*|* < ye*.

The inequality (22) implies (21).
Let us define a measure u, putting

() =exp [ K(a,y) M(da),
RN _{0}

where K and M are defined by (14) and (20), respeetively. The measure
4 15, of course, semi-stable, without a Gaussian component and full on X,

Now we shall build a full ‘Gaussian measure u, concentrated on Y.
Let us denote by (91, ..., ¥m) the basis in the real space ¥, that is “diag-
onal” with respect to the operator B*. More precisely, vectors of our
basis satisfy either _ '

() By = Ly for real A, or ‘

(i) By = &Y+ bYpyr s B*?/k+1 = —byp+ayy,, for complex 2.
Here 4 is an eigenvalue of B* in ¥; 1, = a+ib, a2+b? = c.

e define a quadratic form (Dy,y) putting

m m
(2 ’ (Dy,y) = Za,ﬁ when y = Zakyk.
.. ’ Jowal Fomml

Let us verify the formula (16). In the case (i), putting (z) = (Dz,2),
we have

P(B*ayy) = a?A} = a?e = 0"/)(a-yk)' ‘
In the case (i), for @ = ayy+Byp, We have
P(B"0) =y (a(@s+BYpsn) + B(—bys+ ap4r))
= a2a+ gb? 4 213 4 fra?
= 0(a®+ %) = op(ag+pYr41) = op(a).

From these equalities the formula (16) follows easily.
Let us put now a,(y) = exp [—%(Dy,y)]. Obviously, the measure u, is
full on Y. The measure g = u,#u, satisties all the conditions of our remark.

icm
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