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Nonseparable ¢ James tree’” analogues of the
continuous functions on the Cantor set

by
JAMES HAGLER* (Washington)

Abstract. For every cardinal number m with m¥° < 2™, there exists a Banach
space X of dimension m such that X* contains an isomorph of Zim, but such that
X containg no isomorph of #*(4) for any uncountable set /. This space X can be
taken to be the continuous functions on a compact Hausdorff space 2. Topological
properties of 2 are investigated.

" Introduction. The purpose of this paper is twofold. First, we complete
the study of this problem: Are there infinite cardinal numbers w with
the property that if X is any Banach space of dimension (= density character)
m such that X* contains a subspace isomorphic to 1*( 'y with the candinality
of I' greater than m, then X contains o subspace isomorphic to I*(A) for some
uncountable set A% (The answer is no.) Second, in the course of the study
of the problem above, we are led to consider a compact Hausdorff space
2 so that 0(2) shares many of the properties of weakly compactly gen-
erated Banach spaces without being one itself. The space @ has interest-
ing topological properties which are discussed in Theorem 2 below.

We accomplish these ends by constructing a nonseparable Banach
space using the general techniques introduced by R. C. James in [6].
The compact xpace £ is a certain weak* compact subset of X*.

Our main results are: ’ v

TuroruM 1. Letm be o cardinal number, satisfying m™ < 2™. Then
there ewists o Banach space X satisfying the following properties:

(1) The dimension of X is m;

(2) X* containg a subspace isomelrically isomorphic to I(I') where
I has cardinality 2™;

(8) X does mot contain o subspace isomorphic to 1'(A) for any uncount-
able set A;

(4) X* does mot contain o subspace isomorplic to L'{0,1}" for any
uncountable cardinal number w;

() X s not weally compacily generated.

* AMS (MOS) subject classifications (1970), Primary 46899, 46E15. Secondary
54G99.
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TrrorEM 2. Let m be @ cardinal nuwmber satisfying m < 2™, Then

there emists a compact Hausdorff space @ satisfying the following:

1) The topological weight of £ is m;

2) The cardinality of Q is 2™;

3) C(R) does not contain & subspace isomorphic to (A) for any un-
countable set A; )

(4) For any regulor Borel measure p on Q, LMu) is separable;

() C(R) is not weakly compactly generated; )

(6) £ s sequentially compact;

(7) @ has & dense, dense i itself subset I such that no countable subset
of I' has an accumulation point in I

We remark that (1)—(8) of Theorem 2 imply (1)~(5) of Theorem 1.
However, we state two separate results becaunse we firgt produce a Ba-
nach space X satistying Theorem 1, then use the space X to construet
and to analyze the space £ of Theorem 2. Given a cardinal number m,
the m-dimensional space X we consider is a space of functions defined
on a dyadic tree . When m == X,, the space we obtain is isomorphic
to the continuous functions on the Cantor set. (All of this will be made
preciserlater.)

Let us briefly mention the history of the problem which motivated
this study. ITn [3] (cf. also [9]) it is proved that if X* containg an isomorph
of I(I") and the dimension of X is less than the cardinality of I, then X
contains an isomorph of I,. It is also shown in [3] that if m is a cardinal
number satisfying m® = 2™ then there exists an m-dimensional Banach
space X (in fact, a space of contintious functions on a compact Haus-
dorft §pace) satisfying the following: X* contains a subspace isometrically
isomorphic to P* (I'), where I" has cardinality 2™, bubt X contains no sub-
space isomorphic to I'(4) for any uncountable set 4. (In this case, the
spaces X are weakly compactly generated.)

The questions remaining from [3], then, involve cardinal numbers
m for which m" < 2™, In some sense, the answer for these cardinals
(which include the cardinal number ¢, of course) iy more interesting and
the examples are less artificial (depending more on Banach space propertios
than on cardinality relations) than the examples in [3].

(
(
(

Remarks. (1) There are cases where known conditionr imply thuab
an m-dimengional Banach space X contains an isomorph of I* (A4) for
some uncountable set A. For example, in [4] it is shown that any m-dimen-
sional subspace (m > 8&,) of C{0,1}" has thisx property.

(2) Another application of the technique due to James of building
Banach spaces of functions defined on trees is given in [5], where a sep-
arable, hereditarily ¢, Banach space with nonseparable dual is constructed.
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Let us briefly indicate the organization of the remainder of this paper.
In Section 1 we introduce the dyadic tree and notions relevant to it and -
define the m-dimensional spaces which satisty Theorem 1. An easy but
important result (Lemma 3) on the behavior of a sequence of nodes of
the tree is included at the end of this section. We also discuss here the
anajlogfy between these spaces and the continuous functions on the Can-
tor set.

Section 2 contains the proofs of the main results. Proposition 4 is
a proof of the (certainly known) result that if X is a weakly compactly
generated Banach space, then dim X* < (dim X)* where dim X denotes
the dimension of the Banach space X. Lemma 5 gives an explicit charac-
terization of the space £ and is erucial in the proof of Theorem 2. Finally,
it follows from Proposition 8.3 of [9] that (3) is a consequence of (4) in
both the main theorems. However, we give a divect proof of (3) and then
indicate the minor changes needed to prove (4). (It is not known if (3)
and (4) are equivalent.)

Acknowledgement. The author wishes to thank Franeis Sullivan for
conversations and suggestions concerning the subject matter of this paper,

1. Preliminaries. For the most part, our Banach space notation and
terminology are standard, or can be found in References [1], [2] or [3].
All Banach spaces will be real Banach spaces.

The Banach spaces we shall construct are spaces of functions on
“dyadic trees”, which we now define. Let 8 be a limit ordinal. The
dyadic tree of height § is the set 75 = | J {0,1}* together with the partial

a<f

order described below. Blements ¢e7; are called nodes. If ¢ is a node
of 7, and ¢e{0,1)%, then we write |p| = a. In this case we write ¢ = (e,:
T< a) if @ is not a limit ordinal and (e,;: v < &) if « is a limit ordinal.
(Of course, &, = 0 or 1 for each v.) Now let v be a node with || > .
If = (6, v<<lyl) (or (6,2 v < |p]) if |p| is a Hmit ordinal), then we
say that ¢ > @ if 8, = &, for all v < a (v < a if o is & limit ordinal). If » > ¢
and |y} > |p|, then we write > ¢. Given two nodes y, peJ,; such that
neither v > ¢ nor ¢ = ¢, then ¢ and y are incomparable.

A segment 8 ix a subset of I such that there exists an ordinal in-
terval e v <o 00 a v <o (with o< 8) such that

(i) for each v in this interval there exists exactly one peS§ with
ol = 7;

(if) if v; and v, ave this in interval with 7, < 7, and if ¢,pe8, |p| = 7y,
9| = 7, then ¢ > ¢.

In case S is a segment and pe8, we say that S passes through @. It is
clear from the definitions that there is a segment S passing through
nodes ¢ and ¢ if and only if =y or v > ¢.
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Let S be a segment. Then we define sup (p: peS} =9 U |g| =
sup {{pl: lpleS} and ¢ = yp for all pel. (It is possible that sup {lv]: peS}
= B, 80 @¢T 5, bub this definition still makes sense.) -

A brameh B is a maximal segment, i. e., 2 segment of 77, so that for
every ordinal « < f, there exists a peZ, with lp| = a. By identifying
a branch B with the sequence sup pe{0,1}", we clearly have a one-one

e

correspondence between branches of 7, and {0, 13, We will say that

pe{0,1}° determines o branch B if B is the unique branch for which sup v
weB

= (p,

Remark. Reference to the obvious pictorial representation of the
tree, its partial order, the segments and branches, etc., will greatly facili-
tate understanding of this paper.

Now, let @: 9, - R be a function. We will denote @ == {f,: e}
where t, = «(p) for all peJ. Tor a node ¢ of 7, ¢, denotes the function
satisfying

) ) 1 if ep=mw,
e =
oV 0 otherwise.

Tet us define some (algebraic) linear functionals and projections on
the vector space of finitely non-zero functions on 7. Fix such an 2 =
{ty: peT s} If 8 is a segment, then we define §*(@) = 3 t,. (It 8 = {g},

s

pe
then we write g* instead of {#}*) If B is a branch, then we define B*(w)

. Eth,. We now define the projections, For ged, define P, by
@€

t if >
Py =0 =P
0  otherwise.
For any a< B, we define P, by
t if >0
Py = T M=
0  otherwise.

We are now ready to define our m-dimensional Banach spaces. Let m
be an infinite cardinal number and p the initial ordinal corresponding
to the cardinal m. For a finitely non-zero function = on 7y, define ||
= max |§*(x)|, where the max is taken over all segments § of 7. Leb
. X, be the completion of the vector space of finitely non-zero lfunctions
in the above norm. It is clear that the projections and functionals defined
above all are of norm one.

For the moment, let us put f = w (the first ordinal) and m =R,
We denote Xy by X,. Let 4 = {0,1}* denote tho Cantor xet, C() the
space of continuous real-valuwed functions on A, and the sets Uy =

icm
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{(&: ieN): (615 -+, &) = @, |p| = n} the “natural” base of closed open sub-
sets of 4. (Of course, & = 0 or 1 for each i.) Let h, denote the charac-
teristic function of the corresponding set U,.

Define an operator R: X, — ((4) by Re, = h,. It is easy to see
that R is continuous and is in fact a quotient map. If we put &, = ¢,—
'— 04,0 — 0,1, then routine computations show that the kernel K of the
operator B is the closed linear span of the set {k,: ge,} and that this
set iy equivalent to the usual basis of ¢p. (If ¢ = (&, ..., 8,)e{0,1}" and

= 0 or 1, then g,e = (&1, ..., &, &)e{0,1}**1.) Since K (being isomorphic
to ¢,) is complemented in the (separable) space X, (cf. [1], p. 96), we
have that X, ~ 0(4)@e, ~ 0(4) by the decomposition method (ef. [8]).

‘We shall not prove any of these assertions about X,. We point them
out to show that for cardinals m > R, the space X is a mnatural non-
separable analog of X,, which in turn is isomorphic to O().

Many of the proofs involve the selection of subsequences of given
sequences. As the constructions can involve several parameters at one
time, we adopt the following conventions: We will denote sequences of
vectors by @ (1), #(2), ... and sequences of nodes by ¢(1), ¢(2), ... (Some-
times, these sequences may be indexed as functions of two or more vari-
ables.) There will be no confusion between 2 (n), the nth term of a sequence,
and 2 (¢), the value of the function # at the node @7 5. Whenever possible,
we index sequences by infinite subsets of the positive integers N. It M
is an infinite subset of N, we will consider M as a subsequence of N. On the
other hand, we will index sequences of scalars by the traditional subseripts,
e.g., o sequence of scalars 3,1y, ... or {;: je N}, tequences of ordinals
DY @y, ag, ... 07 {og: jeN}, and sequences of integers by Ny, Mgy ... OT
{n;: jeN}. :

We prove here one result concerning the behavior of a requence of
nodes.

LevMA 8. Let {p(n): neN} be a sequence in Tg. Then there exists
o subsequence N' = N satisfying one of the following alternatives:

(i) For allm,neN", p(m) = p(n).

(i) There emists an o< fi such that |p(n)| = a for all meN'.

(i) If m, neN' and m>mn, then p(m) and @(n) are incomparable
and |p(m)] > g (%)l

(iv) If m,neN' and m > n, then p(m)> @(n).

Proof. Assume that neither (i) nor (i) hold for any subsequence of
N. Then it ix straightforward to produce a subsequence N, of N such
that if m,neN, and m > n, then |p(m)] > lg (1.

Once this is done, the proof is completed either by a direct appli-
cation of Ramsey’s theorem or by translating the proof of Lemma 4 of
(8] into the appropriate terminology: m )
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9. Proofs of the main results. Let m be an infinite cardinal number
satisfying m® < 2™ and let X = X,,. We show that X satisfies Theorem 1
and that a certain weak* compact subset of X* satislies Theorem 2. For the
remainder of this paper, let J =7, where g is the initial ordinal cor-
responding to mt.

Proof of Theorem 1. To prove (1) observe that the set {e,: pes}
has cardinality n, so finite linear combinations of the e,’s with rational
‘coefficients are dense in X.

To prove (2), observe that there are 2™ branches B of 7. Let By By, ...

., B, be distinet branches, and let scalars ty, ..., %, be given. Pick an
ordinal a < B such that if {p(i)} = {0,1}*nB; for ¢ =1,...,n, then
p(i) #o(j) it i =]

Let ¢ = 2 sgn (1) ey, Where sgn (t) = 1if 4> 0 and ~1 if 4 <0.

Then |z|| = 1 and

IZt B Sgn (1) eg)] = j’mgn (1B (¢orn) Z .
i=

4==1 feal

which shows that the set I' = {B*: B is a braneh of 7 } iy ivometrically
equivalent to the msual basis of ().

To prove (3) assume that there exiszts in X a set of norm one vectors
{2(A): Aed} (where A is uncountable) and a 6 > 0 such that

n n
13 20 > 0 X1t
1=1 =]

for all n, 4y, ..., ,e4, and scalars 1, ..., %,.
Smce flmte lmeznl combinations of the ¢,’s with rational coefficients
are dense in X, we may select for each Aed a finite linear combination

O]
@) = D' a(d; i) epuy

(2
such that a(4,1) is rational and |a(4, 7)) < 1 for each 4, and such that
[¢(2) —2(A)]| < 6/2. Since 4 is uncountable, there is an uncountable sub-
set 4, < A such that, for all Aed,, k(A) = k But now, since there ave
only a countable number of k-tuples of rational numbers, there is an
uncountable subset 4, = 4, and rational numbers a,, ..., a; such that,
for any Aed, and i =1, ..., k, a(2,4) = ;. In other words for Aed, we

have
1
) = E“Nw(u)-
=1
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Now, let Ay, 4y, ... be any distinet sequence of elements of A,. Writing
z(n) = #(4,) and @(n, i) = @(4,,4) for these elements, we have that

Z s Eofn, 'z)

ge=

Tor ¢ == 1, select a subsequence N, < N such that {p(n,1): neN}
satisfies one of (i)-(iv) of Lemma 3. Proceeding inductively from 4 =1, ...
.y ki, nelect subsequences N o= Ny o ...> Ny such that ¥; is a subse-
quence of Ny, and so that {p(n,4): neN,;} satistien one of (i)—(iv) of
Lemma 3. Observe that for any ¢ =1, ..., %, {p(n, 1): neN,} satisfies one
of (i)—(iv) of Lemma 3.

Out of Ny, let us pick a sequence m;<<n, <my;<... Then for
fixed 4, it {p(n,d): ne Ny} satisties (i), (i), or (iv) of Lemma 3, then
{Cotmyyt) = Cotngyi)* jeN} is equiv@lent to the ua:uayl basis of G- Tousee thq,
let s and scalars &y, ..., t, be given, If {p(n, 1): ne<N;} satisties (ii) or (iii)
of Lenna 3, then no segment can pass through more than one ¢(n, 1),
nelN,. Hence, for any segment §,

8

o\

‘S* 2, ty (Cotmy, — GW("]'-"))‘ < ”;“]’X [t1-
Jul

On the other hand, if [4,] = max [{], then
. J

8
l (p(m'ﬁ’ ’I;)* th(eﬂmj.i) —_64”("]"[))[ = lt_',pl'
Jrl

These computations combine to show that

-

H S tf(em(mj,i)—eqa(;;j,i))u = mjax 1.

T {p(n,i): nelVy} satisties (iv) of Lemma 3, then for each j, ¢(ny, 1)
> @My, 6). ho it 8 is any segment, then for at mor&t two j’s is 8 (e oty ) —

q,(.,bj.)z) 0, since if § passes through both qa(m,, and  @(n;, 1),
then § (5"""”1'4) = Louyi)) = 11 == 0. Hence,

-
‘ g 21 t (d'?(mj,’ﬁ) . ("q'(n],t))
Jemd

and it follows s in the other cases that

< 2max [,
J

&
. 1 . J
max [ = Z tj(cw(mj.ﬂ~e¢m’,ﬂ) tg 2 n}ax 1.
7 el ‘ .
Finally, it {p(n,$): neN;} sativties (i) of Lemma 3, we have

Cotmpt) ™ Cotngy = 0 for each j.


GUEST


48 ' J. Hagler

Tn each of the above cases, we can conclude that for every s and

scalars 1y, ..., fg,y

H Zs'tj(eﬂmj,ﬂ —ew(nj,i)) “ <2 n’ljax %]+
J=1

k
= 2 @i (Cofmy,) —
=l

M 1 1 Mok
” Z'M?/U)‘ =77 H 2 Z ai(em(mj,i) _equ(n],'!)) ‘
=1 Jeml gl

k M
1
<7 2 || 2 (Cotmy) — Cotns,0) ’
=1 =1

On the other hand, if the set {¢(n): neN;} is d-equivalent to the

For each j, put' y(5) = @ (my) —a(ny) ea,(nj,i)). Tix an in-

teger M. Then

< okM.

usnal basis of 7', we have
M
| 31392 3 3etemi—son] -
i=
-Z—Utzmj @ (my)]| + le(ng) ~a (ny)l) > 28— 6> 6.

j=1

Tf we pick M so that 2kM~' < §, we have a contradiction. Thus,
X does not contain isomorph of I*(4) for any uncountable set 4.

The proof of (4) is similar to that of (3). Let n > ¥, be a cardinal
number. Let I: H — L*{0,1}" be an isomorphism of n-dimensional Hil-
bert space H into L'{0,1}* and let {r(a): aes’} be an orthonormal set
in H, where & has cardinality n. Let {r(a)*: aesf} in H* be the functionals
biorthogonal to the r(a)’s.

Assume that there exists an isomorphism U: Z'{0,1}* - X*.
Then I*U*: X** - H* iy onto. Since by Goldstine’s theorem [1] the
weak® closure of the unit ball of X is the unit ball of X™*, since U* is
weak® continuous and I is weak™-weak continuons, it follows that I* U*|x
is onto. Thus, there exists a constant IC such that, for each we.s/, there
exists z{a)eX, |k(a)|< K, such that I* U*(z(a)) = r(a)*. For each a,
pick a finite linear combination #(a) of the e,’s with rational coelficients
such that |@(a)—2z(a)| < (2|11 U"‘H)'1 Then if ay, aye o and a; % a,, We
have |I* U*(2(ay) —@(ay))| > V2 —

Sihce the operator I* U™ iactoxs through L®{0,1}", and since L®{0,1}"
satisfies the Dunford-Pettis property (cf. [10], for example) it follows
that no sequence chosen from the set {#(a): eeo?)} can have a weak Cauchy
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subs equence Hunoe, by the results of [11], every sequence chosen from
the set {#(a): aes/} has a subsequence equivalent to the usual basis of 7.
But our construction in (3) shows that the set {z(a): aes/} has a sequence
with no subsequence equivalent to the usual basis of I*. This contradiction
proves (4).

Next, since X has dimension m, X* has dimension 2™ and m™ < om,
(5) follows from the following easy result. The idea for the proof comes
from [7] and [10]. ‘

ProvOSITION 4. Let X be a weakly compactly generated Bamach
space, m the dimension of X. Then the dimension of X* is at most

Proof. We first show that if ¥ iz a bounded convex subset of X*
then Y is weak" sequentially dense in c1*(¥) (where cl*(+) denotes weak*
closure). Let K be a weakly compact subset of X which generates X.
Let T:X* - O(K) be defined by Tu*(k) = o*(k) for « *e X, ke K. Tt is
clear that 7' is one to one. Also, Tlawry is weak™-weak contmuous (ef., for
example, the proof of Ooro]la,ry 3.4 of [12]). Thus, T(X)" > T(l*(T))

and since Y is convex, 7'( Y) T(X) ("7 denotes weak closure,
closure). Hence T'(Y)

=T (cl*( X))

Let fecl*(Y) be given. For each n, pick f(n)e ¥ such that | Tf(n) —TF)|
< 1/n. Since ¢I* (¥Y) is homeomorphic to weakly compact set in a Ba-
nach space, it follows from the Eberlein-Smulian theorem (cf. [2]) that
A*(Y) is requentially compact in the weak™ topology. Hence there exists
a subsequence f(ng) of f(n) and a gecl® (¥) such that f(n,) — g weak®.
Therefore If(ng) —Tg weakly and since Tf(ny) — Tf in norm, it follows
from the Hahn-Banach theorem that Tf = Ty. Smce T is one to one,
J =g. Therefore f(n;) —f weak*.

Now, let ¥ be a eonvex subset of the unit ball B of X™* such that

norm

A*(Y) =B and let {y(a): ae} be a norm dense set in Y. Since Y is
weak® sequentially dense in B, it follows that
dim (X*) < card (B) < (card (=),

Now let {x(a): aes?} be a dense set in the unit ball of X with card ()
= dim (X). For each aes? pick f(a)eB such that f(a)(m(a)) = |z (a)|.
Then by the Hahn-Banach theorem, the convex hull ¥ of the set {f(a)
aes?} i such that ¢l* (¥) = B. Since the norm density character of ¥
is Ry == m, we have that m™ > dim (X*), proving the lemma. m

To deseribe the compact set £2, we introduce more notation. Let
a < f be a limit ordinal and for pe 7, |p| = a, we define the segment S,
by 8, = {pes: p <o} Let I'={B*: Bis a branch of7}. Define 2
= cl*(").

To prove Theorem 2, it is useful to have an explicit characteriz-
ation of those functionals in X* which belong to .

4 — Studla Mathematica 61.1
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LEvuMA 5. Let Q be defined as above. Then @ = I' U {8;: Ip| = q,
a a limat. ordinal < B}

Proof. Let f be weak* accumulation point of I*1 We show that
f = 8 for some ¢, |p| = ¢, a @ limit ordinal. SiJ.me B*(¢,) =1 or 0 for
every branch B of 7 and peJ, we must have j*(e?) = 1’ or 0 f.‘(‘)r every
f< Q. In particular, since B*(¢g) = 1 for every B*el (@ is the “null se-
quence” in {0,1}°) we must have f(eg) = 1 for all fe 2. Thus, IIf]l == 1 for
all fef. o

We claim that § = {peJ: f(e,) =1} forms a segment. First, if
(1), p(2)eS and y(1) and ¢(2) are ingomp@x‘&ble, then e )+ yell = 1
but f(eyq)+ epe) = 2 which is impossible since Ifll = 1. ‘

Now, let ¢ = sup {g: pef). Assume that for some ¢ <o Sle,) =
Pick ¢ = 0 or 1 such that y,e and ¢ are incomparable and pick _@e§ with
v <o Lete =e,—6,—¢6,, Then f(z) = —f(e) = ~1, but it Bis any
branch, then B* () = 0 if B does not pass through v if B passes through
y and y,e, or if B passes through y and ¢. Also, B (w)_ =1if B paskes
through y and not y,e or o. Since this exhausts all possﬂ)lel casses, it fol-
lows that {geX™: |g(&)—f(x)| < }} eontains no B*eTl’, so f is not an ac-
cumulation point of I This shows that 8§ is either the segment {y: v
< @} or {p: p< ¢} We show that the latter case is impossible. Observe
that if B is any branch, then B*(e,—e,q—6,,) = 0. On the o‘ulher Ylla,nd,
if pel, then f(e,—6,,—6,1) = f(€;) =1, which is impossible if f is an
accumulation point of I. Thus, 8 = §,, and it is clear from the above
that |p] is a limit ordinal. Since f(e,)= Sy(¢,) for all peJ, we must hilv.e
f = 8. To complete the proof of the lemma we show that every such Sp is
in the weak™ closure of the set I. Let (1), ..., #(n) be finitely non-zero
elements in X. Then there exists an o < |p| such that for all peJ with
a< Iyl < lpl, p*(@()) = 0 for i =1, ..., n. Let us pick and fix one such
pel,. Then there are an uncountable number of y'<7 with 9’ > ¢ and
9’| = |p|. Since the x(4)’s are finitely non-zero, it follows that there
exists at least one branch B passing through ¢ for which PyB*(w(i)) = 0
for 4 =1,...,n In particular, since weS,, we have that B*(w(s)
= Sy () for i =1,...,n. ‘

Now let 2(1),...,2(n)eX and e > 0 be given. Find finitely non-zero
#(1), ..., o(n) in X such that |#(3) —=2(i)|| < &/2 for ¢ =1, ..., n and find
B and y satistying the conclusions of the paragraph above for @ (1), ..., #(n).
Then, for each i,

|(B* — 85z (4))| < | B*(e(8) —w(i)] + |(B* — 85)(w (4))| +85(z (8) —(3)) |
< 2e(d) —o(i)l < & ‘

30 B*e{ge X*: |g(e(s)) — S}(2(4))| < efori =1, ..., n}. This completes the
proof. m : :
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Proof of Theorem 2. We show first that the evaluation operator

R: X — (L) defined by Re(f) = f(») for weX, fef, has dense range.
Observe that for g,pes.

Be, i p> ?,
(Rey)(Re,) = \Re, if o>y,

0 if ¢ and y are incomparable,

From this, it follows that {Rw: w<X is finitely non zero} is a subalgebra
of 0(Q). Clearly, Rey =1, where @e{0,1}°, and {Be,: peT} separates
the points.of 2. By the Stone-Weierstrass theorem, R(X) is dense in
a(9).

To prove (1), observe that since X is m-dimensional and there is
a map from X into 0(RQ) with dense range, the dimension of ¢ (2) is at
most m. Since the cardinality of © trivially seen to be 2™ (establishing
(2)), a standard argument shows that the dimension of ¢/ () is at least m.
Thus, the dimension of ((Q) is m. Since the topological weight of 0 is
equal to the dimension of (), we have established (1). This discussion
combined with Proposition 4 establishes (5). )

Next, since the operator R: X — ¢() has dense range, it follows
from (3) of Theorem 1 and Lemma 8.1 of [9] that ¢ (R2) does not contain
an isomorph of I*(4) for any uncountable set A. This establishes (3).

Implication (4) is proved in a fashion similar to that of (4) of Theorem 1,
80 we just sketch the proof. Let n, H,{r,,rs: aest} and I: H — 0,1}
be as in the proof of (4) of Theorem 1, U: L*{0,1}" — ¢(£)* an isomorph-
ism, and R: X —((Q) as above. By dualizing the diagram

HL 1o T 0(2)* B> x*,
we have .
B oo s {0, 7
(o, R \y
X > 0(8).

As in (4) of Theorem 1, I* U*| g is onto. So there exists, for each aes,
g()eC(L) such that I*U*g(a) = r(a)*.

Since R has dense range, there exists for each o an #(a)eX finitely
non-zero such that |Re(a) — g(a)|| < (2T T*))~*. We then have |I* U*s(a)—
—r(a)*] < 271, 0 |I* U*R(w(ay) —(ag))]| > V2 —1 for distinet a;,azess.

Since & iy uncountable, there exists'an uncountable subset & < .o
and an L < oo such that |lw(a)| << L for all aess’. Since C(Q) has the
Duntord-Pettis property (cf. [10], for example), no sequence chosern out
of the set {(a): ae?’} can be a weak Cauchy sequence. However, the
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proof of (3) of Theorem 1 shows that there exigts a sequence in {#(a):
acsl'} that has mo subsequence equivalent to the usual basis of . But
this contradicts the main result of [117 and the proof of (4) is complete.

We prove (6) as follows. Let {f(n): neN} be a sequence in 2. Kach
f(n) corresponds either to summing along & branch or a segment. In the
latter case let p(n)ed” be such that f(n) = S:(n). In the former case let
#(n)e{0,1}® be such that if B is the branch determined by ¢(n), then
fin) = B*. .

Now let N, = N and let o, be the smallest ordinal guch that there
exists a pe I with [p| = a, and a proper infinite M = N such that for all ne M,
@(n) =y and for all ne N\ M, p(n)and y are incomparable. Let w(1) be
one such » and N,.an infinite proper subset of N, so that y(1) and N,
satisty the above property.

Inductively pick ordinals a; < ay << ..., elements p(j)eZ” and infi-
nite subsets N, Ny, Ny, ... such that (1) p(1) < 9(2) <...; (2) o is the
smallest ordinal > ¢;_; such that there exists a y(j)> p(j—1) with
l9(§)] = a; and a proper infinite subset N; = N;_; such that @(n) > w(J)
for all neN; and p(n) and y(j) are incomparable for all neN;_\N;.

Lety = sup p(j) and f = She 2. We claim that if we pick n;eN;_,\Ny,

then f(n;) — fjwea‘k*‘ To see this, we first let 4 be a finitely non-zero
element of X. Then if {R(j): jeN} is any sequence of pairwise disjoint
segments, there must exist a % such that if j > &, R(j)*(y) = 0.

Now let , |zl =1, and ¢>0 be given. Pick a finitely non-zero
yeX such that |ly| =1 and |ly —a| < &/2. Since « = |y| is a limit ordinal,
there exists a = < a such that (P,—P,)y = 0. Also, since sup |p(j)| = q,

' ]

there exists a %, such that ly(j)| > v for j = k,. Thus, for j =k, S,,(nj)
~ passes through y(ko), 50 f(1;)(y ~Poy) = S (¥ —Paty) = F(¥)-

By the construction and the observation above, there exists a ko> kg
such that, for j > kg, Puf(ny)(y) = 0. Thus, if j = &,

{f () —F) (@) < 1F () (=) + 1 f @ =) +| () —f) ()] < &

This proves that f(n;) —f weak™

Finally, we prove (7). To see that I is dense in itself, let B*el" and
let @(1), 2(2), ..., x(n)eX and ¢ > 0 be given. Since @ (1), ..., #(n) are all
at most countably non-zero, there must exist an a < g such that Prw (i) = 0
fori =1, ..., n. Let peB, |p| = a. Then for any branch B, passing through
v, we have B} (#(¢)) = B*(#(i)). This proves that I' is dense in itself.

Finally, let By, B,, ... be a countable set of distinet branches of 7.
Tor fixed ¢, there exists a yeB,\|B;. Thus, Bj(e,) =1 and Bj(e,) =0
if j % 4. Therefore, i

{geX*: Igle,) 11 < $}N{B}: jeN} = (B}

icm®
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which proves that the set {B}: jeN} is discrete. (In fact, this argument
shows that even though I'"is dense in itself and £ is sequentially compact,
no countable set in I" has an accumulation point in I') m
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