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On the geometric properties of the joint spectram
of a family of self-adjoint operators

by
YU. 8H. ABRAMOYV (Leningrad)

Abstract. In this note we discuss certain geometriec properties of the joint spee-
trum of a family od self-adjoint operators. It is shown that the conical points of the
joint numerical range belong to the joint spectrum. Moreover, variational characteriz-
ations of eigenvalues are given in the case of a commuting family.

1. Introduction. Let 4 = (4,, ..., 4;) be a family of bounded linear
operators in a Hilbert space H with the scalar product (-,-) and the norm
II]. We denote by p;(#) the Rayleigh functional for the operator A,,i =
1,...,k, ie.,

(A@, @)
() =’ » #0.

In recent years quite a large number of works has been devoted to
the study of the following subset of the space O*:

W= {(pl(m)y ---,pk(”)): © 0};

this set is an analogue of the numerical range of an operator (the case
of & = 1). Preserving this terminology, we shall call W also the numeri-
cal range of the family A. As it has turned out, the properties of the nu-
merical range are, in general, no more valid affer passing to higher di-
mension (&> 1); a positive fact is the convexity of W in the case of
a commuting family of normal operators [1]. As far as is known to the
author, no more essential properties of the numerical range of a family
of operators have occurred in the literature. .

The notion of the spectrum has also been extended to the case of
a commuting family of operators, the resulting concept being called the
joint spectrum. And, as it usually happens with generalizations, there
exist various non-equivalent extensions. A detailed claggification of
joint spectra can be found in the paper by Z. Stodkowski and W. Zelazko
[6], together with the bibliography of the subject. Here we distinguish
the joint spectrum o defined as the set of all points 4 = (A(‘), veny AUY
such that the ideal generated by the operators {i¥I — A}, 1<i<k,
in the bicommutant of A, is proper. A. T. Dash [1] has shown that, in
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the case of a family of normal operators, the closure of the numerical
range W coincides with the convex hull of the spectrum o:

(1) o< W = conv .

This fact will be useful to us in the sequel.

We shall focus our attention on the case where the family 4 con-
sists of self-adjoint operators. Let us remark that already for % =3
(without commutativity assumed) the set W need not be convex (see [4]).
In the self-adjoint case the set T can be viewed in a natural way as a sub-
set of the real Euclidean space R®.

A I-tuple 1 = (A®, ..., A®) will be called an eigenvalue of A il there
exists a non-zero eigenvector # corresponding to A, i.e., such that

A=, {=1,...,%

If we introduce the Rayleigh functional (more precisely, the Eayleigh
operator) for the family A by putbing

= (pl(w)a ~":fpk(m))7
then we have p(#) = 1, where A is an eigenvalue and # is the correspond-
ing eigenvector. In particular, the eigenvalues belong to.the range W.

In the case of a single operator it is well known that boundary
points of the numerical range of a (self-adjoint) operator belong to its
spectrum; consequently, in the finite-dimensional case, they are in fact
eigenvalues. In Section 2 below we generalize this fact to families of
operators; the role of boundary points will now be played by so-called
conical points.

- There exist well-known variational characterizations of the eigen-
values of self-adjoint operators; they are connected with the names of
Rayleigh, Courant-Weil, Poincaré—Ritz. The natural ordering of the real
line makes it possible to write those eigenvalues in the form of successive
maxima and minima of the corresponding quadratic forms. Pushing the
analogy further on, one is naturally led to the problem of extremal proper-
ties of the eigenvalues of the family 4. The main difficulty, however,
lies in the absence of a linear order in R*; wo are not going to attack
this difficulty now. We just assume that some partial ordeving is
induced by a cone (not every come is equally good) and the variwtional
problem will be formulated with respect to that ordering. In Section 4
we obtain certain prineiples of min-max type, providing means for the
deseription of the eigenvalues of A not involving the eigenvectors. We do
not want to restrict our considerations to compact operators; thevefore
we introduce the concept-of the appromimative point spectrum = for the
family A. As in the one-dimensional case, the set o\ consists of isolated
_elgenvalues of finite multlpllclby, which we characterize in terms of
variational principles.
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2. Conical points of the numerical range. In this and in the next
section we consider a family 4 = (4,,...,4,) consisting of bounded
self-adjoint operators, which are not assumed to commute.

For A = (A, .., A", § =1,..., %k, we put

L)) = 91— 4,.

The spectrum of A is defined as the set of all points AeC* for which there
exists a mequence {®,} with {#,]| = 1 and such that

Li(ﬁ)mn——>0, 7:-——1,...,7{2.

If, additionally, the suquence {®,} converges weakly to zero (in symbols,
@, —0), we say that A belongs to the approvimative point specirum of A.

The spectrum and the approximative point spectrum will be denoted
by o and =, respectively. Clearly, = = o, and both these sets are compact
subsets of R If leo, then for some sequence {z,} with |z,] = 1 we have
(A, B,) — AW for all 4. Thus

cc W,

where W denotes the closure of W.

Ohserve that, in the non-commutative caze, we have taken as the
spectrum what iy usually called the appromimative spectrim,. This seems
reasonable, since the operators in question are self-adjoint. In the com-
mutative case o coincides with the spectrum investigated in [1], [2], [4]
and [6].

We now introduce the operator #,(A) depending on two parameters
a, AeRF:

: I

= D) (19 —a®) L,(3).

t=1

Z.(1)

THEOREM 1. Leét ye W and assume that W lies inside m spheres with
CENIres dy, ...y an and that y belongs to all these spheres. Then the point O
8 in the gomt spectrum of the Sfamily

D = (D) s Do, (7)-
If, moreover, y = p(x), then 0 is an eigenvalue of @ and % is o corre-
sponding eigenvector.
Proof. Tor xeH, |2 = 1, we have
k

(%(?/)w, ,,) = Z(y(i)_au)) (y“i)'-m(m)}

=]
. k
= ly—ali+ > (¢ — o) (a® —py(a)),
=1

where. ||+ [l denotes the norm in RF.
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Let r, be the radius of the sphere with centre a, = (o, ..., al®y,
y =1,..., m Then
k
(2., ()0, a) = 13— | 3] (79 =) (a“’—p«(w))]
i=1
27—y —alella—p @)l
=1, (’v ~llay—2 (m)”k) .
Since p(x) lies ingide the »th sphere, we have |la, —p ()| < 7,. It hence

follows that the family & consists of positive operators. thce ye W,
there is a sequence {x,} with |,| =1 and p(a,) —y. Then

Z (0 =0 —pu(a) 0.

i==1

(ga,(y) w,,” mn

The operators Z,(y) being positive, we have
2) 12, (7) @nll® < 1D, (1)1 D, (¥) s %)
and this shows that 0 belongs to the joint spectrum of Z. If now y = p(w),
then (.@%(y)m,_m) = 0 and 5o, in view of (2), 0 is an eigenvalue of 2.
CoROLLARY. If m =k and if the poinis p, oy, ..., oy are the vertices
of a simplex in RF, then v belongs to the spectrum o of the family A.
If, moreover, y = p (@), then y is an eigenvalue of A and w s a cor-
responding eigenvector.
Proof. Since y, ay, ...,

det () — o) = det (P —af?) 0.

oy form a simplex, we have

Consequently the system of equations

k

= D =) Liy),

4=l

D, (¥) p=1,..,k

can be solved with respect to the operators I;(y). It remains to apply
the fact that 0 is in the spectrum of 2. The second assertion follows from
the last assertion of Theorem 1.

Let < R* and y<F. The point y will be called a conseal point of I
whenever there exists a cone K (by & cone we mean & convex cone satisfying
KN —X = {0}) such that the conical domain y — K contains ': F = y~K.

Using the elementary facts of the geometry of RE, we devive from
the last Corollary the following theorem.

THEOREM 2. If y is a conical point of W, then y belongs to the spectrum

o of the family A; in particular, if dim H < oo, then all conical points of

W are eigenvalues of A.
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. ’!‘hree_ lc-ammas. Let 4y, 4, ..., A, De any eigenvalues of A (not
necessamfly distinet) and let @y, #,, ..., @, be corresponding eigenvectors,
linearly independent. We denote by [y, ..., #,] the linear span of z,, ..., ,,.

LevumA 1. If we[®y, ..., 3,], © # 0, then

P (@)econv {dy, ..., 4,}.

Proof. First observe that 4 maps the space [a, ...
and that the 4,8 commute on that space

, @] into itself

n
A Ay = 2 e, 90 g,
Yozl
Further, note that the spectrum of the restriction of 4 to [xy,...,%,]
consisty just of the eigenvalues 4y, ..., 4,,. Now the lemma follows from (1).
LevMA 2. If B is o subspace of H of codimension © < n—1, then there
is an well, ® #+ 0, such that

p(w)econv {A,, ..., A,}.

Proof. This follows from the fact that Em[ml,.
from the preceding lemma.

LeMya 3. If AeoN\m, then A is an isolated point of o and an eigenvalue
of A of finite multiplicity.

If, moreover, the family A is commuling, then the converse is also true,

Proof. Let Aeo\m. There exists a sequence ‘{m.n} on the unit sphere
such that I;(i)@, -0, w, — & % 0. Therefore L;(A)x =0, 1 =1,..., &,
and so 2 is an eigenvalue. Its multiplicity is finite, otherwise the cor-
responding eigenspace would contain a sequence of unit vectors weakly
convergent to zero.

Assume that 11is a cluster point of o and let 7, e¢, 4, — 4. The spectrum
% being closed, we may assume that i,eo\z. As shown above, 1,’s are

. @1 % {0} and

- eigenvalues. Let , be corresponding eigenvectors, [z,]| = 1. We have

I (A) | < 149 — 20
and so Ly(A)w, -0, ¢ =1, ..., k. We may assume z, — @, 50 that L;(})x
= 0. Since
('Lq:(z')m: mn) = (I’i(}“n)wi wn) =0,

we see that (A®—2")(x,a,) =0 for i =1,...,k whence (z,s,) =0.

Letting # - oo we obtain # = 0, contrary to the assumption that A ¢a.

Now let A be a commuting family and let 2 be an isolated point

of ¢ which is an eigenvalue of 4 of finite multiplicity. Assume that len

and choose a sequence {x,} with o, = 1, 2, — 0and Ly(A) @, - 0,4 =1, ...
., k. Let M be a parallelepiped such that Mno = {1}, M = M, X
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. XM, where M/’s are one-dimensional intervals. Further, let F,(-)
and B(-) denote the spectral measures for the operator 4, and the family 4,
respectively. Then

B(M) = By(My) ... By(My).
As in the one-dimensional case (see [8]) it i not ditficult to verify that
w0, — B (M), — 0.
Now, we have the identity
Ie
I—-B(M) = D Bi[I—-B(M)],
=l

where B; are suitable bounded operators. It follows from this formula
that @, —B(M)z, -0 and 8o

lim [B(M) )| = 1.

Hence we infer that the projector B (M) cannot have a finite rank, and '

this is o contradiction to the assumption that A is an isolated eigenvalue
of finite multiplicity and that M contains no other points of o except 4.

4. Variational characterizations. In this section we assume that 4 is
2 commuting family.
Let K be a cone in R* of the form

{(AeR": fi(l) =0, i =1,..., k},

where f;'s are linearly independent functionals, so that K has exactly &
edges and contains interior points (see [3]): Observe that, in the case
k =2, K is just an angle (with vertex at the origin) of angular measure %
with 0 <% < m.

The cone K induces a partial order in R¥. For u, v<R* wo write u > v
it u—veK. If a set F = RF is bounded above (relative to that ordering),
then it has the least upper bound sup F.

We introduce the following -conditions

(3) o cla—K)U(atK),
(4) N (a+int K) =@,

where o is a point in R¥. According to Lemma 3 the portion of the spectrum
contained within the conical domain a-int K iy discrete, i. e. connists
of isolated points, which arve eigenvalues of finite multiplicity and which
can cluster about boundary points only.

We shall say that the spectrum of A is K-reguler in a--int I if
the eigenvalues contained in a--int K can be arranged decreasingly
(with respect to the order induced by XK):

(5) IS IS N

bt
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each eigenvalue occurring as many times as its multiplicity indicates.
Note that condition (b) implies that the sequence {i,} can have just
one limit point in the boundary of o-int K.

From now on we assume that the spectrum o of the family 4 sat-
isfies conditions (3), (4) and (5). We are going to prove the analogues
of the variational principles of Rayleigh, Courant-Weil and Poincaré—Ritz
for the eigenvalues of 4.

TuroreM 3. There exvists an orthonormal system of eigenvectors @y, ...
ceey By, ... COTTESPONding to the eigenvalues (5) and such that

(6) sup - p(e) = Ay,
LA PR . |
the supremum being attained ot the point ,.
Proof. If AeW, then by (1) we have

A= 2‘1¢Mi+2ﬂﬂn

i
where

wmeon(a—K), a, B;20,

Dag+p) =1.

1

Applying this representation and (B) we get 1< 4;. If now =, is an eigen-

vector for A;, then p(xy) = A, and (6) is proved for n =1. :
We proceed by induction. Let ®,, @, ..., &, ... be an orthonormal

system of eigenvectors corresponding to Ay, As, ..., Ay, ... Write

KX = [@1y e 0y Tm], B =HOX,.

Suppose that (6) is proved for m = 1, ..., n—1. We assume A, 7 Ay
(the other case is trivial) and we restrict our attention to the gubspace A,
Since H*! i reductive for 4, the restriction of A to E* (denoted by
4| B*Y) has the numerical range W (E"™') such that

W (B = conv o(d | B
and

o(A | B = oN{Ayy oy Ana} -

Hence in view of (B) we obtain p () < 4, for weF"*. This proves (6)
for m = n. ‘

Let &, (6" denote the totality of all gubspaces of H of dimension
(codimension) .

TanoREM 4. The following principle holds true:

inf  sup p(@) = -
Heg"—! wel
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Proof. Let Be#™; then by Lemma 2 we have p(z)econv {iy,...
«vy Mgy for some wel, © # 0. Consequently p(»)= 4, and so

M(E) =sup p(#) = Ay
well

Hence it follows that 4, is a lower bound for the set {M(H): Hes™ 7}
Bub, according to Theorem 3, we have A, = M(E"") and thus 2, is
the greatest lower bound.
THEOREM 5. The following principle holds true:
sup inf p(2) = A,
: Eeby xwell .
Proof. Let Hef,; then there is an element y # 0 in HnE*' and,
by Theorem 3, we have

m(B) = ink p() <P < A
QE,

Hence it follows that 4, is an upper bound for the set {m(H): Hes,}.
But, according to Lemma 1, we have m(X,) =4, and thus 4, is the least
upper bound.

Remarks. 1. If the family A4 = (44, ..., 4;) consigts of compact
operators, then it is easy to see that the approximative point spectrum s
containg no other points but the origin, ie., = = {0}.

2. Assume, for simplicity, that H is finite dimensional and let A4
= (4,, 4,), where 4; has a simple spectrum:

W= >. >,
and 4, has the norm satisfying the estimate
4, < § tan § » min (A8 —2())
with some %, 0 < x<w. Then the eigenvalues 1, = (AV, i) of the
family A can be arranged decreasingly in the first component; and this
is precisely the arrangement induced by the cone K = {z: |arg 2| < $ #}.
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Some properties of functions with
bounded mean oscillation

by
UMBERTO NERI (College Park, Md.)*

Abstract. Functions with bounded mean oscillation (BMO) have been shown
to be of great interest in several areas of analysis and probability. In the first part
of this paper, we examine the basic properties of these functions, giving a new proof
of the John~Nirenberg inequality and proving the completeness of the function space.
In the second part, we discuss various examples and remarks which have arisen
recently, and we give another characterization of the harmonic functions in a half-
space with boundary values in BMO.

Introduction. Nearly 15 years ago Fritz John and Louis Nirenberg
introduced in [6] the class of functions with bounded mean oscillation,
in view of its apparvent infierest in real analysis as well as in partial dif-
ferential equations. Ten years later, Charles Fefferman [3] gave new im-
petus to this subject by discovering, in his famous duality theorem, the
important link between BMO and harmonic analysis in several real variables.
Thus, he set the stage, in his joint work with Elias Stein [4], to several
new developments and applications. For instance, references.[1], [2], [5],
[7], [8], [9] and [10] show a part of this outgrowth in various branches
of analysis, whereas the works of Burkholder, Gundy, A. Garsia and others
exemplify the new developments faking place in probability theory,
stimulated by the revival of interest in BMO.

§ 1. BMO revisited. Let us consider locally integrable functions f on
R* and “regular sets” @ (such as balls, or cubes with sides parallel to

- the axes), and denote by f, the integral average

fo =101 [fl@)do
q
or, mean-value of f on . We call the function
@>a > |f(#) —fql

* The author gives thanks to Lars Gérding and the Institut Mittag-Leffler
for the support and hospitality received in May 1975.
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