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Proof. Let Be#™; then by Lemma 2 we have p(z)econv {iy,...
«vy Mgy for some wel, © # 0. Consequently p(»)= 4, and so

M(E) =sup p(#) = Ay
well

Hence it follows that 4, is a lower bound for the set {M(H): Hes™ 7}
Bub, according to Theorem 3, we have A, = M(E"") and thus 2, is
the greatest lower bound.
THEOREM 5. The following principle holds true:
sup inf p(2) = A,
: Eeby xwell .
Proof. Let Hef,; then there is an element y # 0 in HnE*' and,
by Theorem 3, we have

m(B) = ink p() <P < A
QE,

Hence it follows that 4, is an upper bound for the set {m(H): Hes,}.
But, according to Lemma 1, we have m(X,) =4, and thus 4, is the least
upper bound.

Remarks. 1. If the family A4 = (44, ..., 4;) consigts of compact
operators, then it is easy to see that the approximative point spectrum s
containg no other points but the origin, ie., = = {0}.

2. Assume, for simplicity, that H is finite dimensional and let A4
= (4,, 4,), where 4; has a simple spectrum:

W= >. >,
and 4, has the norm satisfying the estimate
4, < § tan § » min (A8 —2())
with some %, 0 < x<w. Then the eigenvalues 1, = (AV, i) of the
family A can be arranged decreasingly in the first component; and this
is precisely the arrangement induced by the cone K = {z: |arg 2| < $ #}.
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Some properties of functions with
bounded mean oscillation

by
UMBERTO NERI (College Park, Md.)*

Abstract. Functions with bounded mean oscillation (BMO) have been shown
to be of great interest in several areas of analysis and probability. In the first part
of this paper, we examine the basic properties of these functions, giving a new proof
of the John~Nirenberg inequality and proving the completeness of the function space.
In the second part, we discuss various examples and remarks which have arisen
recently, and we give another characterization of the harmonic functions in a half-
space with boundary values in BMO.

Introduction. Nearly 15 years ago Fritz John and Louis Nirenberg
introduced in [6] the class of functions with bounded mean oscillation,
in view of its apparvent infierest in real analysis as well as in partial dif-
ferential equations. Ten years later, Charles Fefferman [3] gave new im-
petus to this subject by discovering, in his famous duality theorem, the
important link between BMO and harmonic analysis in several real variables.
Thus, he set the stage, in his joint work with Elias Stein [4], to several
new developments and applications. For instance, references.[1], [2], [5],
[7], [8], [9] and [10] show a part of this outgrowth in various branches
of analysis, whereas the works of Burkholder, Gundy, A. Garsia and others
exemplify the new developments faking place in probability theory,
stimulated by the revival of interest in BMO.

§ 1. BMO revisited. Let us consider locally integrable functions f on
R* and “regular sets” @ (such as balls, or cubes with sides parallel to

- the axes), and denote by f, the integral average

fo =101 [fl@)do
q
or, mean-value of f on . We call the function
@>a > |f(#) —fql

* The author gives thanks to Lars Gérding and the Institut Mittag-Leffler
for the support and hospitality received in May 1975.
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the oseillation of f on @, and shall denote by ula) = pg(a) its distribution

function

(1.0) ula) = [{z<@: |f(®)

Olearly, if feL*™ then, for all @, p(a) =0 whenever o> 2 flle-
Oonsider now the variance (or, mean oscillation) of f on @:

1 f I (@) —folder.

) —fol > a> O}I.

(1.1)

Tf these L'-averages are bounded (uniformly in @), we say that f has
bounded mean oscillation on R*, and we shall write fe{b.m.0.}. Introducing
the seminorm

(1.2) Ifl, = sup {IQ1™ f \f(0) ~foldw: @ = RY),
we have that {b.m.o.} = {FeLi,(BR™: [Iflx < oo}

Suppose that there exist constants B, ¢ > 0 such that for all @ and
every a> 0
(1.3)

Then,

ule) < Be™*"|Q].

[ 1f(@)

Q

50 that fe{b.m.o.} and ||fll, < Bfe. Conversely, the main result of [6]
shows that any fe{b.m.o.} will satisfy (1.3). More precisely, John and
Nirenberg proved the following:

There exist absolute constants B and b (both > 0 and depending only
on n) such that, for all fe{b.m.o.}, all cubes @ < R*, and all o > 0,
(J.N) w(e) < BlQlexp (—ba/llfll,)

We shall give here a slightly different proof of this inequality, due
to A. P. Oalderén (unpublished).

Proof of (J.N.). Since for 0 < a<|lfl,, (J

~foldn = [ ul)da < (B/e)1Q)
[

N.) holds trivially with

B =¢ and b =1, we may assume that o> ||f|, > 0. Moreover, fixing .

a cube @ = Q, and subtracting from f its mean-value on ¢,, wo may
suppose that fo =0 so that

a) = |{weQ0:
and we must prove that
(1.3 1B < BIQo|exp (—ba/lfll,)

Since fe L' (@), for any y > ||f], we may apply the Calderén—Zygmund
decomposition lemma to |f| on @,. Thus, we obtain a countable wnion

@) > a}| = |8,

a> |fl,>0.
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D, of disjoint dyadic cubes C = @, such that
{i) If(®)<y a.e on @,\D,, and
Gy y<io™ f |fldz < 2"y, for all ¢ in D,.
By additivity, 1f 4, i3 any (smaller) union of cubes G in D, (ii) im-

plies that

(i)  yld,l< fffldw

Next, since fe{b m.o.} and |fil <
lowing estimate:

y < |0|-‘f | do <

First of all, since y >

2%y |4,
Y, we can sharpen (ii) to the fol-

(iv) Y +2%fls, for any ¢ in D,.

[flle > \Q.,{“qulf[dm, (i) shows that O s @,.

This means that O was obtained by subdmdlng (dyadically) a bigger
cube C, = @,, on which

=107 f Iflds <,
Co
into 2" subcubes of volume equal to 27"|C,|. Consequently,

o= f Iflde < j0™ f 1f — ol ds+ my < 27|04 f |f —mqldw +y
and (iv) follows by (1.2).

We now note that, as a result of our decomposition, if y < y* then
Dy = D,. In fact, for any cube O in D, if C 4D, we must have that
0c (QO\D ), so that ¥ < lO]“fm dz < y, by virtue of (ii), contradicting
the hypothesis that y < ¥’.

To shorten our notation, we shall assume (as we may do) that ||fll, = 1,
and we shall set § = y+2"||flx =y +2"*. We claim that:

(V) 1Dpl <27 Dy

Choose any cube C in D, and denote by m the mean-value of |f| on C.
Then, (iv) shows that m < y+2"|flls < #. Thus, in the dyadic decompo-
gition giving rise to Dy, the cube O was subdivided, and its portion
D =C N.Dy (nnless empty) is the union of certain disjoint cubes in Dj.
Consegquently, by the first inequality in (iii) with y replaced by ¥ and
4, by D, we get:

§< D' [Iflds< D7 [If—mide+m
Al P
< 1011017101 [ 1f —mlda} +m
(o}

<0 1D +m << (0] 1D 4y 27

5 — Studia Mathematica 61.1
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5o that
0] |D'|7! = 2+ —2" = 2.

Theré‘fore, for any C in D, and with D’ = OnDy, we see that

(v) D270
which also holds (trivially) if D’ is empty. Since Dy is the countable union
of disjoint sets D' satisfying (v'), summing first over all such sets D' and
then over all ¢ in Dy, we obtain (v).

Tinally, since a> |fl« =1, denoting by % the integral part of

a—1)/2™1, it follows that the number y =1+ komt! gatisties 1<y < a.

Accordmgly, with the notation

B, = {2¢Qo: |f(@)| > 1> 0},
we have the inclusions B, < B, = (D,UZ) where |Z| =0 by (i) above.
Hence, '

B, < Byl = |Dy] = |D
by our choice of y. Thus, iterating estimate (v) k-times (with y replaced
by [flls =1 in the last step), we obtain that

18, < 27 |Dy| < 27 1Q0l
from. which (1.3) follows easily with the constants B
b = (n/2"tY)log 2. Therefore, the proof of (J.N.) is complete.
Remarks. 1.1. The choice of constants fo in definition (1.2) is not

essential. Indeed, given f in L, (R®), if there exists an M > 0 such that
for each @ we have some constant -ag for which

1917 [1f(@) M,
Q

1+kz"‘+1|

-1
—_ 2(%/2 )+n7

—agldn <

it follows at once that ||flly < 2M. With this in mind, it is fairly easy to
see that log|o| is in {b.m.o.}.
. 1.2. By the standard identity (with 1< p < o)

[17a)
Q

and estimate (J.N.), one may readily verify that replacing the L'-means
(1.1) by corresponding L¥-averages in the definition of {b.m.o} we obtain
the same class of functions with an equivalent norm. In particular (see
[1] and [2]) the I*-means are often to be preferred.

1.3. Similarly, inequality (J.N.) nnphes ‘ohabt for each fe{b.m.0.}
there iy some constant ¢ = ¢(f) > 0, Whele e < b/l ke, such that

Jexplolf(
Q

—fo?dn =p [ & (@) du
0

icm
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or, equivalently, for any cube @ = B™ and any 0 <e¢ <b JIf e 5

(1.4) Jexp (elf(@))dw < oo.
Q
This local, necessary condition is used in §2 below.

1.4 (Global necessary condition). Using (1.2) and a certain geometric
argument (see [4], Ch. 1) one obtains the property that, for each
fe{b.m.o.},

f If(@)

(1.5)
This implies at once that each fin {b.m.o.} is the trace (att = 0) of a har-
monic function (x, ) on R’_?_“ = R" x (0, co): namely, its Poisson integral -
w(@,t) = [Pxfl@) = [Pya—y)f(v)dy,
»
where Py(@) = t7"P(x[t) and P(x) = ¢,(1+|z[2)~
1.5 (Completeness). In view of (1.2), [Iflx = 0 f(x) = const. (a.e.),

so that > [fllx is only a seminorm on {b.m.o.}. We claim that, equipped
with this seminorm, {b.m.o.} is complete.

Proof. Let {f,} be a Cauchy sequence in {b.m.o.} and pick any
cube ¢. Then,

(i) 1Q|“1Qf|[fn(w
m, n — oo. Thus {f, (=

(i) {fule)—
for some ¢9e¢I'(Q).

Likewise, on any other cube @, > ¢, we have that

(ifl)  {fu(®)—(fa)g,} = 9°(2) in I'(Q.), hence also in T}(Q).
Combining (ii) and (iii), it follows that, as n — oo,

@) fn)Q; (fado} =0 =C(Q,@,).

Tor any keN, let @, denote the cube with center at the origin and.
side of length k. Since any weR"™ helongs to some @, we “define” our
limit function f by the expression:

(V) fl@) = g%(@) —0(Qs, @), for all weQy.

In order to see that f is well deflned by (v), we must have that if
zeQ), = @y, then

. Qk(

@) 0(Qu; @) = 0™ (0)~0(@s, @)
or, equivalently, that 1<% <% implies that
0(9:,9%) = (91,21 +C(Qn,9r)-

(14 2"+ ds < co.

(n+l)/2'

= (fadel = [fn (@) — (fmdel 1 8o < [fy —

fn @} s a Cauchy sequence in It Q) and hence
fn Jo} — ¢%(x), in I*(Q) norm,

Fulle >0 as
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But, this additivity property of the constants follows readily from their

definition in (iv).
Returning to our fixed cube Q, we have @ < @ for some % large
enough. Then, (v) implies that

[1fa=D @) —(fa—Fal dw
Q
f I,y (@) — % (@) + 0(Qy, @) — (fudo T fol dw

= [ 1fu@) —(fu)o—0%(@)+ {5°(@) =g (@) + 0(Qs, Qi) +Ta} | do
Q

and a simple argument shows that {...} vanishes identically on Q. Conse-
quently, by virtue of (ii), as n — oo

[1=0) = (fa=oldw = [ |fale) = (fudo—9°@Ids >0
Q Q

and standard arguments now yield that {f, —fllk =0 and fe{b.m.o.},
6 (BMO). Introducing in {b.m.o.} the equivalence relation

(1.6) f1 ~faefi—f2 = const. a.e.,

and denoting by BMO = BMO(R™ the resulting (quotient) space of
equivalence classes, (1.2) defines now a mnorm in BMO, which is
complete by Remark 1.5. Hence, BMO is Banach space.

§ 2. Examples and further remarks. We collect here certain miscel-
laneous observations that were made over the last two years. To begin
with, let us say that an felj,,(R") belongs to H,(R") if there exigts
a constant ¢ > 0 such that (1.4) holds over any @ < R". Since {b.m.o.}
is contained in Fy,o(R™), to show that f¢{b.m.o.} it suffices to bhOW
that there exists some @, = R" such that

(2.0) 2(1 70'){ f{f "dw} ¢ = 4+ oo, for any ¢>0.

Foes 0

Exavere 2.1. The class {b.m.o.} is not a multiplicative algebra in
fact (log |@|)? ¢ Hppo(R). Indeed, for any ¢>>0, letting @, = [0,1], we
have

1

o0 . -]
D] [ (og aptdal o = I'1(2k) k1] = + co.
k=0 [} Fo==0
Examere 2.2 If p>1, then |logio||?¢B(R). Again, we let
Qo = [0;1]. )
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Case 1. Suppose that p =m/k is rational. Then, for any ¢> 0,

L 1 <
2 () { [ log ap™ds} ¢ > 3] L(mi)t(kj)11e
=0 0 j=0
> Dk +1)" W = o co.
J=0
Case 2. For general p> ], let p > (m[k) > 1, for some rational as
above. Note that if 0 < &< 1fe, then [log w[” > |log «/™*. Hence, for
any ¢> 0,

o0 1 00 ije
2(0‘”/%!) f llog @|*"dx > Z (c""/n!)f flog o[™* dz.
N 0 N0 0

Since, for .all a« > 0,
1je 1
f [log »|*ds > f |log #|*dw -1,
0 (]

taking a = mn/k and using Case 1, t]ﬁe divergence of our series follows
at once.

In § IT of [7], we considered a certain closed subspace CMO <« BMO
(where c.m.o. = continuous mean oscillation) whose second dual equals
BMO. Here, to simplify matters a bit, we shall confine our attention
to bounded measurable sets B < R".

DEFINITION 2.3 We say that fe{c.m.0.}(B) if fe{b.m.o.}(E) and
(2.1) 1917 [ 1f(@) —foldw >0, as Q] 0.
14

BxaurLE 2.4. The funection log |#|¢{c.m.0.}(E) if F contains any
neighborhood of the origin. Indeed, it suffices to check that log  ¢{c.m.o0.})
([0,1]). But, if 0 < b <1, we have

b b
b‘lfllogm~log blde = —b“lfloga:dm+]0gb =1.
0 ¢

Roemark 2.8. If 0 < p = o™ <1, then f(w) = |log #[’{b.x.0.}([0,1]
and ifle< Cy< 1.

Proof. For any nonnegative a;b and any « > 1, recall the homo-
geneous inequality

i)  a*-d*<< (D).

Now, with f(z) = [log @M and any fe,b] < [0,1], we .shall use
(by Remark 1‘1) the constant f(b) so that, for all we[a, b],

(i) If(@)—f(b)| = flog a'* — [log b
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Hence, for all ¢ >0,
8, = {we[a, b]: [log w['* > o+ [log b[Me}
={wela, b]: logz < —[o - [log b|*=1%
= {we[a, b]: » < exp (—[...]9}.

Using (i), we note that —[o+ |log b|Me]* < —o®*+log b. Thus, unless S,

is empty, aef, and so

8, < [abexp(—0o%] for all ¢> 0.

Now, with u(s) = |8,/, we have the estimate
(i) u(o) < (b—a)exp (—c¢®) for all o> 0.
Therefore,

b

(®—a) [ If(@)—fO)do = (b—a)™ f p(0)do

a
f exp (— =0, <1
0
and the proof is complete.
Remark 2.6 If0 < p = o™ < 1, then f(2) = |1ogwi‘”e{( m.0.}([0,1]).
Proof. By the preceding remark, it suffices to show that, for any

[a, 8] = [0, 1],
b
(2.2) (b—a)? [If(@)—f®)ldw ~0 a5 (b—a) 0%
We distinguish two cases.
Oase @ = 0. Herve, with u(o) = =|{we[0,b]: |f(®)—F(b)| > o}]

~ we readily obtain that

(o) =exp (—[o+f(B)I) for all o> 0.

Hence,

bt flf(w)—f (b)ldw = b fexp —s%ds = b B (D),
10)

where F(b) -0 as b — 0F. Therefore, by L’Hospital’s rule,

lim b7 F (b) = lim F'(b) = —p lim [log b|*~* =
Am b (b) = lim I (b) = —p lim Jlog b} 0

sinee 0 < p <1, and this case is settled.
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Case a > 0. First of all, let us note that 8, is nonempty if and only
if f(a)—f(b) > 0; that is, u(c) = 0 for all ¢> f(a)—f(b). Thus, ‘
. 1 b Sl@)=5p)

(i) @—a)[If(@)
a

~f(®)ldz = (b—a)™ plo)do,
where now

(ii) u(o) = exp (—[a—l—f{b)]“) for all 0< o< f(a)—f(b) and
0<a<bs1.
Combining (i) and (ii), we easily see that
. b (@)
00 [ 1@~ = o [ exp (~s9as—a LDTE
J ey ‘b —a
_ _F@)—-F(a) _Faf(b) —f(a) ,
b —a b—a
where
1)
It =f exp (—s%ds for all >0,
L]
so that

(i) F(8) =#"(1)
With this notation,

= pllog ¢”* for all 0 <1< 1.

4 —
(V) (=) [If@) —fO)ldo = a=g ==~

and we examine various ways in which (b—a) 0. If b > a, or else
a - b in (iv), we see by (iii) that the limit is zero. If, on the other hand,
@ —tyand b — 1, for some 0 < 1, < 1, using the fact that the “bilateral”
derivative equals the ordinary derivative, we obtain the same cone-
lusion by virtue of (iii). This completes the proof of Remark 2.6.
Remark 2.7 The space {c.m.0.} ([0,1]) is mot a multiplicative al-
gebra. In fact, letting f(z) = [log»*®, the preceding remark implies
that fe{c.m.0.}([0,1]). However, by Example 2.2, f2¢{b.m.o0.}([0,1]).
Remark 2.8 For any measurable E < R*, a simple computation
shows that its characteristic function yg sabisfies
(2.3) lzall, =%
However, yg¢{¢.m.0.}. To see this, we may assume that n =1, and we
let ¢ = [0,1]. Choose any sequence of ¢, such that
(@) 1Qul >0 a8 m -,

() 19.0Q1 = 1@\ = (1/2)iQy]-
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(For example, @, = [L—1/n, 1+41/n] will do.) Denoting Dby. y the
characteristic function of @, it is clear that its mean- value on @, equals
1/2 for all neN. Hence, for all n,

107 [ 12(2) —1g,ld0 = %
@
and the conclusion follows in view of (i).
Remark 2.9. By virtue of a remark in §II of [7], if we denote by
O,(R" the space of all continuous f such that f(x) +0 as |g] — oo,
equipped with the supremum norm, we have that

(2.4) Oy (R" < {c.m.0.}(R™).

.

The next remark, and subsequent corollary, arose in a conversation
with R. Jonhson.

Remark 2.10. Let feLi,, (R™).
for oll cubes @ = R",
(%) ' ISl < 4,
then feL®(R™).

Proof. Let us fix a cube @ and set g(x) = [f(v |xQ(
any other cube @, > @ such that |Q,| = 2|Q| say, we have

[lg@)—goldo> [ ...>
@ : o\e
2gll,

If there exists an A > 0 such that,

. Then, for

12:\Qlgq, = 11@:l90, -

’l‘helefow, 9o, < < 24, by (*). On the other hand,

= 1@, [Iflds = }(If)g
Q

so that |f(x)| < 44 almost everywhere, ﬂin‘oe @ is arbitrary.

COROLLARY 2.11. Let feL{(R™. If (fp)e{b.am.o.} for every pel*™,
then feL™(R™).

Proof. We may assume that f(2)eR and use the function ¢ == g,
(sgn f), for any cube @ < R™.

The closing remarks will describe a characterization of the harmonic
funetions on R = R™ X (0, co) with traces in BMO (R"), analogous o
Theorern 1.0 of [1]. For a fixed 8> 0, we denotie by I'(0) == I3 (0) the
truncated cone

(2.5)

and let I'(x) = I (x) be ibs translate with vertex at zeR". Now, let
us consider the ball B; = R+ with center at (0,1), where 0 < ¢ = 8, which

I'(0) = {(y, t)e BY™: 21y| <t < 26}

icm
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is mnqent to the lateral boundary of I'(0). Then, its radins » 7(t) satisfies:

yul < 7(t) < /2, for some y, > 0. Therefore, for some constant ¢, > 0,
(2.6) 1B, = v"*e,

and

(2.7) (t)2) <s<3t/2  for all (z,s)eB,.

With any harmonic function u(z, t) on R%* and any 6 > 0 we can
associate the “truncated g-funection” g,(z) on R”, where

(2.8) go(@) .=

(95 ()] (w {fJVu (x t)]ztalt}”z

and a “truncated S-funetion” §,(z) given by

= [8;(uw)](w) = {ffwu(y,t)|2t1_ndtdy}uz
T(z)

Recalling the definition of HMO (R%*) in § I of [1], it is easy to see that,
for any #eHMO, |g,(2)] < co a.e. on R". In fact, more precisely, we
have the following majorization, the proof of which is a variant of Lem-
ma 1.1 in [1].

Lumma 2.12. Let w(w,1) be harmonic on R, Then there emists am
absolute constant C > 0 such that, for all zeR™ and 6> 0,

(2.10) 9a(®) < O8,(2).

Proof. For any je{l,...,n+1} the partial derivative D;u is again
harmonic. Since, by translation invariance, it suffices to prove (2.10)
at # = 0, we consider the ball B; described above. Then, by harmonicity
and Schwarz’s inequality,

|Dyu(0, ) < B [1Djuly, )t dyds = e, ¢ [ ... dyds
By

By
50 that

] ']
f11),%(0,t)[ﬂtdt<c,,fr“{f|Dju\2dyds}dz.
0 ] By

Observe now that the union of all B, for 0 <t < 4, is contained
in £(0); moreover, for all (y,s)eB;, (2.7) implies that (2/3)s <t < 2s.
Hence, interchanging the 01(1(,1“ of integration, the last integral is domin-
ated by

ff}])jfu/ﬁ( }3 t“"dt) dyds =C ff |.D;u|2s'~"dy ds.

() 24/8 F(0)

Therefore, adding over j, the conclusion follows at once. m
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A partial converse of (2.10) is given by the following
Lyt 2.13. Let w(w,t) be harmonic in RY™ and pick any ball

Qs = {weR™: | —m| < 0} Then there ewists an ‘absoluw constant 0> 0

(depending only on ®) such that

(2.11) Quf™ [ [80()12d0 < C1Qul™ [ [92s(@) ] dn
Qs

Qs

In particular, for all uweHMO (R,

(2.12) Q07" [ I8y (w) (@) dw < O lully -

Qs

Proof. By translation, we may take @y = 0 and denote by U, the
union of truncated cones I'(#) = fﬁ(m) for all lmeQ,,, KO that U,
< (Qgs X [0,26]). Then, interchanging the order of integration, we see
that

l

f{ ff Vuly, t)iztl‘”d{z/dt} dw

Qs Tlw)

[f 17l eQe: (y 8¢ L@} dy do
Uy

< oo™ [[|Puly, yi*t dtdy,
Us

Jg—‘

i

since {weQy: (y, el'(®)} < {weR™: lw—y| <1/2} Consequently,

Qa7 [ [8y(0)2dw = 1Qs| ™,
@

3
< 027"Q,| f{} |l7u[9tdt} ay

Q 0
< 0lQul™ [ [g2s(@)12de
(27}

and (2.11) is established.

Bstimate (2.12) follows directly from (2.11) apd the definition of
norm [l in. HMO. m

The preceding lemmas give us at once the following

COROLTARY 2.14. Let u be harmonic on R . Then uelIMO if and
only if '

(2.18)  fullrn = sup {{1Qol™" [ 185())2(0) dir):

woelt™, a>o} < oo,
[47] LN

Moreover, |lu|lwsx 18 equivalent 0|06k -

icm
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