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Normalized weakly null sequence
with no unconditional subsequence*

by
B. MAUREY (Paris) and H. P. ROSENTHAL (Urbana, I11.)

Abstract. Examples are given of sequences of morm-one elements of certain
Banach spaces which tend weally to zero, yet have no unconditional subsequence.

§ 1. Introduction. Let (b,) be a finite or infinite sequence of non-zero
elements of a real Banach space B and K a positive number. (3,) is said
to be normalized it ||b,|| = 1 for all n; weakly null if (b,) is an infinite se-
quence which tends weakly to zero as # tends to infinity; K-uncon-
ditional if for all n, F < {1,...,n}, and scalars ay,...,a,, ||j2ajbj||

«F

n
< E|| Jloyby||; unconditional it it is K-unconditional for some K < co.
4=

It is a famous open question if every infinite dimensional Banach
gpace contains an infinite unconditional basic tequence. We show that
the following related question, stated in 1958 in [2], has a negative
answer: Does every normalized weakly null sequence in a Banach space have
an infinite unconditional subsequence?

Here are some related positive results. As shown in [3], if a Banach
space has an unconditional basis (i.e. an unconditional sequence with
dense linear span), then every normalized weakly null sequence in the
space does have an unconditional subsequence. It is proved in [9], using
Ramsey’s theorem, that ¢f (b,) s @ normaliced weakly null sequence
in a Banach space and &> 0 and k a positive integer are given, then
there is a subsequence (by) of (b,) so that for all m, sets I < {1, ..., m} with
\P| <<k (LF] denotes the cardinality of F) and scalars ay, ..., oy, ”}7; a;by)|

1€

m
5 (L g) ”‘;)_}'a,b;”,

In particular, every subsequence of (b;) with k-elements is 1+ sun-
conditional, a previously known result which can -also be deduced from
the results of [5]. It is shown in [9] that if § is a set and (4,,) is a sequence
of non-empty subsets of § with (y,,) weakly null in I™(8), then (y4,)
has a l-unconditional subsequence. (I°(S) denotes the Banach space of

* The research for this paper was partially supported by NSF Grant GP-28577.
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all bounded real-valued functions on § under the sup norm; x4 denotes
the characteristic function of the set A). We prove in Theorem 3.4 that
every normalized weakly null sequence in ¢(w”+1) has an uncon-
ditional subsequence. (An ordinal « is identified with the set of ordinals
preceding it; C(K) denotes the Banach space of real-valued continuouns
functions on the space K.) (It is known that C(e®-+1) has no uncondi-
tional basis.)

Finally, we note that if an infinite-dimensional Banach space has
no normalized weakly null sequence, then it contains an infinite uncon-
ditional basic sequence, in fact it contains a.subspace isomorphic to ¥,
the Banach space of all absolutely econverging series (this ix an immediate
consequence of the results in [7]).

Tt is convenient to introduce the following terminology in order to
describe some of the features of our example.

Tet Se denote the Banach space of all converging series of real num-

7
bers. For any (¢,) with Ye, convergent, put [(¢,)llge = sup ‘ 20,]. Let
X I Fo=l

61, €3, ... be the unit-vector-basis for Se, i. e: (¢;) = 0y for all j and &.
We call () the summing basis. It is evident and well known that (¢)
is not unconditional. Indeed, by considering the expansion ey —2e;--26,+
+ ... +(—1)""2¢,, one sees that the unconditional constant of (e, /..
.., 6,) equals n for all ». (The unconditional constant of a sequence is
by definition the smallest K so that it is K-unconditional.)

Given K, a positive number, and sequences (&,), (¥,) in Banach
spaces X and ¥, respectively, we say that (,) is K-block-represented in
(w,) it (z,) is E-equivalent to a block-basis of (y,); that is, there exists
a sequence (%) in ¥, a sequence F., F,, ... of finite subsets of N, the
positive integers, and scalars (¢;) so that for all #, max I, < min F .,

2, = 3 ¢y; and

| 3] <] 3 snfl< ] S

for all sealars ay,... ,a,. We say that (m,) is E-finitely bloch-represented
in (y,) if (2,) is infinite and every finite-subsequence of (x,) is K-block-
represented in (y,). : :

Finally, we say that (s,) is block-represented (vowp. finitely block-
represented) in (y,) it (w,) is K-block-represented (resp. K-finitely block-
represented) in (y,) for some K < oco. It is trivial that if (m,) iv Dlock-
represented in (y,), (#,) is finitely block-represented in (y,)y it i easily
seen that:

If (y,) is an wnconditional sequence and () s fimilely block-represented
in (Y,), then (x,) is an unconditional sequence. o

icm
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In Example 1 of § 2 we construct a normalized weakly null sequence
(b,) in a Banach space B so that the summing basis is block-represented
in every subsequence of (b,). (These properties are proved in Theorem 1.)
We note that B* is necessarily unseparable. [A normalized weakly null
gequence in a space with a separable dual has a shrinking subsequence
(voe e.g. [6]) and every block-basis of a shrinking sequence is shrinking;
the summing basis is not shrinking.] :

In Example 2, we construcet a normalized weakly null sequence (b,)
in a Banach space B which isometrically imbeds in O(w® +1) so that
the summing basis i3 finitely block-represented in every subsequence
of (b,). (The proof that B imbeds in ¢ (0**-1) is given in Theorem 3.2.)
Thug B* is separable. .

In Example 3 we show that for every K there exists a Banach space
B isomorphic to Hilbert space (i.e. I*) and a sequence (b,) in B equivalent
to the usual basis for Hilbert space so that every subsequence of (b,)
has unconditional constant at least K. (This example is due to W. B. John-
son.)

Finally, in Bxample 4, we construect a normalized weakly null se-
quence in a uniformly convex Banach space B which has no unconditional
subsequence. It follows that B does not imbed in a space with an uncon-
ditional basis ; this seems to be the first example of a space with this prop-
erty. (L. Tzafrivi has recently shown that this B does not imbed in a uni-
formly convex Banach lattice; see [11].)

The construction of this example uses the technique of interpolation
due to Lions—Peetre and a theorem of Beauzamy (see [1]).

Our work suggests the following open questions:

1. Is there an infinite-dimensional reflexive Banach space B such
that the summing basis is finitely block-represented in every normalized
weakly null sequence in B? (Such a space would have no infinite uncon-
ditional xequence.)

9. Iy there a normalized weakly null sequence in some Banach space
g0 that no constant-coefficient block basis of a subsequence is uncon-
ditional ?

3. Does overy normalized weakly null sequence (f,) in L'[0,1] have
an unconditiona] rubsequence? (By the results of [8], the answer is af-
firmative it the closed linear space of the f,’s is reflexive.)

§ 2. Motivation and construction of the examples. Wo shall first give
a pictorial deseviption of the construetion of the examples. Later we
shall pass to a caveful analytical description, less intuitive but easier
to work with,

We may think of any Banach space as & subspace of I*°(8) for some
set §; a normalized weakly null sequence may then be realized as a se-
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quence of functions (f,) in I°(8) with [fyle =1 for all # and the f,’s
satisfying a stronger condition than f, >0 poinfwise on 8. (Precigely,
the condition is that if 6 >0 and n; < ny < ... is any increasing sequence

k
of indices, then there is a % so that pl {51 1fn,(8)| > 8} = B; see [9]).

In order to obtain such an (f,) with the summing basis finitely

" block-represented in every subsequence'of (fa) it is useful to have the

following sufficient criterion for a sequence (g;) in 1°(8) to be isometri-
cally equivalent to the summing bagis:

TEm SUMMING-BASIS ORITERION. Let (g;) be a finite or infinite se-
quence in 1°(8) so that for all § for which g ewists and se8, 0 < g(s) < 1,
{se8: g;(s) =1} is non-empty and {se8: g;(s) 5 0} T {se8: gry(s) =1}
if 4> 1. Then for all m, (gu, ..., §,) 98 isomeirically equivalent to the first
n terms of the summing basis (if g, ewists).

We note that if each g; is zero-or-one-valued, the criterion simply
reduces to the assertion that (4;) is a strictly decreasing sequence of sets,
where A4; = {se8: g;(s) = 1} for all j.

To see the criterion, let # be fixed and scalars ¢, ..., ¢, be given.
Tor any % < n choose ¢ so that g, () = 1 and gy, () = 0 (if & < n). Then

k
g;(ty = 1 for all j <% and g,(t) = 0 all > %, hence |} ¢;g;(8)] =23 ¢
. i Jual

Thus || 3 695w > | 2 eis]se-
Now suppose te8; choose k<< n so that g,(f) =1 and g (7) %1
(if & < »). Then g;(#) =1 for all j < k and g,(¢) = 0 all r > k-1 (if &k <n),

g0 of & =,
lZo,g,(t){ =‘§"11

while if %k < m,

| Y] = lot o+t o) Gl
=
= !(1 —yk+1(t))(01 F oo ) A G () (01 oo b O 0k+1)|
<max {leg + .4 F 6l logt oo b Opqal) ||Z 05

Now by standard arguments, if a sequence (g,) iy & small pexturbation
of a sequence (g;) satisfying the criterion, then (§;) is still equivalent to
the summing basis. We shall firyt describe tl:e construction of normalized
weakly sequence (f,) so-that (e, ;) iy 1--e-block-represented in every
subsequence of (f,) for every &> 0.

Let 2<<k <ky<... be a strictly increasing sequence of positive

Se+

. o e K : )
integers with lim—'— = 0. Let 4,, 4;,... be & sequence of infinite

Jro0 o1,
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disjoint subsets of a set 8. Bach 4; «hall apai i

; subsebs of ; h 4 s gain be decomposed int -
quence of disjoint subsets with a strange enumeration, I;‘of e;Eh(.) jaJ ift
) :{1;1 < N [F| =T and § < min I'}. Now let {4; 5 'Feé?} be a f’am-
ily of infinibe subsets of 4, with Ay g4y g = 0 it ;1«" Fix j
Feffy and wed;p. We define f, (o) as follows: - &

PR Y
Sal®) =41 it n=j,
0 if  nisnotag above. .
Now if # ¢ dyp for somefand Fed,, and n;, -+. Ny are such that Jo, (@) #0
i

for all 1< =ik, then k< k+1 and 2 Fa,@) < kI +1 < 2VE for &
i=1

sutficiently large. /I:I.enco., there is a constant € so that for all finite sets G,
e\l e (16 MR i wilv vi ; ’
1L,ngn(./o)] < O1G1", which easily yields that f, - 0 weakly in 1*(9).

Trivially an]lzm( =1 for all n.
Now fix j and Fed;. Pub gy =f G2 =B 3f. G =g, and
ned"

Go=gagus 1 wed;p, then () =1; if med, . ’
Falm) = lﬁ’jrxll"l [F|™ <1 and, pa,rticular’, Ga() =j,g| ﬂ?ﬁ\r;”iegjﬁg;zt
(§1y §a) satisties the Summing-Basis Criterion ; to complete the discussion
of thiy example, it suffices to show that llga —@dsll can be made arbitrarily
small if. j is large enough. Fo. then given, M an infinite subset of N and
&> 0, chooging j a laige element of M'and Fed; with F < M yields
(915 92} 1+ e-oquivalent to (e, ep).. (It follows incidentally that the un-
Eonzd)itimml constant of any subsequence of (f,) is greater than or equal
0 2). ' o
Since k;/lk;.,, =0, given ¢ > 0 we may choose J so that j > J im-
plies 1/} - min l//\:j/kj,, Ic;m; < e for all §* #3.
Suppose j iz dJ, § %4, F'<By, and wedp . I § < g,

o) == || 0|~ P~ Y
PR | min (|, B = Vgl < e

It j < g,

1 —
o) = T + Vg /hy < &,
1
. To oblain o sequence (f,) such that the first three terms of the sum-
ming baxiy are 1 4 e-bloek-represented in every subsequence of (f,) for
every e 0, wo ossontiully ropeat the above process, thinking of the
Ay % oax o denumerablo family of disjoint sets. We let M be a lacunary

i subset of the positive integers; again if m; < m,< ... is an increasing

6 — Studla Mathematica 61,1
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enumeration of M, it is sufficient to assume that m;/m;,, — 0. Now as-
sume that {k;, k; p: j =1,2,... and Fed;} is a set of distinet elements
of M. For each j and Fe%;, let &y = {G < N: |G| = I p and maxF
<min G}. Let {4;5q: Ged;y} be a family of infinite subsets of
Ay with A;pq0A;pe =@ for all G 5% @. Define a new sequence
(fa) on 8 as follows: Fix j, Fedy, GeByp, and Zed; pg:

G172 i ne@,
B B T .8
fn(w) = 1 it ”n =j,
0 if - nis not as above.

It may again be verified that if ¢ > 0 is given and M’ is an infinite
subset of ¥, then for je M, j large enough; choosing F — M’ with Fe 2,
and then @ = M' with Ge®;y, that (g4, ¢s,¢5) is 1+ s-equivalent to
the fixst three terms of the summing basis, where g, = f;, g, = |F|~ Z;f,,,

nd.

and g3 = IGI“”Z;fn- (In fact, if §, =gy, §o = 92" Xazy and g, = 93 Xy
: nel

then (§y, §a, §s) satisfies the Summing-Basis Criterion and is a small per-
turbation of (g,, ga, ¢5) for j large enough.)

To obtain a weakly null normalized sequence so that the summing
bagis is finitely block-represented in every subsequence, we consider sets
of the form 4;z . m where 1<k<j, max ¥, , <min ¥, for all 7,
and Ay p, w5 is o family of disjoint subsets of Ay p,...;,_, With car-
dinalities equal to a certain funetion of (j, F, ..., Fy_,). As long as these
cardinalities are suificiently lacunary and disjoint for (j§', Fj,..., FY)
7§y Fay ..y Fiy), the functions (f,) defined by f,(a) = [Pyl if
Xed;p,...,m 20d neFy, have the desired properties (where F, = {3}
by definition).

We wish now to give purely analytical expressions for the examples.
From now on, we let (f,) denote the usual coordinate functions on the
Dositive integers; that is f,(m) =1 if n =m, f,(m) =0 if n % m. Let
0oy denote the linear span of the f, ', i. e. the space of all funetions on the
positive integers with finite support.

For f in ¢4y and g any real-valued function on I, , we let {f, g> denote
the usual inner product of f and g; ’

rgy = D f(mg(n).

Nl

Now the first example that we described, as a Banach space, is iso-
metric to the completion of ¢,, under the norm Ifll = sup IKf, 2+
+| |~ yp>|, the supremum taken over all J and sets I with |F| = ¥
and min F > j. Put another way, the map which sends the “fis” of the

icm®
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example to our eoordinate f,’s is a linear isometry. We wish to point
out in passing that certain features of this example are similar to thoge
of an old example of Schreier [10]. Schreier’s #pace has the property that
there is a weakly null sequence (b,) in it so that for no subsequence

by s bp,yy--.) does one have lim
ny? Ung

ko0
essentially the completion of ¢gp under the norm
(where “F” ranges over finite subsets'of XN).
Examera 1. Let & be the family of all finite sequences
subsets of N;

1,X )

—k-”izi'b,w” = 0. Schreier’s space is

17l = sup [<f, xm)l
Fl=min®

of finite

=Ty Byt Bee N, B < 0, 1<i<h, k=1,2,... }.

Let M = {4: j = 1.2, .-} Let 9: & — M Dbe a one-one map. Let § be
the family of all infinite sequences (Fy, Iy, ...) of finite subsets of N
so that for all &> 1,

() [Fq] =1;

(b) max F,_; < min Fy;

(¢) Iy = "/)((Fu seey -Zﬂlc-l))'

‘.NOW (1@{111[5 “ ” on Coo bV
” ” su H 2 1_1 ! Xr

0
(where for (I))eF, > IF]-[‘””;(F! denotes the function ¢ so that g(n) =
7=1

0
[Py 7 it meF; and g(n) = 0it n ¢ Iy
j=1
TrmorwM 2.1. Let B denote the completion of ¢qy under the above norm.
Then (f,) is a normalised weakly null sequence in B so that the summing
basis is block-represented in every subsequence of (f,).

Tt is convoniont to summarize the properties of M and § that we use.
ProvosrioN 2.2, Let h(j, k) = min {Vj]k, Vi[j} for § and % posi-
. . . 2
tive inlegers. Then selting my = 47,
00

() h(mgymy) = ¢ < }.

deal 1efo4d
For any (F,)F, -
(L) for all T, (a) and (b) above hold and |Fy,le M (by(c));
(2) for all To and n, there ewisis a (Gy) in § so that F; = G, for all j < &
and 7 < min Gy, y;
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(3) for any (G,) in & and any i and &, if | Byl = |Gppal then § =&
and F; = Gy for oll 1 < k;

(4) for amy infinite subset N' of N amd j in N ', there ewists an (F,)eF
with {j} = Fy and F, = N' for all n.

Proof. We leave the simple verification of all but (4) to the reader.
(4) is really also evident; given N’ and j in N " define F; = {j}; having
defined Ty, ..., Py, let Fy,, be any finite subset of N " owith Byl
= y((Fy, ..., Fy)) and min Fy,, > max F. The sequence (F,) thus de-
tined by induction is the desired member of .

The following simple estimate will be useful in proving Theorem 2.1.

(1) Py, 6 ey = 1BI7HGTHE NG
< PG~ min {F], |61} = h(|F], |6])

for any finite non-empty subsets ¥ and @ of N (where h is defined in Prop-
osition 2.2).
LEMMA 2.3. For any (Fy)eF, any n, and any scalars i, ...; Cu,

k I
S‘,}Plgﬁi < Hémﬁur*mn <(+9 s;:p\gc,]-

It follows that the summing basis is block-represented in every sub-
sequence of (f,). For let (f,)ncy be a subsequence. By (4) of Proposition
2.2, we may choose (F,)ef with F, < N " for all #. The lemma asserts
that the block basis (|F,|™? xm,) Of (Folnen 18 equivalent to the summing

" basis.

To prove the lemma, let % < n and choose by (2) of Proposition 2.2

a (G)) in § satisfying its statement. Then

“n 7 oo k-
| Somimran = Somivum, Sior) = Sl
= == -] o

This proves the left inequality of Lemma 2.3.

Now let (G;) be an arbitrary element of § and let s be the largest
integer less than or equal to o such that |Fy| = |G| It follows from (3)
of Proposition 2.2 that then ¥, = @; for all L j < s and moreover if
for any j < n and k arbitrary one has |[Fy| = |G| then j = k< s. (Also
for j =5, k> s, the |Fy’s and |Gy’s arve disbinct members of M.) llence

@) . C B 16D < of2

=8
k>3

by (1) of Proposition 2.2, since the swm in (2) ig a partial sum of the
series (%) in Proposition 2.2. (Note that each terni h(my,m;) appears twice

©
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in (%) and once in (2).) Now

]<201 [Fjlwllzxzv',y 2 |Gk|~112Xak>’

8—1

< | ,;: 05+ 0 LB ™16, [T (s 6, |+ sUD [ > (17, 16%])
m j=8
k>s8

b
< (1-¢) sup | Mg

J=1
by (1), (2), and a simple inequality in our earlier analysis of the summing
basis. Thix completes the proof of Lemma 2.3.

It remains to show that (f,) is a normalized weakly null sequence.
Now its trivial that [f;l <1 for any j. Fixing j and choosing (¥,) in §
(with Fy = {§} by (4) of Proposition2.2), we have that | {f;, 3 |F,| x5 >
=1, 80 (f,) is normalized. The fact that (f,)is weakly null is an immedi-
ate consequence of the following result:

LimmMA 2.4. For any finite set ¥ < NV, ,‘
izl < (24¢) [T,

Proof. Let & == |P|, (G4) in §, j;....,J, the integers j so that
GNE #@, 8 =G, NF| and o; = 1G] for all 1<<i<r. We thus have

”

that the as are distinet members of M, Y's, <k, 1<s;< a; for all 4,
Guml

and

<Xwa ZI |Gjl_uzl@j> = Z':a[”zs,-.
=

Let A4 be the set of 4’s such that ;< k. Then if 4 is non-empty,

- ul
S a5 < DA< (140 max ai®  (by (%))
ded ted qied

<A+oVE,
by the definition of A. If {1,...,#} ~4 i non-empty, then

Z ayts, < n;fix a{‘(” (23{) < —]—/—%—-70 ~ V.

i

r —
Hence 3 a7, (2 ¢)Vk. This completes the proof of Lemma 2.4,
fu]

and thus of Theorem 2.1. (We are indebted to L. Dor for an illuminating
discussion concerning the laxt lemma. Our original proof that (f,) is
wealkly null did not contain the more precise information, due to Dor, con-
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taixied in the lemma. In fact, Dor obtained a more refined anally,s"is ‘which
ghows that

lim |77 g =1.)

| B[00

Exavpre 2. Let § be as in Example 1. Let § be the family of all

finite sequences (I,) of finite subsets of N such that (1’ ) = (Fyy .o, BY)
where {j} = F, and there exists an (¥,)«§ with F, = F,foralll<n (9
Define a norm ||| ]|/ on eq by H!flll sup. Kr 5 ll’nr”zxﬂn>|

TLet B denote the completion of co(o under the norm |[|-]||. Then our
proof of Theorem 2.1 yields that (f,) 48 @ normalized weally null sequence
in B so that the summing basis is finitely block-represenied in every sub-
sequence of (f,). Indeed, Lemma 2.4 holds for the morm {[|-]]] as well and,
of course, the f,’s all have norm one. Given N’ an 1nm1te subset of N and
k a positive integer, choose k< j and (I, .. i“; with F; « N' for
all i and F, = {j}. The proof of Lemma 2.3 shows that (|77 xm)i,‘,1
is a Dblock basis of (f,)pey Which is 1+ c-equivalent to the first j terms
of the summing bam Tt can be demonstrated that B is isometric to
a subspace of C(a” +1)

ExaMpre 2k Fix k an integer larger than one and let &y, == {(F, ...
o) (P2 ). Define [-[F on ogy by

. %
(;ﬂl;})kaf, 2 B, ) |

Let B, be the completion of ¢, under [-[*. Then (f,).is a normalized
weakly null sequence in B, such that the first k-terms of the sumuning
basis are 1+ e-block-represented in every bubsequence of (f,) for every

I =

e>0. (e> 0 given, we simply choose N so that Z > h(my, mg) < e
i 0T
and n, such that g(n} > my for n > n,, where h and (my) are as in Trop-

osition 2.2. It follows that (|, =Y xw, % 1 is 1+ e-equivalent to (64, ..
..y 6) in By as long as min Iy > n,. This remark also shows thab bhe
summmg basis is 14 e-block-ropresented (resp. L--s-finitely hlock-
represented) in every sequence of (f,) in B (resp. By tor every &> 0).
We shall prove in Theorem 3.2 that By, isometrically imbeds in O/(w®*--1)
We note that the particular form of the representability of the first
two terms of the summing basis shows that the bimonotone constant
of any subsequence of (f,) in the B,-norm is equal to 2. That is, for any
infinite subset N' of N,

Mmoot _

ngecgv)  N91R

icm
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BxAvMPLE 2. Define |-|

on ¢ by gl =supilx[km)gll"“ and let

B’ be the completion of ¢y, under |- ||’ ‘We shall prove in Theorem 3.2
that B’ isometrically imbeds in O(w® +1) and that (f,) is a normalized
weakly null sequence in B’ such that the s summing basis is finitely block-
represented in every subsequence of (f,).

ExAMPLE 3 (due to W. B. Johnson). Fix k> 1, let {|fly = (3 |f(n) )"
for fecy, and let [[|f|1*¥ = max (|Ifls, IfI¥) for all fec,, (where ||-|* is de-
fined in RExample 2k).

ProprosiaioN 2.5. Let H), be the completion of cq in the norm ||]-||[*.

Then Hy is isomorphic to Hilbert space; (f,) is & normalized weakly null

sequence im Hy, which is in fact ﬁ-eqm'mlent to the usual 1*-basis; yet ecvery
subsequence (fn) of (f,) has unconditional constant at least as large as ﬁ/2 .
Indeed, for any fecqy, (Fy)efr,

k .
k€ &\ 7| < Il S,
- je=1

= VE||fll;

hence  [IfI*< VE|fl,-

But then [|fll, < [IF11]F < VE £l Now let N’ be an infinite subset of N
and (I,)%_,e®, be such that F, < N’ for all n, put o, = 2 [N o

n=1
and g, = 2

imply ’Ulla‘ﬂ llwkﬂ'“ =% and [ly*
obtain that |{|z,l|* > % and (||yxill*
constant of (JF,|™"xz )i
as V2. ‘

TxaMprn 4. For a norm |+| on eg we let |-|* be the dual norm on
¢y defined Ly |f]* = sup [{f, @], the supremum taken over all & in ¢,
with |¢] << 1. Now let ||, be the norm on ¢y, given as ||| in Example 1
and |[+]y == ||*[ls, the usual I*norum.

Then let |-| be a uniformly convew norm on cyy satisfying

AL (1l 1F1) (116 1=l

(Suell a norm is obtained using Lions—Peetre interpolation
betwoen the norms [-f, and [+]p; the fact that it is uniformly convex
iy due to Beauzamy [1].)

TimormM 2.6. Let U be the completion of co under the norm |-| of
Hwample 4. Then U is a uniformly conves Banach space and (f,) is a nor
malized weally null sequence in U hawing no unconditional subsequence.

1), |~ %r,- The 1nequa11t1es in Lemma 2.3 hold and

<1-+o. Since [zl = VE = lggl, we
=Vk. Tt follows that the unconditional
and hence of (f,)nny I8 at least as large

and |fI"<
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Proof. Since |f,| <1 and |f,|* <1, |f,| = 1 for all n. For any finite
set B, |ypl < ((2+c) P FM)E<2|F] by Lemma 2.4, hence (f,)
is weakly null. Let V' be an infinite subset of N and choose (F,) ¢ § with
F, c N' for all n. Fix % and define », and ¥, as in the proof of Prop-
osition 2.5.

Again by Lemia 2.3 we have that |y, << 1+4-¢; of course, Jygly = VZ;
hence [yl < ¥*V1+e Now the definition of |- lo yields that [gle << 1
and, of course, |o% = |wyly = VE, 80 |uy* < K. But

o = @y, @y ) << |yl oz * < /”1/”"%'5

%
hence lmkl =1, Thus |/l = E¥3(L+¢)™%;  this implies that
(|F, ]"I’zxp ¥., has an unconditional constant of at least E%(1-f-e)~Y222,
Since % 1s arbitrary, (f)pey 18 not unconditional.

Remark. We indicate briefly the following observation of Tza-
frivi [11]: No subsequence of (f,) in U has a closed linear spam imbedding
into a uwiformly conves Banach lattice, or move generally, into « Banach
lattice with o-complete o-order continuous norm.

Tzafriri shows that if (g,) is & normalized sequence in a o-complete
o-order continuous Banach lattice so that (g,) has no unconditional sub-
sequence, then '

tm s 37 >0

Now let -]l be the norm of Example 1, and let (s;) be a sequence
of natural numbers so that lim myfs; = 11m 8;/myyy = 0, where m; = 4

L}
for all j. (For example (8; = j- 4 ) has 1.h1s property.) Tt follows from
the proof of Lemma 2.4 that if (F}) is a sequence of finite sety with |F} = 8
for all j, then hm | F;|~ ‘l]xp || = 0. Indeed, let &> 0; choose J so that

mj/sj< e and s,/m,+1 <eall j=J, and fix F with & =g = || for
some j > J. Now-adhering to the notation and terms introduced in the
proof of Lemma 2.4,

max gf* <mif* < e and  max a7V? <

—1/3 ~1/2,
Mg << el

fed id (e !
hence

lpll < 267 = 2e llf’l”“

Of course, if I = {jy, .. ,y,c}, then sup HZ £fi,|| = Izl Hence letting

[+] be the norm in U, sup | Z’ 1, < stkm Thus if ¢, = f;, forsome
subsequence (f,) of |f,|, ¥ **

35
lim sup s, | 31 5] = 0.
n—oo 4 Jeal
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§ 3. Normalized weakly null sequences in O(a) for ordinal a. We show
in this section that certain of our examples imbed in ¢ (w"’2 +1) while
in O(w”-+1) every normalized weakly null sequence has an unconditional
subsequence.

We need the following technical result:

LmvmA 3.1 Let 1< n < oo,

(a) There ewists a sequence (4,) of clopen (closed and open) subsets
of ™1 so that

(i) any n of the Ay’s intersect in a singleton : . e. for all wnh |F| = n,

|0 4] =13
JeR R
(ii) mo n-+1 of the ASs have a common point;

(iii) for every isolated point @ of w™+-1, there ewists an B with || = n

cand () Ay = {2}
Jedt

(b) For any sequence (A;) of non-empty clopen subsets of w"+1 with
Xy 0 weakly in O(w™+1) there ewists a subsequence (Aj) of (4;) and
a 1<k < n sothat any & of the Ag's have a common point, yet no k+1 of
the ApPs have a common poin.

Proof (a). We establish this by induction on n. The case » =1
is trivial. Suppose (a) is proved for n. Let By, B,, ..., be a sequence of
disjoint compact open subsetﬂ of o™ so that B;is homeomorphic to

o™-+1 for all § and o™ U By. For each m, let (A"‘),,l,,,,_i_1 be clopen
subsets of B, satisfying (i)- (111) (for “4,” = “AR /7 and “o™ 417 = “B,”).
For each m =1,2, ..., put 4, =B, UUA’

We claim that (4,,) satisfies (i)—(iii) for n-+1. It is evident that the
A% are clopen subsets of o"™'+1. Let |F| =n+1 with P =my,.
ooy My and my < my for 2 <j < n+l. Then

?UAmmBmJ—IﬂA 3 =1
=@. If m <m,, then

el n+l 'm
ﬂ .Amith = ﬂ .A,,,‘ =

It m>my, Ap,NBy

+1

by (ii). Hence |ﬂ Am‘\ =]. For any 1solated point # of "™, we may

choose my with fveB By (iii) we may choow Mgy +ory Myyy With my < my
for 2 n+l rmd ﬂ A, = {#}. Thus {'] Am

ablighed. Tt is also ea&ﬂy seen that (i) holds for n+1.

{w} and (iil) is est-


GUEST


90 B. Maurey and H. P. Rosenthal

Remark. It is possible to introduce an ordering < ons” & {FP<=N:
IF| =a} in such a way that ™ in the order topology iv homeomorphic
to the set of isolated points of w™+1 in the relative topology. We then
put 4; = {Fes™: jeF}. It can be shown that with this ordering, the
Aps carry over to an appropriate sequence of clopen subsets of ™1
 satifying (i)—(iii).

Proof. (b) It suffices to prove (by induction) that there iy a sub-
sequence (Ay) of the 4’ zo that no n-+1 of the 4 have a common
point. For then let & be the smallest integer such that there existy a sub-
_ sequence (4j') of (4;) so that no k-+1 of the A;”s intersect; Choose (4y)
for this k; if & = 1 we are done. Otherwise let ¢ be the family of all /' ¢ N
with |[F] =% and () 4; #@. By Ramsey’s theorem there exists an

jeIm

infinite subset N’ of N so that FeC for all F < N’ with [#| == &; or go
that no FeC if B <« N' with |F| = k. But the latter is impossible since
then (Af);y has the property that no % of the terms of this sequence
intersect, contradicting the definition of Z%.

Suppose now # = 1. Since %a,(®) — 0, there existy an =, so that
w¢d; for all j > n,, which implies that .4, is finite for all j > n,. Suppose
g <M1y < ... < my have been chosen with 4, N4, =@l 1<, <k,

k
i 3 i'. Since J 4,, is finite, there must be infinibely many m’s with
k (=1
A0 (U Am;) = @; so simply choose my,, to be one of these m’s with
=1 f
fgy = M-

Suppose (b) has been proved for n. We may choose B,, By, ... com-

pact open subsets of o™+ yo that for each j, sup B, < inf B;i, and By

[=~]
is homeomorphic to ", with «"*' = (J B;. Since Za;(@"t1) = 0, there
J=1

exists an #; so that o™t ¢4, for all j = n,, which implies that each Ay

intersects finitely many B,’s for all j = n,. Let F = {&: BynA,, # 0},

Then 4, = ) 4, nB;. By applying our induction hypothesis |7 times
kel : to

successively, we may choose an infinite subset My of N with n, < inf M,
so that for each ke, no n-+1 of the sets (BN Ay)me ar, have & common
point. It follows that no n--1 of the sety (A A ) ay, hawve o common
point. It iy now evident that we may choose n'y and infinite subsels
My of N with ny <int My, = ny,, and M, 5 My for all & wo that for
each k, no n 41 of the sets (AN an, have a common point. It fol-

lows that no 42 of the setbs (An!)j‘j_1 have a common point, completing

the proof.
Remarks. Choose disjoint compact open subsets B, of «® with

o = le B; and B; homeomorphic to «-+1 for all 4. Tn each B, choose
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clopen subsets (4452, so that any & of these sets have a common ‘point,
m—1

no k-1 have a common point and define 4,, = B,u N 4, for all m,
Ju=

Then it i8 fairly easy to see that the 4,’s are compact open subsets of
w® with the property 111;&13 X4, — 0 pointwise (hence (XAm) is weakly

null in C(w®-+1), yet HA“ #@ for any j;<..<j, with j,>k).

In turn, it can be seen that then for any infinite subsequence J1<ja<<...,

1)\
lim—l”Z 2t ” >0.
oo M Al “

The closed linear span of the %4, 8 I8 essentially the same space as the
on of Schreier’s mentioned earlier; thiy combinatorial deseription mo-
tivated certain of the constructions which follow.

THEOREM 3.2.

(a) Let n>1. There cuists o normalized weakly wull sequence ( )
in C(a®"-+1) such that the first n-+1 terms of the summing basis are
1+-e-block represented in every subsequence of (f;) for every &> 0.

(b) There ewists a normalized weally null sequence (f)) in O(m"’2+1)
so that summing basis is finitely block-represented in every subsequence
of (fy). . *
Remark. Fix # and let (f;) be the sequence from part (a). It fol-
lows that the unconditional constant of every subsequence of (fj) is at
least equal to n--1. We show in Theorem 3.4 that this is the best possible
result (up to an arbitrary e > 0) for m = 1. It is known that C(w®™-+1)
is isomorphic to C(w®--1) [4]; in fact there is an absolute constant A
%o that C(w®™--1) is A -n isomorphic to C(w®-+1). Thus by Theorem
3.4, every normalized weakly null sequence (f;) in C(w®™-+1) has a sub-
sequence (f;) which is A’n unconditional for some other absolute constant
A’ Thus for goneral n, (a) yields the best order of magnitude for
such an example. Now let (f,) be the sequence in (b). Then (f,) has no
unconditional subsequence. Since /(a-+1) iv isomorphic to a subspace
of O(w® 1) Tor every o < o [4], we have that @®" is the least ordinal a
for which there exists & normalized weakly null sequence (f;) in C(a-+1)
with no nueonditional subsoquence.

Iroot of Theorem 3.2.(a) It suffices to show that the Banach
spaco B, constructed as HExample 2(n--1), isometrically imbeds in
((w®"-1-1). We prove this by induction, beginning with n = 1.

Choose (D52, a sequenco of compact open subsets of w® . with
sup Dy < int Dy, and Dy homeomorphic to o®i 1 for all j, with o®
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) D,, where K; = p({}) for all j and y is detined in Bxample 1. For
i=1
each % choose a sequence (Aj)g-Kk 41 of clopen subsets of D) satistying

(i)-(ii) of Lemma 3.1 for “n” = Ik, “4,” = A% g and €17 = Dy.
Now define functions f, on @ —|—] as follows fix & and xeBy; put

K7 i wedl, where m >k
fm(®) =11 it m o=k
0 otherwise.

Tt is evident that the f,’s thus defined are continuous functions on

m
»®-+1. Suppose that ¢ = ‘)4 ¢fy for some m and scalars €yy ..., Op and.
4=

2 is an isolated point of w"’ 4-1. Then there exists a k and & set I with
|F| = K, and k<minF so that {#} = ﬂ Ak, Putting F, = {k} and
F, =P, it follows that g(v 2 ¢ |I'2|‘”2,’c Since the norm of g
equals its supremum on the qeb of isolated poxntb of o®-~1 and M) A
Fel

is non-empty for any such % and F, this proves that By is isometric to
the closed linear span of the f,’s in O(w®+1). Let now fi =f; for all j.
Now suppose a sequence (ff);%, of continnous functions on %" 41

has heen constructed so that there is a one-one correspondence v between
a subset I, of the isolated points of 0?41 and §,u satisfying the

following condmon for each g = 2 ¢fP in the linear span of the Ii's
i=
and wel,, g(®) = Z | Bl 1’2201 Where 1 = (Fq, ... Fppa). (These con-

ditions imply tha’o Bn+1 is 1sometr10 to the closed linear span of the fis
in ¢(I,). Since O(I,) isometrically imbeds in C(w®"+1), it follows thab
B, also does. We note that our construction of the Jis satisfies these
conditions for I, equal to the set of isolated points of w®--1. )

Let {D,:yel,} be a family of compact open subsets of w® 8o that

for all ¥ = 9', D, nD . =0 and for each yel,, .D, isx homeomorphic

to 0¥ +1. |

For each ¥, let (4Y ) emax _ be a sequence of clopen wubsets of D,
satisfying (i)-(iii) of Lemma 3.1 for “n” = yry, “A,” = Ammlﬂn 1 fmd
“@t41” = D, where vy = (Fy, ..., Fypyi)

We now identify «®®t 41 with (w®-1) % (@*"+-1) with the
cartesian product endowed with the reverse-lexicographic ovder topology.
We define functions £, m =1,, 2, ... as follows: Let (2, ¥)e 0@+ -L1L.
I yel,, (Fyy ..., Fopy) =79, veAY, and max By < m, lot [ (@, y))

= (ypry)™H2; it ’ljeI, max Fyyy < m, and #¢d%, let fot((» y)) =0;
if yel, and max F, ., =m or if y¢I,, let f2{(@,¥)) = m(y).

icm

Normalizod weally null sequence 93

The functions thus defined are continuous; indeed, fix m and let
Vi = {yely: max ¥y, < m where vy = (Fy, ..., F,1)}.

Then V, ix a finite set and 4% x{y} is a clopen subset of
@@+ 41 for each yeV,,. An alternate description of i+l i that fit! =
WZ (wrj)””zxﬂ gy 0% (@)X TV, while fiti((w,y) =fat'(y) for

all " (@, ) (0" +1) X (~ V).
Wo now lot L, = {(w, ¥): yel, and @ is an isolated pbint of D}
Let (w,y)eIMl, (B, o I‘,H_l) = 7y, m and scalars ¢,,...,c, be given

and, put g a»:«JZ‘ o fitt, § —njz c,fj We may choose an F,H_g depending

~ uniquely on (#,y) with |I',,+2\ = yry and max F, , <min F,,, such

that {w} = , F(’] AY. Then f7(y) = 0 if j > max F,,; and f7((2,y)) =0

unless gel’n_f_,‘ (mme § ¢y, implies @¢4Y), in Whlch case f7((2,v))
|—Fn+z|—1/2 For j < max I, ., fj ( 2,Y ) = f{(y), hence

n+2
(@, 9) =GO+ 1Tl 3 ¢ = DI D o

JeFpyg k=1 feTy,

1<j<m . 1<j<m
For any (Fyy ooy Prpg) €@y there is a unique (2,y) in I,,, with
vy = (B, .oy Fpyy) and {o} :—_j p AY, thus establishing the desired 1-1

“Lna

correspondence hetween I,., and §,,, with the appropriate properties.
To prove (b), let Ay, 4,,... be disjoint compact open subsets of

‘0 with 4y homeomorphic to w“’f +1 for all j. By part (a), we may
choose for each § a sequence (f4)_, of continnous functions on 4, which
is isometrically equivalent in C(4,) to the coordinate functions (f,) on
N endowed with the [:|/** norm. Now for each n define f, on w® -1
by fu(w) = fi(w) it wed; for some 1<j<n and fu(®) = 0 otherwise.
It is tnvml Lha,b the f,’s are continuous functions on »” +41. Fix n and

sealars (¢;) ‘wmh ¢ =0 for all j>n; put § = Zo,f, and g = Zc,f,
For an arbitrary &,

a0 = [[ff;o,f,’“ilw = [z 91,

the latter equality holding by part (a). Since gl = sup |74kl we have
i

established that the closed linear span of the f,’ in G(m“”z +1) is isometric
to the space B’ defined in Example 2’ of § 2.

We thus noed only prove the properties of B’ asserted in the state-
ment of this example, We shall need the fact that (f,) is a monotone
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basis for By for all k; i e. for all ng,m, all &, and all n, |xg, . mof"
< lgl¥, hence
”X[n,oo)g“k < 2 ”ng-

This fact is easily deduced from the following property of §, wliich iy
slightly stronger than (2) of Proposition 2.2: for all kmm and () eF
there exists a (@) in § with F; = @y for all j<k, Gyanfl, ..., m}
= Frppn{l, ..., m} and n < min Groan{m+1, m-2, ...}

Now its easily seen that ||f,|" = 1 for all # and the proof of Lemma 2.4
shows that |lyzl¥ < (2--¢) |F|"* for all finite subsets F of N, whence
gl < (4-+20) |FI** for all such F. Thus (f,) is & normalized. weakly
null sequence in B'.

We now need the following technical result:

LEvMa 3.3. There is an absolute constant K so that for all n > 1 and

(F) in G, ,
D BTyt < K.

l=n+1
Proof. Let (F) e, fix n and I > n, let F = Iy, put & = ||, choose
i 5o that & = m; = 4% and let (G)pay in §,. Now k¢p(F,—1). Thus ad-
hering to the notation of the proof of Lemma 2.4, and observing thab
ay<my. Or ay 2> myy, for all j,

Za{ Vg, < (L+0) max g < (1 -+ e)mif?,
Jed Jed

(using (*) of Proposition 2.2) and

Za;msj < max a2 (2 s,) < miPmg.
jed e 7

Thus
mil? 2
= N i
T gml” < (1+6)W +m-

Since |Fy| # |Fy| it U5 1, the result follows from («) of Proposition 2.2
if we simply put' K = ¢?4-2¢c.

We are now prepared to complete the proot of Theorem 3.2, Lot N*
be an infinite subset of N, n an integer larger than one, and choose (%)
in & so that F; < N’ for all T and j = n where {j} == 4. I follows from
the proof of Lemma. 2.3 that (|7y~** Apiey 18 L4 e-oquivalent fo the
firs » terms of the surnming basis in the ||-|F-norm for all % ;= n. Let now

I 0
scalars ¢y, ..., ¢, be given with sup | }' ¢;| = 1 and put g = Ec”]f’,l"mml.
, k=1 fro
It follows by our choice of (F;) that
191" 2= Nxtpn=1,00 911" = llgi* 3= 1.
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Using the monotonicity of the basis (f,) in |- |* and the above-mentioned
gumming-basis-equivalence,

1,001 1 < 2091 < 2 426
Finally lot 1 <k < %. Again using Lemma 2.3 and also Lemma 3.3,

forall %k>mn.

l
N pe-1,09 91 << 2 (1 -}-6) wup ! X cfl +suplal D) IIFI > ymllt <2(1+0)+2K.
<k iy =

Thus [l < 2(1+0)--2K, so ([Fy™Pyp); is 2(1+c)+2K-equivalent
to the first » terms of the summing basis in B’. This completes the proof
of Theorem 3.2. . )

Our final result gives positive results for normalized weakly null se-
quences in O(u-+1) for small ordinals a.

TuporuM 3.4. Let « be an ordinal, let (f,) be a normalized weakly
null sequence in Cla--1) and let & > 0.

(a) If « < @®, (f,) has a subsequence (f,) with unconditional constamt
at most 1. : :

) If a = w®, (f,) has a subsequence (f,) with unconditional constant
at most 2 4-e.

Proof. Irom now one we deal with infinite sequences. We require
the following standard

Porturbation result (cf. [3]): Lel K < oo and (f,) and (g,) be infinite
sequences in a Banach space with (f,) semi-normalized, (g,) K-uncon-
ditional and 3 ||f,—gull < co. Then for every &> 0 there exists an m
50 that (f,)Pum i (K + &)-unconditional. ‘ .

Now let (f,) be as in Theorem 3.4. Since ¢+1 is a countable set
and. (f,) tends to zero pointwise, there exists an increasing sequence (4y,)
of positive numbers with 4, — co so that (4,f,) tends to zero poidfbwise.
By passing to o subsequence if necessary we may. assume thab

) gt < oo,

Hinee a--1 is a totally disconnected space, we may choose clopen
subsets H, of a1 so that ‘

Ifn'p‘l(m;il)w)) c B, < |fav.rl((l;;1a°°))

for all » = 1. Then. there is no @ in a+1 with @B, for infinitely many
n's, winee A,f, (@) 40 for such an o, Hence
(2) *m, ~> 0 weakly in O(a-+1).

Now set g, "*"fn%‘ﬂln for all #. Then since x¢H, implies |f,(2)]
< A7y = gall < A7%, for all m>1, so by (1) we have .

(3) Dl —Fall < 00
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Now assume (a) and choose M < co so that o< ™. Since a1
is a clopen subset of o, we may apply (b) of Lemma 3.1 to choose a sub-
sequence (g,) of the g,’s so that no M +1 of the corresponding #,’s have
a common point. Now let &> 0. We may choose continuous functions &,
on a+1 and a finite subset G of the real numbers so that for all »,

(4) hola41) = G, by ™0, 00) = T,

and (b, —gnll < /M.
It follows that for all sequences of scalars (¢;) with only finite many
non-zero terms and any @ in «+1, that

| X aty—g@)| =] X oy—g)@)
F) JeN,

.\ &
< sUp g INwI‘M’Sg sup Jeyle,
where N, = {neN: weH,}. Thus we have
(8) |l20,(hj~g})” < m;p}c,fs.

We now appeal to the results of [9], which yield that (hg) has a
(1 +2)-unconditional subsequence (%j). It then follows from (5), (3) and
the standard perturbation result that (f,) has a (L-Fs)-unconditional
subsequence. Since (%) is a semi-normalized and weakly null, it follows
from the results of [9] that there exists a subsequence (h3) of () so that
for any m, scalars ¢,, ..., ¢,, and finite set ¥ with |F|< M,

T jel

(6) . (supz/’c,,hj’(w))'*<(1—!—a)snp(Zn’c',,h,'-(w))+
x F=l

(f* denotes the maximum of f and 0). But then (hy) is itself (14 &)-uncon-
ditional. Indeed, fix =, scalars ¢, ..., 6,, F a subset of {1,...,n} and
#ea+1. Then since i (0, oo) = B, for all u, letting B = {j < n: hi(w) = 0},
'] < M, hence

’Ze,hy’-(w)l i “Z e;hy
Jel ) Jeb
the arbitrariness of @ thus yields that
| St <] Zop)
jexr
We pass now to the proof of Theorem 3.4 (b). The J,’s chosen in

the first part of our argument have the property that o1 belongs
to at most finitely many of them. We may thus assame that B, is a com-

< (Mw)“ézcﬂrf}’};
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pact subset of »® for all n. We then choose simple continuous g,’s sup-
ported on the B,’s so that 3 |, —f,ll < co with [I§,] < 1 for all #. By the
standard perturbation result, it suffices to show that the F,’s have a
(1+ ¢)-unconditional subsequence for any & > 0. Thanks to the statement
containing (6), our proof of Theorem 3.4 (a) yields that for any compact
subset 4 of w®, any semi-normalized weakly null sequence (h,) in C(A)
and any e > 0, there exists a subsequence (k) so that for all n, ¢,
and F < {1,...,n),

(7 (:Pj)hgﬂ'cjhj(m)r < (1L+¢) (ztxfgc,hj(m))t

ey Oy

Now fix &> 0. By a standard result of Bessaga and Pelezyhiski [3],
we may assume without loss of generality that (g§,) is already a (1 &)-
monotone bhasic sequence.

We now choose infinite subsets N = M,, M,, ... of N so that set-
ting m; = min M; then for all 4, m; < my,, M;> M, and for any
set 4 in the Boolean ring gemerated by {7;(¢): ¢ # 0 and j < i}, either
{G;14-je My} satisties the statement containing (7) or MZ‘" lg;) Al < =.

JeMy
Finally, set hy = gmj for all j. We shall show that the ;bj’s are almost
two-unconditional. Fix n, scalars ¢, ..., ¢, and F a subset of {1,...,7n}.
We may assume without loss of generality that there is an » so that

1 = HZo,h,“ = )chhj(m)l.
Jel Jed
We shall show that
(8) @ +4e+2e07 < || Yoy,

which, is certainly enough to complete the proof.
Let & be the least integer so that h;(z) # 0 and set

A = {yew®: By(y) = 0 for all j <k and hy(y) = hy(w)}.

A is thus a compact subset. of w® containing z. Now if

(9) DIty | Al < 5,
>k
then

1 = IE(:,ILJ(:L')

.
< lowle(@)]+up g e < (2 +de+ 26 || ol H .
J=1

Jexr
. n
Now suppose (9) does not hold; let f = 2 ehyand g = 3 ¢hy. I kgl
then e =
|3 eity(a)] = 1f@) < (1+2) g | Alle
Jeb

7 — Studia Mathematica 61,1
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(by the statement containing (7) and the construction of the (J%))
N
<+ lgl<2a+el Yon|
F=1
by the (1 +¢)-monotonicity of the &/s. (In reality, it is only in the very
last inequality that the constant “2” enters in a crucm] way.)

Finally, suppose keF. Then if ¢k, () and f(#) are of opposite sign,
either [¢, B, (%) or |f(z)| is larger than ]Z c;hy (@ ’ But

98 B. Maurey and H. P. Rosenthal

max {|opT(2)], 1f(@)l} < 2(1+3)]| glejhfﬂ

by the above argument'. Now suppose ¢l (%) and f(x) are of the same
sign; we may suppose both are positive. Then by (7) there exists a yed
with f(z) < (1-+¢) g(y). By the definition of 4,

7 .‘f (] f k ’k( ) ( £) gy )
c h - c]ch' 0 1 ) (
}GF

= auh(y) + (1+2) g () < (L+2) () + (1)

1+8 chhj < (1-+e) HEG/hf”‘
Je=l
This completes the proof.
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