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An equivalent property to Ivory’s theorem
from the standpoint of conformal mapping

by HirosHI HARUKI (Waterloo, Canada)

Abstract. This paper proves a theorem which states an equivalent property
to Ivory’s theorem from the standpoint of conformal mapping and deduces a theorem
in the theory of the conic sections from this property.

1. Imtroduction. Ivory’s theorem (see [2], [4], [b], [6], [8], [14], [3],
p. 32) says:

For a family of confocal conics, let P,, P,, Py, P, be the four vertices
of a curvilinear rectangle formed by any four members of this family arbitrarily

chosen. Then PP, = P,P, holds.

In [2], [4], [B], [6], [8] and [3], p- 32, this theorem was proved by
the use of the mapping functions cosz and 22 from the standpoint of con-
formal mapping and, moreover, it was proved that this property charac-
terizes the confocal conic sections.

Let f = f(2) be a non-constant entire function of a complex variable 2
and let D be a non-empty simply connected domain, where f is univalent.
We denote the set of all domains D satisfying the above conditions by &.

Let D be an arbitrarily fixed domain belonging to &. Let A, 4,4,4,
be an arbitrary rectangle contained entirely in I whose sides are parallel
to the real and imaginary axes on the z-plane and let M,, M,, M;, M,
be the midpoints of the four sides 4,4,, A,4,, A;A,, A, 4,, respectively.
Furthermore, let M be the point of intersection of the line segments
M, M;, M, M,.

We consider the conformal mapping of D under the mapping function
w = f(2). Let P; =f(4;), V; =f(M;) (j =1,2,3,4) and V = f(M) on
the w-plane. Since w = f(z) is regular and univalent in D, we obtain the
four curvilinear rectangles P,V ,VV,, V,P,V,V, VV,P,V,, V,VV,P, on
the w-plane as the images of the four plane rectangles A, M, MM,,
M A MM, MM, A, My, MMM, A, on the z-plane under the mapping
function w = f(2). We denote the areas of the four curvilinear rectangles
PV, VV, ViP,V,V, VV,P, V,, V,VV,P, by 8,1, S,, S,, S,, Tespectively.
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Now, we consider the following two properties:

ProPERTY I (Ivory’s property). P,P; = P, P, for an arbitrary rectangle
A A, Az A, satisfying the conditions mentioned above in each D belonging
to &.

ProPERTY II. 8,+8; = 8,+ 8, for an arbitrary rectangle A, A, A; A,
satisfying the conditions mentioned above in each D belonging to .

We formulate the result stated at the beginning of this section as
follows:

TuroREM A. Property 1 holds if and only if f(2) = asinaz +bcosaz+¢
or f(z) = asinhaz-+bcoshaz+c or f(2) = az?+bz+c, where a,b,c are
arbitrary complexr constants and a is an arbitrary real constant with |a| -+
+1b] > 0 and a # 0. In other words, Property 1 characterizes the confocal
conic sections, including degenerate cases, from the standpoint of conformal
mapping (see the remark below).

Remark. After some computations, we see that the following two
hold:

(i) The horizontal and vertical lines Im (2) = const and Re(2) = const
on the z-plane are transformed by the function w = f(2) = asinaez +
+beosaz+¢ (a2+b2 #0) or f(z) = asinhaz+bcoshaz+c¢ (a?—b? = 0)
(where a, b, ¢ are complex constants and a is a real constant with a # 0)
into a family of confocal ellipses and hyperbolas on the w-plane.

(i1) The horizontal and vertical lines Im (2) = const and Re(2) = const
on the z-plane are transformed by the function w = f(2) = a2?+bz+c¢
(where a, b, ¢ are complex constants with a # 0) into a family of confocal
parabolas on the w-plane.

The purpose of this note is to prove the following theorem and to
deduce a theorem in the theory of the conic sections from Property II.
THEOREM 1. Property I and Property 11 are equivalent.

2. Lemmas. We shall apply the following four lemmas.

LEMMA 1. Let f = f(s, t) be a real-valued function of two real variables
8, t and let f be of class C? in a domain containing a rectangle R with vertices
R, = (a1, b)), R, = (64, b,), By = (ay, by), By = (a4, b,), where a, < a, and
b, < b,. Then,

[ [ (@*f10t0s)dsdt = f(R,)—f(Rz)+f(Ry) —f(Ry).
R

Proof. See [1], p. 248-249.
Before we state Lemma 2, we state Theorem B.

THEOREM B (Nevanlinna—Pélya Theorem). (See [9], [13].) If f = f(2),
g =9g(2), h =h(2), bk = k(z) are regular funclions of z in a non-empty
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domain D and satisfy [f(2)|2+|g(2)|2 = |h(2)|2+ k(2)|2 in D, then there

exists o unitary matrizv (a g) such that

Y
h(z) = af (2)+Bg(2), k(2) = yf(2)+dg(2)

hold in D. Heire a, B, y, 6 are complex constants.

We may now state Lemma 2. (See [7].)

LeMMA 2. Suppose that D is a domain including 0. If f = f(2), g = g(2),
h = h(2), k = k(2) are regular functions of z in D and satisfy |f'(z)|24+
+19'(2)1* = (B (2)]*+ k' (2)[* in D and if f(0) = g(0) = h(0) = k(0) = 0,
then |f(2)1*+lg(2)1* = |h(2)]*+ |k(2)|* holds in D.

Proof. By hypothesis and by Theorem B there exists a unitary

matrix (a ﬁ) such that

y o
(1) h’-(z) = af’(2) + B9’ (2),
(2) = yf'(2) + 8¢’ (2)

hold in D. Here a, 8, v, 4 are complex constants.
By (1), (2) and by f(0) = ¢g(0) = h(0) = k(0) = 0 we have

(3) h(z) = of (2) 4 Bg(2),
(4) k(z) = yf(2)+ 0g(2).

Since (a ﬁ) is a unitary matrix, by (3), (4) we have |f(2)]>*+
y :

+1g9(2)|> = |h(2)|2+ |k(2)|2 in .D. Thus the lemma is proved.

Before we state Lemma 4, we prove Lemma 3.

LevMmA 3. Suppose that D is a non-empty domain and that EF is a
line segment contained entirely in D with midpoint M.

(1) If w = f(2) = 22 is univalent in D and if we denote f(E), f(F),
f(M) by E', F', M', respectively, then the tangent line to the arc f(EF) at M’
is parallel to the chord E'F' joining its extremities on the w-plane.

(ii) If w = f(2) = cosz is univalent in D and if we denote f(E), f(F),
f(M) by E', F’, M', respectively, then

(a) under the additional hypothesis that EF is parallel to the real axis
on the z-plane the same conclusion as that of part (1) holds,

(b) under the additional hypothesis that EF is parallel to the imaginary
axis on the z-plane the same conclusion as that of part (i) holds.

Proof. We shall apply the following Theorem C (see [10], p. 15).

THEOREM C. Suppose that w = f(2) is defined in a closed disk K with.
centre at z = z, and 18 differentiable at z = z,. Suppose further that f’'(z,) # 0.
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If the point z moves along the ray R: arg(z —z,) = ¢ (= const) emanating
Jrom the point 2 = 2z, on the z-plane, then the arc f(RnK) possesses a directed
tangent line at the point w = f(z,) which makes an angle qa—i-arg(f’(zo))
with the real axis on the w-plane.

Proof of (i). Let E, F', M represent the complex numbers = —y,
x + 9, x, respectively. If the point 2 moves along the ray arg(z —z) = arg(y)
emanating from the point z = z, then by Theorem C we have y = arg(y) +
-+ arg ( f'(@)), where y is an angle made by the directed tangent line
to the arc f(MF) at M’ with the real axis on the w-plane. Hence we
have p = arg(y)+arg(2x) = arg(y)—i—arg__(flw) = arg(4ay) = arg((w-{—y)*—
—(m—y)z) = a,rg(f(F) —f(E)) = arg(E'F’) which leads to the desired
result on the w-plane.

Proof of (ii) (a). Let E, F, M represent the complex numbers z —{,
x+1, x, respectively, where we may assume that ¢ > 0.

If the point 2 moves along the ray arg(z —x) = arg(t) = 0 emanating
from the point z = x, then by Theorem C we have y = arg(t)+ arg(f (2))
= arg( f (w)), where y is an angle made by the directed tangent line to
the arc f(MF) at M' with the real axis on the w-plane. Hence we have
p = arg(—sinx) = arg(—2sinz sint) (2sinf > 0 by the inequality 0 <t <=
which follows from the positiveness of ¢ and the univalency of f in D)
= arg(cos(z +1) —cos(z—1t)) = arg(f(F) —f(E)) = arg(E’'F’) which leads
to the desired result on the w-plane.

Proof of (ii) (b). Since it is similar to that of (ii) (a), we omit it.

We may now state Lemma 4.

LEMMA 4. Let P, P,P,P, be a curvilinear rectangle formed by any four
members of a family of confocal conics and let V, be the point on the arc
PPy, (k =1,2,3, 4), where the tangent line is parallel to the chord P P,
joining its extremities. Then there exists one and only one member of this
family passing through V., Vy. Similarly, there exists one and only one
member of this family passing through V,, V,.

Proof. We discuss two cases.

Case 1. Consider a family of confocal ellipses and hyperbolas.

We may assume that the family lies on the w-plane. Furthermore,
we may assume that the two common foci are at 1 and —1. Consider the
mapping funection w = f(2) = cosz. Then there exist a non-empty simply
connected domain D and four points A4,, 4,, A;, 4, on the z-plane sat-
isfying the following three conditions:

(1) f is regular and univalent in .D.

(ii) The four points A4,, A,, 4,, A, form the four vertices of a rec-
tangle which is contained entirely in D and whose sides are parallel to
the real and imaginary axes on the z-plane.
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{iii) The four points f(A4,), f(4,), f(4,), f(4,) coincide with P,, P,,
P,, P,, respectively, on the w-plane.

The above facts follow from the following mapping property of
f(2) = cosz.

The horizontal and vertical lines Im(z) = const and Re(z) — const
on the z-plane are transformed by the function w = f(2) = eosz into the
family of confocal ellipses and hyperbolas with common foci at 1 and —1
on the w-plane.

By Lemma 3 we have

(5) fMy) =V; (j=1,2,3,4),

where M,, M,, My, M, denote the midpoints of A;4,, 4,4,, A,4,,
A, A, respectively.

We denote the straight line joining M,, M; by M,M,. Obviously,
f(M, M,) is a member of the family of confocal ellipses and hyperbolas.
Since by (5) f(M,) = V, and f(M;) = V,, this member passes through
V, and V,. Similarly, since by (5) f(M;) = V, and f(M,) = V,, there
exists one member of the family of confocal ellipses and hyperbolas passing
through V, and V,. The proof of the uniqueness part of the lemma is
clear.

Case 2. Consider a family of confocal parabolas.

By using the mapping function f(z) = 22 and a similar method to
that in Case 1 we can prove the lemma in this case.

3. Proof of Theorem 1. We shall use the same notation as above.

Proof that Property I implies Property II. Let D be an arbitrarily
fixed domain belonging to &. As above let A, 4,454, be an arbitrary
rectangle contained entirely in D whose sides are parallel to the real
and imaginary axes on the z-plane, let M,, M,, M,, M, be the mid-
points of the four sides A,4,, A4,4,, A;4,,A4,4,, respectively, and
let M be the point of intersection of the segments M,M,, M, M,. If we
represent the point M by the complex number x, then we can represent
the four vertices of the rectangle A;A4,4,4, by the complex numbers
xty,x—y,2z—Yy, x+7y. By hypothesis we have for arbitrary points
z+vy,x—y, x—Yy, z-+y belonging to D

(6) \fle+y)—fl@—y)| = f(e+7) —flz—7)I.
Squaring both sides of (6) yields
(7 f(e+y)—fle—y)2 = |f(@+7) —fle—7)*

Taking the Laplacians 4 = 02/0s%4-02/0t* of both sides of (7) with
respect to x = s+it (s, ¢ real), we have

4if' (@+y)—f -9 =4 @+9)—f(z—7)°

2 — Annales Polonici Mathematicli XXXIV,3,
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or
(8) f@+y)—f(@—y* = f(@+y)—f (-7

gince, by [12], p. 94, 4|g(2)|> = 4|¢'(2)|2, where g = g(2) is a regular
function of =z. '
By (7) we have

(9) If(e+y)—fla—)* = 1f(z+y)—fle—7)*
We next take the Laplacians 4 = 0%/du?+ 0%/0v? of both sides of (9),

taking into account the fact that f(x+ ), f(x —%) are regular functions
of y, where v +y,x—y,x—y,x+y €D, with respect to y = u -+ (u,v
real) and obtain /

4If (@ +y)+f (@ -9 =4I @+7)+f (@ —9)I%

or

(10) If' (@+y)+f @—y)* = If (@+7) +f (@—7)I2.

Adding (8), (10) side by side and using the Parallelogram Law |a 4 b|% -+
+la—bl* = 2la|*+2|b|% (a, b complex) yields for arbitrary points x +y,
x—7Yy,r—Yy,x+7y belonging to D

(11) If @+ +1f (@—9)2 = If @+ 7)1+ f (@—7)I%

We denote by 2k the length of the sides of 4,4,4,4, which are
parallel to the real axis and by 2k the length of the sides of 4,4,4,4,
which are parallel to the imaginary axis.

Putting ¥y = u+1iv (u, v real) in (11) and integrating both sides of
the resulting equality with respect to , v over the rectangle B = {(u, v)|
O0<u<h 0ok} yields

(12)  [[If (@+u+iv)rdudv+ [[If (@—u—iv)2dudo
R R
= ff I (@+u—iv)2dudo+ [ [ If (@ —u+iv)2dudo.
R R
Using linear transformations in (12), applying the Transformation

Theorem for Double Integrals (see [11], p. 374) and rearranging the re-
sulting equality if necessary, we have

13 [[ f@rdpdg+ ([ If @idpdg

AIMIMM4 MM2A3M3
=[] f@rdpdg+ [[ If(2)dpdg,
My Ay MM M MMad,

where z = p+1q (p, q Teal).
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If @G is a domain enclosed by a simple closed contour C and if ¢ = ¢g(2)
(= const) is regular and univalent in ¥ = CuU@, then the area of the
image of E under the mapping function ¢ = g(z) is given by

[[14' (2)12dpdg,

E
where 2 = p +1iq (p, q real) (see [10], p. 183, [12], p. 96).
Hence, by (13) we have 8,+8; = 8,4+ 8, and obtain Property II.
Proof that Property II implies Property I.
Let F = F(z), using the complex notation 2z = p+iq (p, g real),
be a real-valued function of a complex variable z satisfying in D
(14) 0°F|ogdp = If (2)I".

We represent the four vertices of 4,4, 4;4, by the complex numbers
x+y,x—79y,x—y, x+%y, x denoting the centrec of 4,4,4,4,. By hypo-
thesis (13) holds. By (13), (14) and by Lemma 1 we have for all combi-
nations of signs of » and v, grouping all terms involved on the left-hand
side,

(15) F(e+y)+F@—y)+F@—9)+F(@+7) —2(F(z+u)+
+F(x—u)+F(z+w)+F(z—iv) - 2F (z)) =0,
where ¥y = u+ 1w (u,v real) and v+y,x—¥y,z—y,x+y € D.

Operating on both sides of (15) with 02/0vdu and using (14) yields
(16) f @+ +1f @—=9° = If @+ 7)1 +1f (= -7

We take the Laplacians A = 02%/ds%+ 02%/0t* of both sides of (16)
with respect to xr = s{it (s,? real) and obtain
(17) " @+y)2+ 1 (@—y)2 = 1f @+ 12+ (@7
since A]g(z)[2 = 4|g'(2)|%, where g = g(2) is a regular function of z.

When z is arbitrarily fixed in D, f'(z+y)—f (@), f (x—y)—f (),
f(x+y)—f (=), f(®@—7)—f (=) are regular functions of y, where z+y,
e—g,x—y,x+5eD, with (f'(@4+y) —f @))-0 = (f(@—9)—F (@)
— (F@+9) —f @)y=0 = (F (@—7) —F @)),—0 = 0. Moreover, by (17) and
by observing the formula [y| = |y¥| (y complex) we have

@/0y) (f (= +9)—f @) +|@/09) (f (z—9)—f (@)}
= [(0/0y) (f (xz+7) —f (@) +|(0/9y) (f (@ —y) —F ().
Hence, by Lemma 2 we have
If @+ —f @2+ 1f (@—y) —f (@) = If (@+7)—f (@)*+
+if (@ —7) —f (@)1}
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or
18)  If @+y)—f @ +If (@w—y)—f @) = f (@+7) —f (@)*+
+1f (@ —7) —f (@)
Subtracting (18)_from (16) side by side and using the identity ja —b|2
= |aj24|b|>—2Re(ab) (a, b complex), we see that
(19) Re(f (@+y)f @) +Re(f (@—)f () = Re(f (z+pf (@) +
+Re(f (@ —7)f ().
By the linearity of Re and using the formula Re(y) = Re(y) (y com-
plex) (19) yields
(200 Re((f @+ +f (@—y)f @ —(f @+ +F @—9)f @) =0,
where z+vy, 2 —y,x—y,z+y € D.

Since  (f' (x+y)+f (@—w)f (@) —(f (@+7) +f (@—7))f () on the
left-hand side of (20) is a regular function of ¥, by a famous theorem in
analytic function theory we have ¢

21) (f@e+y) +f @—)f @) —(f @+ +f (@—9) f (@) = A=),

where z+y,z—y,x—y,#+y €D and A(x) is a function of z only.
Putting ¥y = 0 in (21) yields A(x) == 0 at every point of D. Hence,
by (21) we have

(22) (f @ +9) +f @@=y f (@) = (f@+P +f @—)f (@).

Taking the absolute values of both sides of (22), using the formula
[¥] = |y| (y complex) and taking into account the fact that f'(x) # 0
in D which follows from the univalency of f in D yields

(23) e+ +f@—y) =I1f(z+7)+f (z—y)l.

When z is arbitrarily fixed in D, f'(z+y)+f(x—vy), f(z+7¥)+

+f'(x—7) are regular functions of y, where z+y, x —%, v —y, z +y  D.
Hence, by the Maximum Modulus Theorem we have

(24) f+y)+f(@—y) =C(f (@+7) +f (x—17)),

where C is a complex constant of modulus 1 and may or may not depend
on =z.
Integrating hoth sides of (24) with respect to y yields

(25) fle+y)—fl@e—y) = C(fla+79) —flz—9)+ K,

where K is a eomplex constant and may or may not depend on z.
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Putting ¥ = 0 in (25), we have K = 0 and so

fl@+y)—flz—y) = C(fle+7) —flz—7),
where |C| = 1. Hence we have

\f(z+y)—fle—y)| = Iflz+F) —fle—)l,
or

fle+y)—fle—y)l = |f(z+7) —fle—p)l,

where  +vy, —79y, —vy, -+ y € D. Consequently, we obtain Property I.

We may now prove the following

THEOREM 2. Property 11 holds if and only if f(2) = asinaz+bcosaz+c¢
or f(z) = asinhaez4-bcoshaz+c or f(z) = az?+bz+¢, where a,b,c are
arbitrary complex constanis and a is an arbitrary real constant with ja|+
+1b] > 0 and a # 0. In other words, Property II characterizes the confocal
conic sections, including degenerate cases, from the standpoint of conformal
mapping.

Proof. The proof is clear from Theorem 1 and Theorem A.

4. A theorem in the theory of the comic sections deduced from
Property 1I.

THEOREM 3. Let P,P,P,P, be a curvilinear rectangle formed by any
four members of a family of confocal conics and let V, be the point on the
conical arc P P, , (k =1,2,3,4), where the tangent line is parallel to
the chord P, P, ., joining its extremities. Furthermore, let the point of inter-
section of the two members of this family stated in Lemma 4, one passing
through V., V, and the other passing through V,, V,, be V and let the areas
of the four curvilinear rectangles P,V ,VV,, VP, V,V, VV,PyV,, V,VV,P,
be S,', S,, 83, 8,, respectively. Then we have

SI+SS = Sz—{—S‘-

Proof. We discuss two cases.
Case 1. Consider a family of confocal ellipses and hyperbolas.

We may assume that the family lies on the w-plane. Furthermore,
we may assume that the two common foci are at 1 and —1. Consider
the mapping funection w = f(2) = cosz. We shall use the same notation
as in Lemma 4. Since by Theorem A Property I holds under the mapping
function w = f(2) = cosz, by Theorem 1 Property II holds under the
mapping function w = f(z) = cosz. By (5) we obtain the four curvilinear
rectangles P, V,VV,, V,P,V,V, VV,P,V,, V,VV,P, on the w-plane as
the images of the four plane rectangles A, M, M M,, M, A, M, M, MM,A;M,,
M;MM;A, on the z-plane under the mapping function w = f(z) = cosz.
Hence the proof is complete in this case.
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Case 2. Consider a family of confocal parabolas.
If we consider the mapping function w = f(2) = 2°, then we can

similarly prove the desired result in this case.

[1]

(2]
[3]

[4]

[5]
[6]

[7]
[8]
[9]

[10]
[11]

[12]

{131

[14]

References

R. C. Buck, Advanced calculus, 2-nd Edition, McGraw-Hill Book Company,
1965.

H. Haruki, On Ivery’s theorem, Math. Japonicae 1 (1949), p. 151.

— Studies on certain functional equations from the standpoint of analytic function
theory, Sci. Reports, Osaka University 14 (1965), p. 1-40.

— On the functional equations |f(z+1y)l = |f(@)+f(Ey)] and |f(x+iy)i
= |f(x) — f(iy)| and on Ivory's theorem, Canadian Math. Bull. 9 {1968), p. 473-480.
— On parallelogram functional equations, Math. Z. 104 (1968), p. 358-363.
— On inequalities gemeralizing a functional equation connected with Ivory’s
theorem, Amer. Math. Monthly 75 (1968), p. 624—627. '

— An application of Nevanlinna—Pélya theorem to a cosine functional equation,
J. Australian Math. Soc. 11 (1970), p. 325-328.

— A generalizalion of Ivory's theorem from the standpoint of conformal mapping,
Nordisk Matematisk Tidskrift 21 (1973), p. 89-91.

R. Nevanlinna und G. Pélya, Unitire Transformationen analytischer Funk-
ttonen, Jahresbericht der Deutschen Mathematiker-Vereinigung 40 (1931),
p. 80 (Aufgabe 103).

R. Nevanlinna and V. Paatero, Introduction to complex analysis, Addison-
—Wesley, 1964.

J. M. H. Olmsted, Advanced calculus, Appleton—Century—Crofts, New York
1961.

G. Pélya und G. Szego, Aufgaben und Lehrsdtze aus der Analysis I, Springer-
Verlag, Berlin 1954. ’

H. Schmidt, Losung der Aufgabe 103, Jahresbericht der Deutschen Mathe-
matiker-Vereinigung 43 (1934), p. 6-7. .

K. Zwirner, Orthogonalsysteme, in denen Ivorys Theorem gilt, Abhand aus dem
Hamburgischen Mathematischen Seminar 5 (1926-1927), p. 313-336.

UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO
CANADA

Regu par la Rédaction le 18. 1. 1975



