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A NEW FORMULATION AND SOLUTION
OF THE SEQUENCING PROBLEM: ALGORITHM

In paper [2] the mathematical model and properties of the general
sequencing problem have been presented. This paper contains an algorithm.

It follows from [2] that the solution of this problem is equivalent
to finding a minimaximal path in the disjunctive graph D = (4, U; V).
An algorithm for finding this path is similar to that presented in [1].
It works using the branch-and-bound method. In this paper the notation
and the numeration of formulas are continuation of those from paper [2].

The minimaximal path of the disjunctive graph D is obtained by
geneérating a sequence of circuit graphs D, € R, and finding the critical
path for each D, in the sequence.

Let S* be a complete initial selection such that 8* € R and the
graph D* = (4, UuS™) has no circuits. A disjunctive arc {(y,x> eV
is called normal if (y, x> € 8*. The complement of & normal arc is called
a reverse arc.

Starting with the graph D+ = (4, UUS™), we generate a sequence
of graphs D, = {4, UuUS,). BEach graph D, is obtained from a certain
graph D, of the sequence by complementing one normal arc. This process
is presented in the form of a solution tree H. Each node in H corresponds
to a pair of graphs D,, D, such that D, is obtained from D, by comple-
menting one disjunctive arc from <y, z> €8,. Then the arc {(D,, D,>
in H represents the complement <{u,v) €8, of {y,x). We say that D,
is the predecessor of D, (and D, is the successor of D,) if there is a path in H
between D, and D,. The initial graph Dt = (4, TuS*) is the root in
the solution tree H. The generation of a new branch in H is connected
with the choice of a certain normal arc for complementing to obtain S,.
This choice i8 called the operation of choice.

For each graph D, from the sequence we perform the operation of
testing to check the possibility of the generation of the graph D, € R,
with a smaller critical path than that already found. If such a D, does
not exist, we abandon the considered graph D, and backtrack the tree H
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to the predecessor D, from which the graph D, was generated. If a new
graph D, is generated from the graph D, by complementing the normal
arc {y,x) € S,, we temporarily fix a reverse arc <{u, v) € §, in D,. This
arc cannot be complemented in any successor D, of D, in H. However,
if we backtrack to D, from a successor D,, we fix the normal arec <{y, )
the complementing of which has generated D;. So, for each graph D,
we set a subset F, — S, of disjunctive arcs. The reverse arcs in F, are
those which represent the path between the root and D, in H, normal
arcs in F, being those the complements of which were abandoned during
the backtracking process.

1. Operation of testing. The basic task of the operation of testing
is the computation of the lower bound of the critical path for every possible
successor D, € Ry, generated from the graph D,. We want to obtain the
greatest possible value of this bound to be able to abandon in the algorithm
a greater number of successors in H.

Let

D(F,) = <4, UUF,)

be the graph generated from the set F, of fixed disjunctive arcs and let
D(F,) =<(A,UUF,;V,>, where V,=V—[F,UF,],

be the disjunctive graph of the graph D(F,), F, being the set of such dis-
junctive arcs the complements of which belong to F,.

It is readily seen that the process of generating successors of D, in H
is equivalent to finding the minimaximal path of the disjunctive graph
D(F,). The initial selection is the set E, = S,—F, which is called the
set of free arcs of the graph D,.

Let us consider the sets of disjunctive graphs

Ry ={D*=<A,U;V%} (keQ)
and 3
Ry, = {D¥(F,) =<4, UVF,; V>} (keQ),

where each graph D* is d-partial and d-connected, and V¥ = V*n7V,.
It follows from the definition of the sets V* and V¥ that the set V¥ is the
full subset of the set V. So, each graph D*(F,) is the d-partial graph of
the graph D(F,). Let L,(F,) and L*(F,) be the lengths of the minimaximal
paths of the graphs D(F,) and D*(F,), respectively. Then we have (see
Theorem 3)
(51) Ly(F,) > I;laoxL’é(Fr)-

It follows from the definition of V¥ that the d-partial graph D*(F,),
k € Q, i3 d-connected and we have

A¥(F) c X* and B*(F,) < Y*.
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In the general case, no D*(F,) is either z-symmetrical or 0-symmetrical,
i.e. D¥(F,) satisfies neither relation (32) nor relation (50). In order to obtain
a z-symmetrical or 0-symmetrical graph we proceed in the following way.

It follows from Property 2 that all paths starting from the node z € X
begin with the are {x, I'z) the length of which is ¢(z, I'z).

Let P(xz, y) be the set of all paths from the node x to the node y
in D. In order for the graph D*(F,) to be z-symmetrical we assume:

(@) The lengths of all arcs of the paths P(I'z;,z) are equal to zero
for each w; € A*(F,).

(b) The lengths of all arcs of the paths P(I'w;, x;) are equal to zero
for each pair ;, #; € A*(F,) for which there exists a path in D(F,).

In order for the graph D(F,) to be 0-symmetrical we assume: !

(a) The lengths of all arcs of the paths P(0, I'"'wx;) are equal to zero
for each x; € B*(F,).

(b) The lengths of all arcs of the paths P(x;, I'"'x;) are equal to zero
for each pair w;, #; € B*(¥F,) for which there exists a path in D(F,).

The graph D*(F,) with reduced weights for z-symmetry and 0-symme-
try is denoted by D*(F,) and D*(F,), respectively. It is obvious that
these graphs have already satisfied all assumptions of Theorem 4 and this
will allow us to determine an optimal representation on the basis of The-
orem 4. We can also determine the minimaximal paths L¥*(F,) and L¥(F,).
It can be readily seen that LX(F,)> L¥(F,) and L{(F,)> L¥(F,) for
each k € Q. By the above and by (51) we have

(51°) L,(F,) > max Li*(F,) = Li(F,)
keQ

and

(51") L(F,) > max Li*(F,) — L}(F,).
ke@

The values L;(F,) and L}(F,) are the lower bounds of the minimaximal
paths of the graph D(F,), i.e. the lower bounds of all successors of D,.

Let us denote by L;(F,) the length of the critical path of the graph
D(F,). Since D(F,) is the partial graph of each of the successors of the
graph D,, L;(F,) is also the lower bound of the length of the critical paths
of the successors. Therefore,

L(F,) = max[L;(F,), L3(F,), La(F,)]

is the lower bound of all successors of the graph D,. Observe that in [1]
the lower bound. is estimated on the basis of the value L;(F,), but our
lower bound is stronger.

Let L* be the length of the shortest critical path found so far. Then,
if L(F,) > L*, we can reject the graph D, and all its successors. The value L*
is the upper bound of the length of a minimaximal path in D.
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2. Operation of choice. The purpose of the operation of choice is
to point out the normal arc for complementing and the generation of the
successor D, in H. The arcs E, = 8,— F, are free. We complement only
arcs of this set which belongs to the current critical path, i.e.

(52) K, = E.nC,.

We want to choose that arc the complementing of which generates
a successor with the shortest possible critical path. This is especially impor-
tant for the operation of testing. The choice criterion for an arc of K,
is the expression 4,[(y, =), (v, v)] defined by (28). On the basis of Theorem 2
the arc with the least value of A4.[(y, ), (v, v)] should be chosen for
complementing.

3. The algorithm (from [1]). We start with D, = {4, UUS™*),
F, =0, and L* = oo. The graph D, represents the root of the solution
tree H.

Let D, = (A, UuS#,> be the current graph and let F, be the current
set of fixed disjunctive arcs in the r-th iteration of the algorithm.

Step 1. Test step. Compute the lower bound L(F,) of the graph
D(F,) = (A, UUF,>. If L(F,)> L*, then go to Step 4.  Otherwise, go
to Step 2.

Step 2. Evaluation step. For each y € 4, compute L,.(0, y) by (23).
If L,(0,2) < L*, then set L* = L,(0, 2).

* Identify a critical path C, and the set K, defined by (52). If K, = 0,
then go to Step 4. Otherwise, compute 4,[(y, x), (v, v)] for each {y, ) € K,
and go to Step 3.

Step 3. Forward step. Choose {y, ) € K, such that

4,(y, x), (u,v)] = min 4,[(a,d), (¢, d)].
{a,b)eK,

Then generate a new graph D, = (A, U,> by complementing the
atc (y, ) and fixing the arc {u, v), i.e.

U, = [U,—{y, }]u{(u, v} and F, =F,U{u,v)}.

Simultaneously, add to the solution tree H a new node D, and & new
arc <D,, D,> associated with the arc (u,v) of the disjunctive graph D.
Then go to Step 1.

Step 4. Backtracking step. Backtrack to the predecessor D,
of D, in H. If D, has no predecessor, then the algorithm terminates, the
representation 8™ associated with the current L* is optimal, and the longest
path in D* is minimaximal in D. Otherwise, drop data of D, and update
the data for D, i.e.

K,=K,—{,z)} and F, = F,u {{y, 2)}.
Then go to Step 3.
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' Now, we present the proof of Theorem 4 from [2].

THEOREM 4. Let D* = (A, U; V*) be a disjunctive d-partial, d-connec-
ted and z-symmetrical graph. Then the set Sy° defined as

(50) 8% = {Cy, x> e B*x A% | (y # I'w) A
A [War(y, o) = 0 v War(z, y) = 0]A [L(0, I''y) < L(0, 2)]}

is the optimal solution (optimal selection) of the disjunctive graph D*® with

minimaximal path Li?, where f}(O, x), x € A, is the maximal path from the
node 0 to the node x of the graph D.

Proof. The assumptions of the theorem are well defined, since from
the fact that the graph D has no eircuits it follows that the longest path
C(0, z) exists for each z € A.

It follows from (50) that

(i) 8% is a complete selection in D¢

(ii) the graph D = (4, UuUS;*) has no circuits. \

Assume that 87° is not the optimal representation. Now we should
prove that there exists another selection, say 87°, for which the graph
Df = (A4, UUS{® has a critical path shorter than Lj. In order to obtain
the selection S§ we generate a sequence of graphs D? e R} and find the
critical path for each Dj.

The generation and checking process of graphs proceed just as in
the solution algorithm with the following modifications:

892 is the initial selection (S™),

we do not perform the test step,

in the evaluation step we determine only the set K, of free arcs bel-
onging to the critical path,

in the forward step we choose for complementing any arc of the set K,.

In the algorithm we complement only the disjunctive arcs belonging
to the critical path, therefore the constructed solution tree H represents
all graphs D? of the family Rp,« which do not contain a shorter path than
in the initial graph D§ = (4, UuUS{®).

Let D = (4, UuS? be any given graph (node in H) generated as
above and let F¢ be the set of fixed arcs. Let K2 be a non-empty set of
normal arcs. Now we prove that the complementing any arc of the set Ky
does not cause the generating the successor D} with a critical path longer
than in the graph D%. Let us notice that if the arc (y, ) € K is preceded
on the path C? by arcs of the set 82N(C%, then, by Conclusion 1, the gen-
erated successor has a critical path not longer than in the graph D?. It
should still be proved that if the complemented arc (y, z) is preceded
by no arc of the set 82NC?, then the generated successor DS has no critical
path shorter than in the graph D%. We conclude from Lemma 3 that
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for the arc (y, x) € C2NS? there exists a node » € A°U {z} which belongs
to the critical path and which satisfies

(53) 0% =C(0,v)UC(v,?).
However, by the assumptions of Theorem 4 we have (see Fig. 10)

C(0,v) =C(0, I''y)V{KI' 'y, ¥ {Ky, 2>}Vl (z, v).

Now let us consider the path d(0,v) of the graph obtained from
complementing the arc (y,s) e K;:

(54)  d(0,9) = d(0, )V {<z, Iad}u{T'z, I'y>}ud(l ™y, y).

The path d(0,v) — if it exists — does not contain a disjunctive are
{y, x>, however, it contains the complement of {I"z, ' 'y)>. Therefore,
d(0, v) is a path in D?, the successor of D5.

Now, we prove that (a) the path d(0, v) exists, and (b) the length
of this path is not shorter than the length L (0, v) of the path C(0, v).

(a) In order to prove the existence of the path it should be proved
that the first and the last components on the right-hand side of relation (54)
exist. It follows from Property 1 that for any node of the set X, partic-
ularly for the node x, there exists a path in the graph D. Since D is a par-
tial graph of any graph D? e Rpe, there exists a path d(0, z) in each of
those graphs. Moreover, it follows from the assumptions of the theorem
that the length of the maximal path in D is equal to L(0, z). Further,
by Lemma 3 there exists a path d(I' "'y, v) the length of which is equal
to e¢(I' 1y, y).

(b) On the basis of the above consideration, the length of the path
d(0, v) may be expressed by

120, v) = L(0, ) +e(z, 'z)+0+c(I' 'y, y).
However, the length of the path €(0, v) is

L(0,v) = L0, ' 'y)+e(I' 'y, y)+0+c(x, I'z).

Since the disjunctive arc {y, > is not preceded by any arc of the set
82 e C2, the path C(0, I'"'y) is a path in D. By the assumptions of the

theorem, the length of the path is L(0, I'"'y), i.e.

(55) L(0, ' 'y) = L(0, ' 'y).
Further, since (y, > € K¢n8;?, by (50) we have
(56) L(0,2)> L(0, I'"'y),

therefore, by (55) and (56) we obtain
67) 14(0, v) > L(0, v).
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Further, since
(58)
i§ & path from the node 0 to the node z in the graph Dg, we have
L%(0, 2) = 1%4(0, 2).
By (53), (56) and (58) we have
L2(0, 2) > 1%(0, v) 4 L(v, 2) = L(0, v)+ L(v, 2) = L%(0, 2).

To sum up, for any graph D?, the complementing any arc of the
set K? does not cause the generating a successor with a critical path

d(0,2) = d(0,0)uC(v,?)

shorter than in Df.

(0, x)

Fig. 10

4. Example. This part of the paper contains an example and the
comparison of the solution with the solution obtained and presented in [1].

The data are the following:

Operation No 1

Processing time

of operation 7 11 10 &6 9 8

The disjunctive graph for this example is shown in Fig. 11.

‘We have
N = {1a2’ 374’576}1
Y= {91y Y2y Y5}, X = {@g, T4y Te}, Y = {W2s Yo Yo} -

Q = {1, 2}, X' = {&,, w5, x5},
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It is easily seen that the graph D' = (4, U; V') with the subset X'
is d-connected and 0-symmetrical. The graph D* = (4, U; V*) with the
full subset X* is d-connected and z-symmetrical. The reduction of weight
for both of these graphs is not necessary. Only the graph D? with its
z-symmetrical properties is used in the algorithm. It can be easily seen
that L3(F,) > Ly4(F,), i.e.

L(F,) = Ly(F,).

The graphs D, € R}, obtained in the sequence of iterations are shown
in Figs. 12-17. Broken lines represent the critical paths and the fixed
arcs are indicated by additional arrows. The numbers in the rectangles
for the nodes x; € X* represent L (0, z;) and L,(0, #;), and those for the
nodes y; € Y* represent L, (y;, 2) and L,(y;, 2). In the triangles, the lengths
of paths L(0, ;) are given for the nodes ;¢ X* in the graph D*(F,).
These path lengths are needed to determine the selection Sg°(F,) according
to Theorem 4. The solution tree H is shown in Fig. 18.

We start from the graph D, = (4, UuUS*), where S* is the selec-
tion which gives the same initial sequence of the operations as in [1]
(Fig. 12).

Iteration 1. F, = @ and L* = oo (Fig. 12).

(a) Test step:

L(F,) = Lj(F,) =31< .

(b) Evaluation step: L(0,2) =34, set L* =34, K, = {(y,, ay,
Ysy T},

A, [(Y1y ®3)s (Y3, ©,)] = max[—-T7, —4,104+-7—-7-3] =17,
Al[(?/a’a"s)’ (:’/wma)] = max[—lO, _4y9+10_10—4] =b.

X7 Y1 @l _,Xiﬂ Y2

(c) Forward step: Choose {y,, ;> and generate D, by fixing (y;, #3).
Iteration 2. F, = {Ky;, 3>} (Fig. 13).
(a) Test step:

L(F,) = Li(F,) =31 < 34.
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(b) Evaluation step: L,(0,2) = 39, K, = {{y,, #5>, Y4, T5)},
A3[(Y1y %5)5 (Y5 )] = max[—T7, —8,947—-7-8] =1,
Aa[(y4’me), (ys,w4)] = ma.x[—13, _878+5_13—8] = —8.

(¢) Forward step: Choose <{y,, s and generate D; by fixing (y,, 2,)>-
Iteration 3. Fy = {(¥;5, %3, e, s>} (Fig. 14).
(a) Test step:
L(F,) = Li(F,) =31 < 34.
(b) Evaluation step: L,(0,2) = 31, set L* =31, Ky = {<y,, 2>},

A5[(Y2y #6)s (Y6, @,)] = max[—2, —8,8411-2—-8] =9.

(¢) Forward step: Choose {¥,, ;> and generate D, by fixing <y, &,).
Iteration 4. F, = {¥s5, @), Ys) Ta)) Ys) T20} (Fig. 15).
(a) Test step:

L(F,) = Li(F,) =33 > 31.

(b) Backtracking step: Backtrack. Introduce (y,, x¢> into F';. Then
K, = @, hence again: Backtrack. Introduce <y,,,» into ¥,. Then K,

= {¥1, 25>}
(c) Forward step: Generate D, by fixing {yg, z,).
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Iteration 5. Fy = {{Ys, @), Yu) Te>, Y5, 210} (Fig. 16).
(a) Test step:

L(F,) = Li(F,) = 40 > 31.

(b) Backtracking step: Backtrack. Introduce <{y;,z;> into F,.
Then K, = {{y1, @)}

(¢) Forward step: Generate D by fixing <{¥s, #,).

Iteration 6. Fg = {{¥s, @5, ¥s, @10} (Fig. 17).
(a) Test step:
L(F,) = L5(F,) = 36 > 31.

X
r 7 Y1 j 11 Y2
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Fig. 18

(b) Backtracking step: Backtrack. Introduce {y,, z,> into F,. Then
K, = @, hence: Backtrack. End.

5. Remarks and conclusions.

1. The solution in our example was obtained after six iterations,
while in [1] it was obtained after twice more iterations. It is worth men-
tioning that if the initial selection S8* is an optimal representation (i.e. the
selection 8, obtained after three iterations), to obtain the solution one
has to perform only two iterations. There is no such possibility in the algo-
rithm given in [1]. The problem still needs twelve iterations.

2. It seems that there may appear computational difficulties in the
reduction of the graphs and in the determination of the selections 93°
and S§7°. In order to obtain a z-symmetrical or 0-symmetrical graph the
reductions (a) and (b) should be executed only once at the beginning of
the computation, i.e. for F, = @, A*(F,) = X* and B*(F,) = Y*. This
follows from the fact that for any F, < & we have A*(F,) < X* and
BY(F,) = Y".

There exist many sequencing problems, where for &k, € @ the graph
DF1(F,) is z-symmetrical, whereas for k, € Q the graph D*:(F,) is 0-symme-
trical. Then relations (51') and (51”) can be reduced to k¥ = k, and k = k,.
Furthermore, we can aim to obtain a graph which is either z-symmetrical
or 0-symmetrical, which, in turn, allows to increase considerably the
efficiency of the algorithm (see the Example).

3. We can always find such k,,%k,c€Q and A% < X%, B% c Y*2
that for each sequencing problem the graph D% = (4, U; V%) is 0-symme-
trical and the graph D™ = (4, U; V%) is z-symmetrical. The set A%
contains the nodes representing the start of the operations which have
no predecessors (the set N,NN"1). The set B® contains the nodes repre-
Senting the finish of the operations which have no successors (the set
N,nN*), The graphs D% (F,) and D% (F,) generated in such a way need
o weight reductions in any algorithm iteration.

v
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J. GRABO WSKI (Wroclaw)

NOWE SFORMULOWANIE 1 ROZWIAZANIE
ZAGADNIENIA KOLEJNOSCIOWEGO: ALGORYTM

STRESZCZENIE

W pracy (2] przedstawiono nowe sformulowanie zagadnienia kolejnosciowego,
prowadzace do nowej konstrukeji grafu dysjunktywnego. W niniejszej pracy przed.
stawia si@ algorytm rozwigzania tego zagadnienia kolejnodciowego, wykorzystujac
wlasnoéci opisane w pracy [2].



