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On some condition for a submanifold
of Euclidean space to be a sphere

by ANDRZEJ DERDZINSKI (Wroclaw)

Abstract. For a connected submanifold N of a connected Riemannian manifold .
M the following conditions are considered:

X) dyu(p,q) =dpip1»q;) for any p,q,p1,q¢N such that dy(p,q) =
=dN(171’11);

(II) for any p,q,p1, q1eN, dy(p, Q) = dy(p1,q1) if and only if dy(p,q)
=dy(p1, Q)
where dj; and dy denote the distance functions for M and N, respectively.

The following statements are proved:

1. If (I) holds for a compact submanifold N of co-dimension one in a Euclidean
space M, then N is a sphere.

2. Coneider the n-dimensional real projective space P™ with the Riemannian_
metric induced by the projection §%—~P". Then P* can be embedded isometrically
into the Euclidean space E7, 7 = in(n+3), as a submanifold satisfying (II). This
submanifold is contained in some sphere in ET and all its geodesics are flat circles
of the same radius in E".

The examples given in the paper show that (I) and (II) are not equivalent and
that there exists a wide class of totally geodesic submanifolds in Riemannian mani-
folds with property (II).

1. Introduction. Let M be a connected Riemannian manifold and N
its connected submanifold. We denote the distances in M and N by d,
and d,, respectively.

(1) The pair (M, N) is said to have property (I) if for any p, q, Py, ¢1¢N
such that dy(p, ¢) = dy(py, @) we have also dy(p, ¢) = ds (P, 0)-

(ii) The pair (M, N) is said to have property (II) if for any p, q, P,
0N, dy(p, ¢) = dy(p,, q1) if any only if dp(p, q) = dp(py; @)

The above conditions are obviously satisfied for an (n —1)-dimen-
sional sphere contained in the n-dimensional Euclidean space. It will be
shown in Section 2 that a compact and connected submanifold of co-
dimension one in a Euclidean space with property (I) is isometric to-
a sphere, namely it is a sphere. The examples given in Section 3 show:



54 A. Derdzinski

that conditions (I) and (II) are not equivalent and that there exist totally
geodesic, compact and connected submanifolds of arbitrary co-dimension
in Riemannian manifolds which have property (II) and are not isometric
to a sphere. Section 3 contains also the proof of the theorem stating that
the n-dimensional projective space (n > 1) can be embedded in the
$n(n 4 3)-dimensional Euclidean space and in the [in(n+3)—1]-di-
mensional sphere as a compact submanifold with property (II) which
is neither totally geodesic nor isometric to a sphere.

2. A condition for a compact submanifold of co-dimension one in
a Euclidean space to be a sphere. An affine space A over a finite-dimen-
sional real vector space V is a set A with a free and transitive action on A
of the additive group of V. For affine spaces 4; over V; (¢ =1, 2) a map-
ping F': A,—A, is called affine if there exists a linear mapping f: V,—>V,
such that F(a+v) = F(a)+f(v) for aed,,veV,. The mapping f is
uniquely determined by F and is called its linear part. An affine space
A over V is called Fuclidean if a scalar product is chosen for V. In
this case 4 becomes a metric space, the distance of p, ge A being given
by |g—p|, where ¢—p is the unique veV with ¢ = p+v. We shall use
the obvious equality

(1) 20" = |u*+[v]*— lu—1v|*

for a scalar product and the induced norm.
We shall need the following

LemMA 1. If A is a Euclidean affine space over V, X, and X, are
subsets of A and h is an isometry of X, onto X,, then h can be extended to
an affine isometry of A onto itself.

Proof. Let A; over V, be the affine subspace of A spanned by X;
(i =1, 2). Choose p,, ..., p,eX, such that p, — p,, ..., pr, — Po form a basis
of V, and let H be the affine mapping of A, into A, with a linear part f
such that H(p,) = k(p,) and f(p;—ps) = h(p;) — h(po); j =1, ..., k. Clearly
H(p;) =h(p;)y j =1,..., k. The mapping f preserves the norms of the
vectors of the above basis of V, and the norms of their differences, and
so in view of (1) it preserves their scalar products and hence all scalar
products in V,. Thus dimV, < dimV,. The same reasoning for h~':
X,—> X, shows that also dimV, < dim V,; hence H is an affine isometry
of 4, onto A,. For any peX, it follows from (1) that the vectors h(p)—
—h(p,) and H(p)— h(p,) give the same scalar product with A(p;) — k(p,),
j=1,...,k; hence their difference h(p)—H(p) is orthogonal to each
vector of a basis of V, and h(p) = H(p). Thus H is an extension of h.
By completing some orthonormal bases e, ..., ¢, of V, and f(e,), ..., f(e)
of V, to orthonormal bases of ¥V we can easily extend % to an affine iso-
metry of A onto itself. Q.E.D.
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Using Lemma 1, we shall prove

ProprosITION 1. If N is d compact, connected, (n—1)-dimensional
submanifold of class C? of the n-dimensional Euclidean space E™ such that
the pair (E™, N) has property (I), then N is a sphere.

Proof. Let L; be geodesics of N with are length parameter, s; real
numbers (¢ = 1, 2). Choose r > 0 such that L, restricted to the segment
[8;—7, 8;+7] is minimal, ¢ = 1, 2. The assignment

Li([s1—7y 8.-+7])2 Ly (8, +h)—>Ly(s,+h)eLy([8,— 7, 8, +7])

is an isometry of L,([s,—7,s,+r]) onto L,([8,—7,s,+7]) in the sense
of dy, since dy(Ly(s,+hy)y, Ly(sy+ hy)) = [hy—hy| = dy(Ly(s,+ by),
L1(81+h2)) for |h,|, |hy| < 7. In view of (I) this is also an isometry of
these sets in the sense of Euclidean distance.

By Lemma 1 we can find a linear orthogonal mapping F: E"—E"
and a vector a<E" such that L,(s,+hk) = F(L,(s,+hk))+a for |k <r.
Hence li}2(82)| = |L-1(sl)|. Since the numbers s; and geodesics L; have
been arbitrary, we see that the curvature of each geodesic of N is con-
stant and equal for all geodesics. At any point of ¥ the normal curva-
tures in all directions are equal, since they are just the curvatures of
the corresponding geodesics. Hence each point of N is umbilic. In virtue
of Theorem 2.1 of [2], p. 128, N is a sphere (the proof given there for
n = 3 is valid for arbitrary =). Q.E.D.

3. Some remarks about submanifolds satisfying condition (II) in
the case of arbitrary co-dimension. Condition (II) of Section 1 obviously
implies condition (I). The following example shows that the inverse
implication fails in general.

ExXAMPLE 1. Define an analytic mapping f: E'—>E* by

f(t) = (]/15 cost, '/1_ sint, 1/5 cos 2t, 1/5 smzt)

For each t we have f(t+2x) = f(2), ldf/dt| = 1, [f(t)|* = 2, and f restricted
to [0, 2x) is one-one, and so f defines an isometric embedding of the unit
circle into E* and into the sphere 8* in E* with centre at the origin and
radius l/g Let N = f(E*). The distance in N of two points of N is the
smallest number of the form |t, —1,|, where f(¢,) and f(¢,) are those points.
The obvious equality

If(t) —f(8)2 = t—3cos |t; —t,| —3cos2[t, —1,]

shows that |p—gq|* =31—2cosdy(p, ) —2cos2dy(p, q) for p, geN; hence
the pair (E*, N) has property (I). Now define the function H: [0, n]—E*
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by H(r) =3—3cosr—Zcos2r. We have

Ip—q|* = H{dy(p, 9)

for p,geN. To prove that the pair (E* N) does not satisfy condition
(II) it is sufficient to show that H is not one-one. It is easy to verify that
H(}n) =% = H(%r). Since the pair (E* 8°) has property (II) and N
is a submanifold of 89, it follows that also the pair (89, N) satisfies con-
dition (I), but not (II).

The next example shows that even property (IT) for a pair (M, N),
where N is a compact submanifold of positive co-dimension in M, does
not in general imply that N is isometric to a sphere. Namely, there is
a wide class of totally geodesic submanifolds with this property.

ExamMpLE 2. Let Mj and M, be connected Riemannian manifolds
and geM,. Then M, X {q} is a submanifold of M, X M, in a natural manner.
Let (p1, q), (P2, 9) € M, x{a} and a curve L join them in M, X M,, where
L(s) = (Ly(8), Ly(s)). Let Lo(s) = (Ly(s), g). The curve L, joins (pl, q)

to (pz, g) in Mlx {¢} and the canonical orthogonal decomposition L(s)

—Ll(s) +L2( ) shows that IL (8)] = lLl(s) |L(s)| Hence the distance
of (p1,q) and (p., q) in M, X {q} is equal to their distance in M, x M,
and also equal to the distance of p, and p, in M,. Thus M, x {q} is a to-
tally geodesic submanifold of M; X M,, isometric to M,, and the pair
(M, xM,, M, x {g}) has property (II). The manifold M, X {g} may be
chosen quite arbitrarily; in particular, it need not be homeomorphic to
a sphere.

Now we shall prove that the assumption of co-dimension one in
Proposition 1 cannot be omitted. First we define a mapping G and prove:
three lemmas.

We fix a positive integer » and set r = {n(n+ 3). Using the equality

r= (n+1)+n, we shall index the first (n-zH) coordinates in the Euclidean

space E" by pairs of intégers (i, j), where 1 <4 < j < n+1, and the last »
coordinates in E” by integers k, 1 < k < mn. Using this convention, we
define an analytic mapping G: E**'—E" by

oo <
—2*-, 1<z<]<n+1,
G 1,“. 7+ 1 —
(@0 @)+ ... +(@*) —k(a*)
L , 1<k
2V2k (% +1)

LeEMMA 2. If ¢, yeE™*' and || = |y|, then G (%) = G(y) if and only
if @ =y or & = —y.
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Proof. Let o = (z'...,2""), vy = (¥, ..., ¥, G(») = G(y) and
@Y+ ... +{@*)? = (¥ + ... +(¥"*")>. By comparing the last coordi-
nate in G(x) and G(y), we see that (#"™')? = (y"*')? and (a')*+ ... +(a")*
= (y)2+ ... +(y™)*. Furthermore, the comparison of the last but one
coordinate in G (@) and G(y) gives (2™} = (¥")? and (&)’ + ... + (" 1)?
= (#')*+ ... 4 (y"")2 Continuing this reasoning, we obtain |#f| = ly|,
o'’ = y'y’, 1 <i<j<n+1, which immediately implies our assertion.
Q.E.D.

LEMMA 3. G maps each circle in E™' with centre at the origin and
radius 2 onto a circle in E" with radius 1, passed twice, i.e., for any a, be E"*?
with |a| = |b] = 2 and a-b = 0 there exist ¢, v, we E" with |v| = lw| =1
and v-w = 0 such that for any real number t we have

(2) G(cost-a-+sint-b) = ¢+ cos2t-v+sin2t-w.
Proof. Let a = (a', ..., a"""), b = (b', ..., b"!). We have
(3) (@4 ... (@) = (B4 ... (") = 4,
a'bl+ ... +a*tp*+ = 0.

Let us set
ata’ + b’y o
4 ! 1<i<j<mn+l,
¢ = (a1)2+,.-. _F(a"_c)z—k(ak+l)2+(bl)2+...+(bk)2—_]C(bk+l)2
4V2k(k +1) ’
1<k<n,
a'a’ —b'v? L
4 1<i<j<sn+l,
v = (a1)2+ +(ak)2—k(ak+l)2—(bl)2— . —(bk)2—|—k(bk+l)2
4V2k(k+1) i
| 1<k<n,
a*bi + al bt .
Ty 1<i<j<sn+l,
w = 131 k : k k
b k. +1pk+]
a0 + + a"b* —ka*"'b  1<k<n.
| 2V2k (k+1)

Equality (2) follows immediately from the definition of G and from-:
the identities 1+ cos2t = 2cos?*f, 1 —cos2t = 2sin%¢, sin2¢ = 2cost-sint.
To compute jv], jw| and »-w we shall make use of the definition of Euc-
lidean norm and scalar product, collecting terms of the same type to-
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gether and using the obvious equality

2": 1 _Z”.(l 1 )_ 11
l 8(s-+1) L \ 8 s+1 k n+1

Thus we have

ol = ;[(a")z(af>2+(b")2(b")”][116 16} 2 163(3 = ]
+,§j[(ak)4+(bk)4][32k(k 1) .5: 32s(s+1) ] ; awsajb’ B
_g(“k)2(bk)2[1éz kl 1) 2 165 s+1 ]

- Seror [ D)
—g(aif(bf)z 1&(’:) 2 163(34—1)]
wil

- n 02 N2 0 (BN (B _m . b
—Z o (@@ G+ gj g L+ 0

i3 nt
_Zababj _2 16(n—|—1) +216 'n,-l—l)

i<j

n+1

= " 02 ( 92 02 pi\2y a'ibiajbj._
—32(n+1);[<a)<a’)+(b)(b)] D

1#]

B 5.:1 (ak)z(bk)z 4 ntl (ak)z(bk)z " (ai)z(bj)z
16 & 16(n+1) & 16(n+1)

l[ . +(an-+1)2]2+[(b1)2+ +(bn+1)2]2]_

32 n+1

a bl+ .. +an+1bn+l
- 16 +

1

16(n+1) [(a1)2+ vee +(an+l)2][(bl)2+ +(bn+l)2:]

+
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80 9|2 = 1 in view of (3). In the same manner we compute

a2 (p)2 n+tl
_ al)?( b) wape ] (B=1)% ]
leol® Z +2 Al 8k(k—1) +2 8s( 3+1)

i#] k=1
(J 1 ]
(PN RN
+§abab[ 4s(s+1
CONV@Pe? T e
—; o T D) sy @O

N (@) (a%)? (b*)?
P TR
1#] k=1
n+l n 1
a2 (h*)2 _ ipiai b
+2 16( 'n-}-l) @y (0 +; 6miL) ¢
=il_6[(a’l)2 .. an+l ][ . +(bn+l)2]+
,& 1p1 n4+1lpn+1\2,
+16(n+1) (@b + ... +a™" b"7)%;

hence |w|? =1 in virtue of (3). Similarly we have

— 2 i J 34
o ;[(G) b)]“b[le 163 2163 +1)]
N2 __ thI\2Tathi
+2[(“) (b’ ]a b[16 163 21633—}—1)]

i<j
n+1 (k
ky2 \27 ok BE —
+Z[(a) (t)a b[lek 1) 21683-{—1)]

n n+l "
= —[(a")*— (b*)?*]a’ b’ e (pk2 Ak Rk
_%’ Totnay (@) (b)]aaba+k=2l T R G L
— —]_6(:—]—1) [(a1)2+ - +(aﬂ+l)2_(b1)2_ _(bn+1)2] x

X (a'b+ ... +artiptt),
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and from (3) it follows that »-w = 0, which completes the proof. Q.E.D.
LEMMA 4. For each zeE™' we have

IG(2))° =

— lal*.

8(n+1)
Proof. Let # = («', ..., 2"""). Then

6@z = (@)@ ’)2[ 2 WoTT ]

'i<j

n+1l

+Z( )4[8kk 1)+288 s+1]

n+1

n t\2 IV n k4
; Tt &N@) +; st )

=@t ... (™M) = -
8(n+1) 8(n+1)

as desired. Q.E.D.

Now let 8" denote the sphere in E™*! with centre at the origin and
radius 2 and let P* = {{v, w}| v, weS", v+ w = 0} be the projective
space obtained from 8" by identifying pairs of antipodes. Let p be the
canonical projection of 8" onto P", i.e., p(v) = {v, —v}eP" for veS™
Then p is locally diffeomorphic with respect to the natural analytic
structures of S™ and P". Moreover, there exists a unique Riemannian
metric on P" such that p is an isometric mapping (the metric transferred
by p from 8™ onto P" is well defined since the central symmetry is an
isometry of 8" onto itself). This metric will be called the natural metric
of the projective space.

THEOREM 1. Let n > 1 and r = in(n+3). Then the projective space
P" with its natural metric can be embedded isometrically into E™ and into
some (r—1)-dimensional sphere contained in E" as a non-totally geodesic
analytic submanifold with property (II). All geodesics of this submanifold
are circles of the same radius.

Proof. We shall consider the mapping G: E"*'—E" restricted to the
sphere 8". The set N = G(8") is a compact and connected subset of
E". In view of Lemma 2 there exists a one-one continuous mapping @
of P* onto N such that Gop = @. G is a homeomorphism since P" is
compact. The structure transferred by G from P™ makes N into an analytie
manifold such that G: P"—N is an analytic diffeomorphism. Hence
G = Gop: S"—N is analytic and locally diffeomorphic. Each vector
tangent to 8" is tangent to a great circle, and so in virtue of Lemma 3

4
2],
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the mapping G: 8" —E" is isometric. Hence the inclusion mapping i: N—E"
is analytic and regular, i.e., N is a compact analytic submanifold of E".
Moreover, §: S"—N is isometric and G: P*"—>N is an isometry, N being
considered with the metrie induced from E7. The geodesics of N are just
the G-images of the great circles of §". By Lemma 3 all geodesics of N
are circles with radius 1. In view of Lemma 2 two distinet geodesics of N
may have at most one point in common, and so each half-circle with
radius 1, which is a geodesic of N, is minimal. Thus the distance in N
of two points of N is the length of the shorter are of any circle with
radius 1 joining these points (any pair of points of N can be joined
by such a circle). Hence the pair (E", N) has property (II). By Lemma 4
N is a submanifold of the sphere § with centre at the origin and radius

5 i o\
]/n—:bl . The pairs (E", §) and (£, N) both satisfy condition (II), and

hence so does the pair (S, N). N is not totally geodesic either in E',
as it contains no straight line, or in 8, since the geodesics of N and

2n
those of S are circles of distinet radii (l/?{+—1 >1for n>1). QE.D.

Remark. James in [1] describes, for each n, an embedding of the
n-dimensional projective space into E**, and even into E*~! whenever n
is odd and » > 3. However, his embeddings do not satisfy the assertion
of Theorem 1.

I wish to thank Dr. Witold Roter for his very helpful criticism of
this paper.
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