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die im Beweis von Satz 5 in [2] hergeleitet wurde: Da
flo) =r(l—2)*? Hr 2=[0,1l/a)

streng monoton wachsend wnd fir »e(l/e, 1] streng monoton fallerd
ist, gibt es zu jedem x e (1l/e, 1] genan ein &; € [0, Lia), s0 dal

¥y =al—a)l! =g (l—r)t
gilt. Damit folgt sofort
‘ N{F,; 2) < N(F,; z) =1.

Fiir a € BNQ, a > 1, beweisen wir die obige Aussage mit Hilfe von Satz 6
in [2], der unter anderem besagt, daB N (F'; ) < N (F; x) fir alle z & [6,1]
gilt, wenn 7’ aus # durch VergroBerung eines Folgengliedes von F um 1
entgteht, ohne daf dabei die Monotoniebedingung verletzt wird.

stz e (lje, 1], so gibt es ¢ € Q mit /e < 1/p < x. Damit gilt einer-
seits nach dem oben Bewiesenen N(F,; x) < 1; andererscits ist N (F,; x)
K N(F,; ), da wegen [gk]+e < [ak]+c fir alle keXN, F,in F, iber-
fithrt werden kann, indem man sukzessive jeweils endlich wviele oder
" unendlich viele 'mfeinanderfolgende Glieder um 1 erhoht. '
In unserem Falle ist also Zc,l d— 1)@~ % < 1, wenn 1 - i logd

e (Z logm

dh. m > 3%V gilt, Da der Fall m = a0 nicht eintreten kann, ist
damit Satz 4 vollstindig bewiesen.

Der Beweis von Satz 1 ergibt sich nun sofort aus (11) und Satz 4:

Fiir m < @Y st §*(#) 2 1, also wegen (8) §*(%) = 3*(¥) =1,
5o daf auch die natirliche Dichte von & existiert und gleich 1 ist.

Erginzung bei Drucklegung. Der Beweis des Hauptergebnisses der anfangs
erwihnten Artheif [5] ist fehlerhaft
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Reducibility of lacunary pelynomials, ITI
by

A. SCHINZEL (Warszawa)

1. The present paper is a sequel to {117 and the notation of that
paper is used throughout. All the polynomials considered are supposed
to have integral coefficients tunless stated to the contrary. Redueibility
means reducibility over the rational field Q.

If flwyy ..., @) % 0 is a polynomial then

&
CAN
Flay, oym) = eonst’”fc(mlﬁ vy Y0

means that the pOlVDOlllldl‘! f. are Jlredumble and prime to each other.
H Ofa, .y m) = fl2,, ..., 2) f[ #fi, where f is a poljnomml prime

to @ @, ... @ and «; ave integers, ﬂ1en we set

TP @y, ooy #y) = flag, ooy wy).

- A polynomis 11 g such that

Jghy o @) = gl ..., @)

is called reciprocal. Liet
JD(wy, ..., 2) = const nfﬂ (@gy ooy e

‘We set o
By, ooy tty) = const Il fo(@y, ..., my)fe,

L(ny, ..., 2;) = constILf (@, ..., @), .

where 17, is extended over all f, that do not divide J(#ft ... s%—1) for
any [dy,..., 6zl # 0, [T, iz extended over all f, that are nen-reciprocal.
The leading coefficients of K& and L® are assumed egual to that of Jo.

In particular for k= 1 E®(») equals J@ (x) deprived of all 11ss evclotom_w
factors and is ealled the kernel of @.
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For a polynomial F{w,, ..., ), [|F] is the sam of squares of the
coefficients of F; if F == 0, |F| is the maximum of the degrees of F with
respect to x; (1 <4 <CE), Q(F) is the number of irreducible factors of F
counted with multiplicities, exp, and log, denote the Tth iteration of
the exponential and the logarithmie function respectively. v(n) is the
number of divisors and £,(n) the puwmber of prime divisors of n counted
with multiplicities.

The main object of [L1] has been to deseribe the canonical factor-
ization of LF(x™,...,2"%) for any fixed polynomial # and a variable
integral veetor {#,,...,%,]. The much more difficult problem of de-
seribing the factorization of KF(x™, ..., @"%) das Deen solved only for
k=1 and for & = 2 provided KF(x,,x) = LF (2, 23), In particular if
Flay, 2g) = g+ a2+ a0y, For & > 2 even the simiplest case F'(wy, w,, @)

3 .
= g+ ¥ a2 (1) < 0y < @) has been settled only under very restrictive
) je=1

assump%ion about the a's- (see [3]).

The aim of the present paper is to improve and to extend the above
results in several ways. First, due to the recent progress made by Blankshy
and Montgomery [1] and by Smyth [20] in the problem of distribution
of the eonjugates of an algebraie infeger on the plane it has been possible
to improve the result on KF (") mentioned above. We have
' TarorEM 1, For any polynomisl I¥{z) == 0 such thal KF(z) # const
and for any. positive integer n there exist positive integers v ond u such that

(i} vie(F),

{ii} n = uy,

can

(ili) AF (2} = const ]lyFu(m)eﬂ fmplies
o=1

) 5
EF (@) W const [1F (a™)s.
G=1

Horeover,
loge(#) < (K F log (2 KF{)log i) (log2 {KF|+log, | F[)*
and if KF (&) = LF(r) |

/‘,103 i log, }‘ﬂ

loge(F) < |/ = oSt - 0 (¥ log [ Filog, [ 71,
R = b_' 0

where Oy is the real zero of w3 —r—1.
In any ease

log2 +0(1)
logs L]

=1 '

5
R(EF (x")) = Eaag nﬁn(iKFir(-n_), inFJH“‘”exp( Tog, HFH)).

. &
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Examples will be given to show that in the first of the estimates
for loge(F) the exponent 1/3 eannot he lowered, in the second the main
term is hest possible and the estimate for 2 (EF(2™) is sharp with respech
to all three parameters involved », [EF' and W,

CororLary 1. For any polynomial F(x) such that F(0) = 0 and any n
we have
R{F ") < Pir(n).
COROILARY 2. For any binomial b(z) we have

log2+o(l), tfbi‘_)

logy b,

Eb(2) < exp(

COROLLARY 3. For any trinomial t(z) we have

QIR < -

Th-g. corollaries are of interest because for a general polynomial f(x)
only Q!Lf(m)] is Enown to be O(log|f%) and the extimates for Q[K’f(b))
depend upon if] (see [157 and the Corollary to Lemma 1).

Coming back to [117 it is possible to improve algo the estimates
given there for the case & > 1. The improvements are however not drastic
and the new estimates are probably still far from hest possible, thus we
shall not go into the matter. On the other hand using the result of B, Gourin
[4] it is possible to describe the canonical factorization of EF (a1, ..., afE)
for any %.

Ve have

THEORENM 2. For any polynomial Flry, ..., 7,) # 0 and any positive
wiegers My, ...,y there evist positive integers iy ey ¥y GRE Uy, oo, Ty
such that

(iv) wilelF)  (1<<j<h),

PO
(vi) KF (a3, ..., o%) = const [ B (g, ..oy 2)° implies
F=1
8
K@, ..., gk = const [T F (2, ..., 2tk
o=1
The constant ¢(F) # 0 is effectively computable.

. This theorem is clearly stronger than its analogue with L in place
of X announced in [13]. In the latter case it follows by the method of [11]
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that [
loge(F) < 9-2"1-5;

i geems however that this estimate is far from the best possible.
Turnivg again to polynomials in one variable we shall obtain
TEEOREM 3. Let k= 3, ¢; (0 << j < k) be non-zero integers and ny < i,

< ... < Ry, positive inlegers. Tfre’n either there ewist wtege}s 7 AL<i<h

such that
i
(vii) Yy =0
=1
and
E a
ek
(vili} 0 < max |y < expy,_,[k2="" log ¥ 4j)
1sisk j=0

I
o all primitive irreducible factors of f(;t_f) = CLO—F.E;(ITJF"J' except a single
simple one are veciproeal and monie, moreover if "
k-1
{ix) el + oy = }1 [t
they are egyclotomio mf«f if for some g, k<< k

(x) @ % a; mod g.c.d.a;-g.c.d.a;
0L fk #ah
none whatever.
Besides, (ix) and (£} smply

O{Ef(#) | Lf (0} < Qo{(t5, @)}~ and  2(F(0)(If () < Do ({40, ),

respestively.

This is a refinement of Theorem 4 of [11] A refinement in a different
direction has been given in [147.

The Iast part of the paper is concerned with quadrinomials, Improving
the results of [3] we shall prove

TerorEM 4. Let g; (0<<j< 3) be non-zero integers and

(xi) either lag| +las) = la| -+ as) or for soms g, h << 3

&t = agjmodg.c.d.a-g.cd. a
visd | el

or e = laslh, gy = |as!. 3 i

Then for ey quadrinomial g(x) = a,+ ¥ a;2" (0 < 0y < 0y < 0g) that

=1

is not resiprocal we have one of the follo-wi{n-g four possibilities,

(xii) Kgiz) is drreduoible. .

(xill) g(x) ean bs divided into fwe parts thot have the highest common
Jactor d(z) being a non-reciprocal binomial. T (q(a)d™ (2)! is then irreducible
unless q(x)d ™ (x) is & binomial. :
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(xiv) g(#) can be represented in one of the forms
k(I’z—érl“UT-"W—U?F“»-iUﬂW“) :
=k — UV —20TW—-20W(T+ UV —20VW +20WY,
(1) U7+ W—-3UVT)
=bT+V -T2 TCV —TW - TW),
O 20V -+ P W = U+ T+ WD+ V-,
where k = = (ag, @y, @s, @) and T, U, V, W are monomials in z [#]. The
Sactors on ihe right hand side of (1) have irreducible kernels.
(xv) 5y = v (1< 3); v and »; are positive integers,

vy < eXP, (12 .gliqiilog g

E
and K (ay+> a;x’) is reducible.
i=1

Moreover
K{a-ﬁ+§ a;;.-r;wf') 2 const ﬁfa(ag)e"
implies ! ~
Fyg(#) = const ﬁ F_(29)7,
Besides -

. \fw 11
2a) = T o (?logﬁ 'Zlogz)

logligi-

The condition (xi) is Inlfilled for about 82/, of quadruples (a,, a,, a,, ¢;)
of height < H— oo, Since a rnle for ohtaining the eanonical factorization
of binomials is econtained in Theorem 1 {and 2 more practical one in
Liemma 5 below), Theorem 4 gives a sqﬁqfa.etorv description of the ca-

nonical factorization of the kernel of ¢(®) = a5+ 2 a;0? (0 < ny < My < )

for all those quadruples (ay, a;, €y, a5) PT owded onjv ¢{x) is not reciprocal.

The factorization of g¢{x)/Ky(z) can be obtamed easily by means
of the results of Manm [8). We content ourselves with, stating the followmg '

CoroLLARY 4. A non-resiprocal ‘q'uadr'.:'nam-ial g(x) = am’—g ajafj

. j=1
(0 << ny < ny < 1y} sabisfying (xi) s reducible if and only if we have one
of the conditions (xii}{xv) or g(2) can be divided info two pm*is* with the

hmq}zest cotmon factor equal o L1 or finally

3 .
Rl (19,99, % . !
aUJ.—EajE’“l M) 0,  where 5 =1,

=1
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A real enigma is the reducibility of reciprocal quadrinomials. A new
idea seems 1o be needed even to solve the following simple

PROBLEM. (Hven a,b with ia] = 0] do there exist infinitely many
quotients r such that for suitable integers m, n: min = i and K (ax™ ™+ ba'™ -
+ba' 4 a) 48 reducible’

The proofs of Theorems 1, 2, 3 and 4 are given in Sections 2,3, 4, 3
respectively. Before proceeding to the proofs we call the atiention of
the reader to an error in [11] repeated also in [12]. At the bottom of
p. 133 in [11] certain inegqualities for determinants are said to follow
from Hadamard’s inequality. Now the inequalities in question are true
but need not follow from Hadamard’s inequality. A detailed explanation
is given at the end of the present paper.

2. Tn addition to the notation infroduced in § 1 we shall uge the
following: {, is a primitive root of unit¥ of degree ¢. X, is the gth cyelo-
tomic polynomial.

It @ is a field and e e @, a = 0, then

0 i a =27, for gome g,
ele, ) = | maximal ¢ sueh that « = ;" with some ¢ and fe 2
otherwise;

Hla, @) = [0 it a =, for some g,
* 77 | maximal » such that o« = 8", 6« 2({,) otherwise.

&
For a given polynomial f = } a2’
Fe=0

1%i

uf =N

Mg, Cf) = (@, @1, .-y @)
j=o

Small bold faee letters denofe veetors, capital bold faece letters denote
matrices except Q, C and £ that are fields and Z that is the ring of
integers. ¥,,p 15 fhe norm from £, to @, or from 2,(x) to 2,(x).

LEvvaA 3. Let o; (4 =1,..., 6) be & system of pairwise not conjugale
zeros of Kf, where f is a polynomial and let &; be the multiplicity of «,.
Then

e

@) 2 ecVola, Ola)] < V28 Eflog (7 IEf Dlog T,
. o . logif
@) 2 el Qe) < oo

where the sum )" is taken over &Il a; not conjugate to o' and 9, is the real
zero of o* —m—1. '
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Proof. Let us consider the product

=i, ] e,
fie) =4, lal>1

where a, is the leading coefficient of f. Bx the inequality of Landau [6]

(3) P fR

On the other hand, let

Ef@) = e [[ 1),

where f;(a) =0 and f; is primitive, We huve

‘ [T [T

(4) P =g la" o,
ol o >1

where of’ runs over the conjugates of o; and a, is the leading coefficient -
of f;. Wé gshall show that

e(a’i,Q(a‘-)}
exp — = W)
6 la | Z 1 > { O B gt ] S
feff i1 2@ i @ i5 not conjugate to oL,

Rince a; is not a root of wnily, we have by the definition of ¢a;, Q(e;))
(6) e = é-gﬁc’ B EQ(G:‘); 6 = g(ai?Q(ai)}'

If &, is not an integer we use an argument due to J. Wojeik and set a; = uj»,
(#) = dm, (») = bn, where b,m, 1t are idealﬁ,f Iof O(e;) and {(m,n) = 1.

By Gauss’s Lemma the polynomial N (b)™'[](#e—u®) iy primitive,
j=1

N denoting the norm from Q{a,) to Q. Since it is also irredneible it coincides
with f; up to a sign. ‘
It follows that

a; = ENb 1Ny = L Nn.
By (6) m = 1* and [y} = N1° > 2° thus (5) holds. Tf u, is an integer f
is also. We have

(7 [T =[] 189,

1e>1 181
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By the theorem of Blanksby and Montgomery [1]

u)' o .
[ [ =1 53, logb fe]

1
> 6}1) ( 52 filog Tl )’
which together with (7} gives the first part of (5).

If o; is not conjugate to o;* then by the result of [18] applied with
K =0, i,‘; f is mot conjugate to {777 for a suitable r. By Smyth’s theorem

20]
[T 180 =" T ip? = o,

B> EIEIES

1
ex
_ o (f’ \7.ilog6 7] +1)
!{dﬂ-“)lx

which together with (7) gives the second part of (5).
Now (3), (4) and (3) give

4

’ 5 ela, Qe )’ 1

’. _erap B () tog|

® % 52 o if, ~ HOEV
" o L loglfi
2 600, Qo)) < 2log#,’

The inequality (2') follows at once. In order to pmva (2) let us notice
that

e
_S: ‘ log 7l
i=1

< 32 Kf|logT{EJ|.
Since '
/ ooy, Qladie

52 f,llogT] fw
{2) follows from (B) by the Schwarz inequality.

CororrARY., We Thave

Vol O] =/ VB2e; filogTIfi

Q(Ef) < ¥ 26| Kf|log (7 |Ef )log [f],

1 I
QU < 3g fl

Remark. The bound given in (2) cfmnc‘r be unproved as it is shown
by the example

{9 Jul®) = NQ(EO);Q(W“ 8%
— J}"" (ﬁ?ﬂ. 1 ﬁin_}r_ ﬂ)n) [‘3 ! (ﬁ_TRJ—’ﬂ' ??L_I_ 9,—m)m 1
where #,, &, are the two conjugates of ﬂl,

e
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Clearly (8", ©(80)} > m. On the other hand, since [,] = I8, = |8/~
log [ifll = lo@ (2 + (85 -+ 97 4 B2 — (97 ™ + O] ™ -+ 57 ™))
= log{dy" + O (M)} = 2mlogd, -0 (8;™). -
For further reference note that similarly
(10) logl(f,) = mlogd, -+ O (H;"=).

LEdMA 2. For any algebraic number field © and any ce 2, a =0,
we have

(11) Blu, 9)[e(a, @) f1(£2), 2 Lean.(p—1)},
s

where w(R) Is the number of rools of unity contained in 0. Moreover,
?f a = f)m ﬁ CQ - Q(Cm) then
(1) : . nll(f, 2,) Bla, 2).

Proof. The cquality

(13) =8 HeD)

implies by Theorem 3 of [16]

o 71

a” =y, v € 12,
where
{14) ¢ =|n,w(Q), lem. [2(,): @Y.

2in
q prime or g=4

Hence by Lemma 1 of [10]
(15) _ ' nlela, Da
and by (14)

nle{a, Dw(9).

It follows that if e(e, 2) 520, ie. a.is not @ root of unity, there are only
finitely many » satisfying (13). The greatest of them F{a, 2) = F satisfies

by (14) and (15)

(18) Ele(a, R)w(D),
(17) Ele(a, ) lem. [0(2):].
glela, 2pt

¢ prime or g=4

However, if glw(£2) then [2({): 2] = 1, thus those factors ¢ eontribute
~ ‘nothing o lem.[Q(Z,): 2] ocenrring in (17). Tt is enough therefore to
.consider ¢|3e{e, £2). ' ' :
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For ¢ being a printe we have

[0(5):0] !
20014

For ¢ = 4 the degree [2(,): 2] divides 2. Thus if e(a, 2) # 0 (11) follows
from {16) and (17). If ¢{a, £2) = 0 (11) is obvious, as is (12) if H(a, ) = Q.
If H{a, £2) + 0 aisnof aroot of unity, hence by Lemma 1 of [10] 0 +* ¢(«, 2,)
= me{f, ), and by (11) applied to § and £,

[Q(5,): 2] =

E, = E(f, &) + 0.
It B
f=2" 4 € & (Cp )

and » s are rational integers satisfying
rE+emB, = (B, mE,)
we get from (13) with n = F and from o = 7% the equality

@ = (19519;'){13!’”151]:' ,932?; e Q(!:[E,mEI])‘

By the definition of E this implies (B, m¥] < B, hence B = 0 mod mE,.

LevyA 3. Let 22 be an algebraic number field and o e 2, a =0. For
every positive integer n we put

y = (n, E(a, 2)).

If g(2) e 2[x] is a monde polynomial irreducible over Q and g(z)|s™ —a,
then g(x) = G{&""), where G(x) is a polynomial over Q.

Proof. We proceed by induction with respect to E(a, 2). If F{a, Q)
= 0 the assertion is trivial. Assume that the lemma is frue for all 2’
and o with E(e', 2') < E(a, 2) and let g(x){2” — o

It 2" —a is irreducible, then the lemma ig trivially trne with &{z)
=¢"—a. If it is redneible, then by Capelli’s theorem either

(4) a=p" plun, ppine, fe@
o '
(B) o= —4p% din, pfef.

We consider these eases snccessively usmg “rhe following notation:
2, = Q(i,), d, 759 £1.

{A) We have here

p=—1

(18) o) = @0 =B | [ @ = gp).

r=1

"By (18)
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If g () | 2" — § our mdue‘rive asmmptmn dpphe» directly, sinee by (A}

and Lemma 2 E(5, Q imE(a, Q).
: P

. n
Puatting », = (E'- E(3, .{2)) we have

Vg i=—, { (JL‘) — G X (.f’”".ﬁm .

¢ \ P ¥ o }e
Gy(®) € 2[r] and it i suffiefent to take G{r) = G, (™). .
If g(a) 4 27 — B, let k(x) be a monic factor of g( } irreducible over £,

-1
Ry g ] [ @ —238),
r=1
thus for some positive » < p _
{19) h(m)fw”-"p—:; .

Let 2" (w) = k(z), ..., A% (x) be all the conjugates of h{z) relative
to Q{z). It follows from (19) that

{ (1)(.1; h(!) ) B(L f'(l)?' "(J)" L<i<i<gdy,),

thus A% (@) i = 1,2, ...,
it follows that

20y g(#) = ng,fn (h(ﬂ))
On- the other hand, we have by Lenuna 2

d,) are relatively prime in pairs. Since A% {z)|gy(x)

P 1
E(':;;ﬁs Qp) I?E(a: Q).
Applying the inductive assumpfion to (19) and putting -

0]

(21) ”‘jlpl hir) = H(a"), Hz)e0,0z].
It is sufficient now to take

Glx) = Nﬂpm (H(ﬁﬁwl))-
Tndeed, by (‘)0) and. (91)

gla) = N o{H (ﬂ-"""’ ) = @),
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'{B) WWe have here
3
gleyio +48t = [ ] @ =542 8)-

Pt

Let R{x) be a monie factor of g{(r) irreducible over £2,. We have
for an r< 3

(22) him)| ™ — (1458
and it follows in the same way as (20) from (19) that
(23) gi@) = Ngyo(hiz)).

On the other hand, by Lemma 2 7
E{fi(1+208, )| 1B(s, 2).

Applying the inductive assumption to (22) and putting

Py = (*Z",E(:T( - 54)13; ‘Q‘l)

(24) f h{a) = H(z"™2),  H(z)e Q,]7].

4’
Tt iy sufficlent now to take
Gr) = \Qé,n(H(f“""))
. Indeed by (23) and (24)
(@) = Noyo(H(@"2) = G ().

RemarL One can show by induction with respect to F{a, 2) that
for n == E{a, 2)thereis no » < n with the property asserted in the lemma,

Merecwel Lemma 2 and 3 remain valid for any field £, not nec.e%zmly
algebraic, n not divisible by char @ and those a e Q for “hleh ¢(a, £2) is
defined, w(2) is then to be xeplaeed bv the number of roots of unity of
degree E(a, 12) contained in 2.

Lexnrs 4. IF alb then

D) e, j—1) = s(a)p(d),
(7.0y=1
where the sum is taken over any reduced system of residues mod b.

Proof. This is a special case of the theorem due to. R. Sivarama-
krighnan [19] I owe the reference to Mr. A. Madkowslﬂ
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=

Lmviva 5. If O(x) is an irreducible polynomial, o = 0 is any of iis
zeros, m > 0 48 an integer,

y = (ﬂ, E(cx,Q(a)))

“then

@(a") = O,(2) ... D,(x)
implies '
' G (a") By (1) ... B, (.
Morecver
r< |@ 1(v).

Proof. Since & is irreducible, P(r) and hence also @(»") has no
multiple factors. Clearly &, («™ ") {1 j<r) are prime to each other and
to prove the first aqscrtlon of the lemma we have only o show that they
are irreducible. Let f;(x) be an irreducible factor of @,(z*"), Clearly

{25) Silx)i e ).
We now use the following Lemma of Capelli (cf, [21], p. 289): if
1
(26) @ —a = []g:lx)
- i=1
is the canonical factorization of " —a in @ = Q(a) then
' I

{27') @ (2") = const [ [ ¥p00:(x).
L i1
It follows from (25) and (27) that for some <1
(28) constf; () = Npqg:(x).
On the other hand, it follows from (26) and Lemma 3 that
(29) 5 (@) = Ga™), |
where &, (z) € 2[w]. By (28), (29) and the choice of f;
(30) consbf;(z) = NP;QG (o f’);@ (),

thus I\TQ,'QG-; (.’Ir‘) l @j(.’ﬂ).
Since @; is Irreducible
' @,(x) = const No,n0;(a),
thus by (30) :
@; (2™} = constif;{x)

and by the choice of fi(®), @;{"”) is irreducible.
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To prove fhe second assertion of the lemma we first remark thas
by (27)
(31) r o=l
By the definition of F{«, ) = F we have F > 0 or a is a root of unity.
In the former cage
(33) @ = #(p)%, where e Qz].

Let the Galois group ¢ of Q(Jg)/@Q be represented as a subgroup #
of the multiplicative group & of reduced residues mod E, so that
{33 F={jed: 3 =g}

ey
For any je # we have by (32)

| | YT = o = 95,
hence : ’
(34) B(Sh) = S (Lg)

for 2 suitable integer e(7).
On the other hand, by (32)

H — 58 {EaY™)

and taking norms from £2(Ip, x) to Q(x)

Eo o,mm-nW%Mw~cm%,

where {#! is the order of 4. _

" The ith factor on the right hand side is a power of a polynomial
irreducible in £ with the exponent equal to the number n, of those elements
of # that leave »—Zi9(ZE") invariant. By (33) we have

n= {j €71 TR = S ln ™Y
.and by {34)
(36) ={{jef: li+e(f) =imod ).
Comparing ’rhe number of factors irreducible over @ on bhoth sides of (35)
we get by (26), (31) and {36)

n

kR E_E'}'bi = 2 {je g qu_+e.(j)- = ¢ mod »}|

o= 1 fw

:E;{lgiw 23-«3(})—11110(1:}}! Di-n< Y (i-1).

fe.d jef - (}.E)=1
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Now
¢(E)

s
i

F =[R20 =
by Lemma 4
N v 1) = (g (E),
(f.E)=1
and it follows that r< @ 7 (x).
It remains to eonsider the case, where o is a oot of unity. We have
then for a suitable g @(2) = const X, (2).
Let now n = %;n., where every prime factor of n, divides ¢ and
(s, g) = 1. It follows from the identity

Yq("v") = nxgnld('ﬂ)
ding

and from the reducibility of eyclofomic polynomials that

7 é"!‘('n‘z) - ’E(‘Rr) = 7-—(1")'

" In the mest three lemmata we use the notation m{z) = lem.{p—1)

for any positive integer . : Pl
Levma 6. For any tnteger x > 1 either there erist three positive tntegers
iy, g, oy sueh thot

(37) am () Leym (i), xam (), pam{ny)]

and }'/33—1—} V;-'.;q'— VE;< Ya or » = q»s, where g, r are primes r < 30,
s< 30, a0, 20.

Proof. Let g be the greatest prime factor of », » =4y, ¢ 1 y. If
¥z 80, but. (g—1,y) =1 we set &, =¢% iy = ), T = 1 and geb

Va—Va,— Vi — Vg = (Vi — 1) y—1)—2= (¥3-1) (V50 -1)—2> 0.
It (g—1,y) =1 let # be & common prime factor of y and ¢—1
y=r's, g—1=1+1% rist
If either r= 30 or s = 50 we set
By =95 @y =17, @y =11,
easily wverify (37) and get |

- - Sl 3 BiS L2 2 L)E 02 ia
V:r-—— l/éﬂl _ ]/wz__',, 7y > gaf PP gHE gu,a BTNy (s)

— 1 1 1 2 1
4 — ——— 0.
> Vol —- PRI T ?)L‘i) > Ve (1 V30 1o ) >

The cage st = 1 is excluded sinee g—1 = »" implies r = 2 < 50.
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j
Leamas 7. If «; are positive dntegers 0:11(1 l 1 < Vr then

log Lo.m. x;m (e} <€ @3 (loga)”®

=1,

Proof. Let M = maxLem. om(ay), wvhere the maximum is taken
I=1, . d - J

over (finitely many) integral points (x, ..., a;) satisfying ;> 1, E 1}"
=
< Vi Let {2, .. , &%) be a point in which the maximum is attamed Wlfh

s
the lea.s’ﬁ value of X ¥ a . By Lemma 6 we have a! = ¢%fis, (i=1,..., k),

f=1
where g ,7; are primes and «; > 0, 7, < 50, 8; < 50. It follows that

(38) M =lem.alm(z]) < lLem. ¢%(gq; —1)L.ean rfil.em. ry—1)s;mis;
1 1 t

1zisck 1<isgh } 1gishk O lsi<h

< leam. gft(g;—1) Lem.#fi.

. lgigh _ 1i<k
Since rfi<C» and r; < 50 we have
39 loglem.if < = (50)logz = 15logz.
laish
Similarly
(40) _ Iog 1 c m q"t( -1} < 2nloga,

where # is the number of distinet terms among ¢ (i = 1,...,%). Let
My, 2 be the number of distinct terms with ¢; =1 and o; 2= 2, respectively.
J. ny S
The (onﬁfrmn w2 < Vi implies 2 pi® < Vi, where p; is the 4th prime
i=1 .
?!1
and M Pi% g y”;, where P; is the ith perfect power with an exponent 3 2
i=l ’
TUsing p; » {logi and P, » i we gat
i (lown) <¥r and k2 Vs.
Hence ' '
{41) ‘ 1 o= Ny 0, <€ oV (loga) 1
and the lemma follows from (38)—(41).

Lexors 8. If «; are positive integers a,}zd 5' & L then
i=1

log Lean. z;m(e) < 1":5310gx+0(}/m10g2'a}).
i=1,00f ) .
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Proof. Let M = maxlean.a;m(z;), where the maximam is taken
Iisi
+ - 1 . J
over all integral points (2, ..., ;) satisfying @; > 1, 3, < », and let 2%,
i= 1
, & he m point in which the maximum is atfained with the leagt

value of ‘ #;. Since lml ]wz+lr3 <V nnphef; By F W T8y <@ 1b

l—l

follows from Lemma 6 that

#h = qi”‘i"b‘u where ¢y, 7, are primes and ;< 50, 5, << 50, ¢, > 0

and as in the proof of Lemma 7 we find.
{42) Tog M < loglen.gfi(g; )-;—1)10fr.3:+0( ).

i<k
e

Now by the classical result of Landau ([7], § 61)if ¥ »; < # then

f=1

logl.eamn. o, < V;alogm+ ] (1@),.

ik

hence _

(43) logl.e.m. gfi <C ¥ mlong O (V).
I<isgh

In order tio estimate l.e.m. (g;— 1) we divid@ the primes ¢; into two classes ¢
T=ly eyt .

and ¢, assigning ¢; to €, if g, — 1 hag a prime factor ¢; between a = logz/log,s
and & = ¥zlog,z and to C, otherwise. Since .

we have by the quoted Landau’s result

-1 _ —
logl.e.m. L < Valog,z+ 0 (V)
a3<Cy 4 »
. g.' 1
(44) loglc.m. (g, —1) < logle.m.%; +100'1 o.m. ———

azelfy a; eCy - ggeQy 7

b - —
<b+0 (1 gb) + Valog, z+ O (Vi)

= 2Vplog,w+ O (V).
Tn order to estimate Lem.(g;—1) we may assume without loss of
@geCp

genemhty that €, = {qu, €a; .-, @} 804 ¢, < ¢ < ... < g,. By the upper
smve theory (see [5], p. 134, Theorem 4.2) the number . (1) of ¢ ECR,

5 ~— Acta Arithmetica XXXIV.3
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gy <2 t satisfies for 1> b

t log,x
Coll) < gt logt ]Y ( ) < logt logaz

a<p<h

For i > ?),ilogb; we have ¢; » b, hence

b . q; 10%'2.‘15 ) 4y
ool o= £ —— — & -
logh < i = Gila) < logg; logw log2m

and
b —

b log*x xr
3 / logz.
%> logh log,a >>1 Jogy &

]
The inequalify > ¢; <& implies

=1

P i loge €@
(“ logb) 1’ log,x & ’

b / rlogss / awlog,
@ + ‘l/"f g & -l:" 27 *
logd log® log

hence

Tt follows that

(45) loglem.(g;—1) < nloge <V z“lt:)go
. - q'g,fgn
and the lemma resalts from (42)—(43).
Proof of Theorem 1. Let

(46) KF(x) = constn @, (Y7,

For each @; we denote by o;, ¥; the relevant parameters from Lemma 5
and set ¢(F) = lem.Fla;, Q(a;));

1<f<e
o= lemy= (n,e(F), w=m""
1o

(i) and (i) follow immediately. By Lemma 2
¢(F)|2L.em. oa;, @ (e m{e{as, Q(ar})),
1si<e

where m(z) = l.e.m.(pel).
piz

.On the other hand, by Lemma 1

21/8((1” b e lKF[log( [I(F')logH I,

L
e
e

Reducibility of lacunary polynowmdials, 111
and it KF(2) = LF ()

g.Fi
?’10gz9

Lo

e(us, Q{a)} <

o,
il
i

Hence by Lemma 7

loge(F) < || EF 1ocr(d K F ) log Fil (log [KF! +log, F*

and if HF(x) = LF(2), by Len_una- 8 '

log fFuloga f ‘
2logH,

{note that {KF|=1 implies {iF} > 3, log,[#]| > 0).
In order to prove (iii) we note that by Lemma 5

G, (@) E [ dy()
F=1

loge(F) < l L 0(Vlog i Fllog, IFY)

implies

whence by (46)
2 T

EF(e) E const [ | [ [ @y,

i=1 j=1

EF(«") cinconstn H B ()
=1 j=1
Denoting the polynomials @, (r"1) (L < i< o, 1g_j %7) by Fy, ..., F,
we obtain (i)’
Tt remaing to estimate 2 = 0 [ILF ) = T.s . By Lemma b we

haive 7; < [@v{»), hence 1
(47 - _f&&ﬂrm.
Since- »;jn and by (46) =
(48) ' Zg:si}@fl = |HF|,
i=
we get Q< |EF|v(n). In order to gob the other bound for £ given in

tthe theorem we note that (the o;'s not being roots of wnity) B {a;, Q ;) ) =0
and v E{e;, Q(a;)) implies . :

(49) () < 7B (e, Q(a,-)))-
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By Lemma 2

(50) ._ (HQ( ))<’w3( HQ )!

where 1, is the number of roots of unity confained in @(«;). Clearly ¢(w,)
< [y < |KF| hence by the classical Landaw’s result ([7], § 59)

w; < |KP|log, | KF}, 1w, <2IEFM0,
Gn the other hand, by Lemma 1

é{a;, Q(a;) < 26 | K F|log(7 | KF))log [{F|,
henee by {50) - :

{51) Bla;, Q(e)) < 100 [ EF**Wlog 7.
Now by the result of Wigert {of. [7], § 60)

(52) () < 14 (m) TV,

where

log?
T,(®) = exp (mi fG].og:a:)
X 2

and o{1)—+0 as @-»o0.
The function z,{x) is increasing to infinity and we easily deduce
from {52) the apparently stronger estimate

r(J) < To(2) T for all y < @
Moreover, for z, y>e
To(@Y) < Tol@ )"u(y) < oWy (y).
Henece by (51)
< 7 (100 [KCF 2+ 0 og [+ o)
< 10| EF "7, (101og 7))+
' log 2—[—0( )
log, |7||

and the desired estnna.te for Q(KF (")) follows in view of (47), (48)
and (49). '

Proof of Corollary 1. Since F{0) # 0 we have for some g, &

= |KF|°® exp ( log, HFH)

P(z) = JF(a) = EF(w) H X, (z).

By the ensy cese of Lemma 5 .(v = n) we gob

QX () < | Xyl z(m).

Reduedhility of laeunary polynomials, LI M7

Henece

QF ")) = Q(EF ")+ jel.Q( )

i=

[

< HFjz{n)+ Zsil_Xgi§ z{n}= \Fiz(n).
=1

Proof of Corollary 2. It b(z) = ay+a,2" it is sufficient to take
in the theorem Flx) = a,+a,a.
Proof of Corollary 3. By Corollary to Lemma 1

log |it]]

QL) < Sy

On the other hand, if t(x) = a4, + ¢, 8" 4 a,2"2 we have

t(x)

(53) Ttz)

(" 1 ) i(2) — ar2"* 210 ™)
= Ggly 3773+ (07 - a3 — 67) ™2 -+ Gy Gy
Taking in the theorem F(z) = aaa,2?+ (63 +0; —a7)2+ a8, we geb
] =< 2 Hefe, '
_Q(KF( )) <e p(log.;-ro(lj

o, It logzﬂtll) = o (log |I¢))

~and since by (83)

Kt{x) ®
Lijz) |

F{ah2)
the corollary follows.

EXAMPLES. Tn order to show that the estimates for ¢ (F) and 2(KF(2™)

: given in Theorem 1 are sharp we consider the following two examples

1. n—]]p, )———pr(m);
(2% —1y",

2.0m = n p,
=t . .
where p runs over primes, f,(») is given by (9) and ¢, m are paramebers.

In the case 1 we have F — KF = LF since f, avre mon-reciprocal,

' |KF| = 8x(f) < iflogt,
and by (10}

log 7| < 210g1(F) < 2 Zlogchp)
P
- —pl2 1 v 0 (&
Y 2 Z(]Jl()gyo—[—O( )) - Ogﬁﬂl gt + ((logﬁ)z)-

£
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Hence
{ KF log(2 KF;)log 1P (log [ F| +log, IF ) < t(logt)'”,

log | F'ilog, |7 ¢
]/}ﬁgiuj_]f)_g_ﬂi L0 (M._) .
2logd, logt

On the other hand, by Lemma 1

6 (B @ () <

hence e{dy, Q%)) = 1, e(ﬁJﬂj,Q(-ﬂo)) = p. By Capelli’s thcorem & —4{ is
‘redueible In Q{%,) if and only if » = 0 mod p. By (9) and Capelli’s lemina
» = 0 mod p is also & necessary and sufficient condition for the reduci-
bility of f,(x). Hence for all proper divisors » of n

QF (@) < 2[F (=)
and if » satigfies (ii) and (iii) we have » = 2,

1 N 10 [~

gy = — F-1

o8 = 0gr T\ logt )
B

In the case 2 we have

|JKF = B =m,

log [F < 2logI{(F) < 2mlog{2" 4+ 1) < 3mn,

log, L] Clogn ¢ ( ¢ )
< o(logm) +-——— = s(logm) + —— + 0
log, I1F o(logm) log,n o logm) =+ Jogt N log*t

= o(logm) +a(t)+ow (D).

Hence |
' (K (n) = m-270), |
%K-F]]‘“""(UGXP (%,,fo@ logg “F”) < 7"11‘!-.0(1] _2n(¢)+u(n(1)'j-'
‘ Log |L7|]

“On the other hand
EF(x) = n X207, Q(EF@™) = mr(n) = m 270

din
3. Luvmta 9. Lot Py, ..., .2, @y, ..., @) be polynomials, (P, @) = G-
For any positive integers n,, ..., n, we Lave

(P, ..y @), QUah, .y afk)) = 6 (a1, aly, .., ).

" Proof Let P = GP[,,Q = (), and let B{x,, ..., &) be the resultant
of P, and ¢, with respect to ;. There exist polynomials 7 and V such

Redueibility of lecwnary polyaowials, 17 249
that
UPyTQ, = R
From
T ol s Ly TT
Ul ooy ieg®) Py, .. o MR ST, L ak Qo) L., aik)

= B(ri2, ..., %)
we infer that (Py(af1, ..., #2%), Qo2 ..., 2®)} does not depend upon .
Since the same argument applies to other variables we have
(Po(aln, ..., 2p%), Qyladr, ..., %)) = const
and the lemma follows.

LEM"&M 10. If ¥ is an absolutely irreducible polynomial with alyebraic
cvefficients, one of which is vational = 0 and Q is the field generated by
these coefficients then. N P(X) is drreducible (X = (z,, vy )

Proof. Let @ be the irredicible factor of N o ¥ (X) divisible by ¥(X).
For all isomorphic injections ¢ of £ into the complex tield € we have

: POX) P(X)
hence :
TTee) = ¥ vy o (xyee,

a

Sinee @(X) iy irreduneible

(54) N W(X) = comst @(X),  W(X)| Ny P(X)
and o o
(35) _ 7 Xy [ [,

where [ [ is taken over all injections & different from the identity e, However
for such injeetions

PUX) # W)
by the definition of @, and since ¥ (X 1, P(X) have a common non-zero
coefficient
P X) +# const W(X).

Since ¥ (&) is absolutely iri%&ueiblé and of the same degree as W9(X)
with respect to all the variables it follows that -

(), P(X) =1 (o o).

Hence by (55) a = L and the lemma follows from (54).

LEsva - 11, If @ () ds irreducible, y,, ..., yy, are integers and (y,, ..., 71)
w=1 then J@Q(z% ... xf%) 18 irreducible. :
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Proof. Let @(a) = 0. If, say, y, 7 0 then
Bliogy ovey @) = dJ (@]t ... 2F—a}
is a binomial with respect to 4, over C(r,, ..., ¥). By Capelll’s theorem:
it ig irreducible over that field. But & has no factor independent of g,
hence # iz irreducible over C. Since

. Jb (:ﬂl e 'Tzk) = GOnStNQ(a]/Qb(ml, —eey ﬁ'z'l“)

the lemma follows from the preceding one.

LEvMa 12, Let @(ay, ..., 2,) 7 constay be drreducible and not of the
form Jdy(alt ... 2lk), where Dy Q3] and by, ..., 6 are integers. For any
positive integers Ny, ..., Ny there exist Positive IRIEPErS fhy,y ooy Ppy tyy -ovy Uy
such that :

(56) < |BP,
(57)v 'ﬂ/j = ‘U,j'l{!j,
- and
)
(58) B4, ..., 0l = const Hdﬁg(ml, ey B)0
‘ . i _

implies e, =1 (1< g<h) and
A

D, ... o) 2 const [ [ &, (a1, ..., aj).
_ 11

Proof. Let ¥ be an absolubely irreducible factor of @ with the lead-
ing coefficient 1. (By the leading ccefficient we mean here the coefficient
of the first term in the antilexicographic order.) By the classical theorem
of Kroneeker the coetlicients of ¥ are algebraic. If 2,18 the field generated
by them then by Lemma 10 '

Noyo W (w1, @)
is irreduecible, and since it has a factor in common with @ (2., ..., %)
{59} Dy, vony @) = constl\TQD,Q‘P(ml, vy By
If ¥ has only two terms then ' _

¥ =dJ(zh... mi’ﬂl%a)
for a suitable o and suitable integers &;,..., 4,. Here £, = @(a) and
if @, is the minimal polynomial of ¢

NﬂoiQ Py oeny B) = Jéu(m?]‘ vee mlik) ’

which together with (59} contradicts the assumption. Thus ¥ has more
than two terms and by Gourin’s theorem there exist positive integers
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ot
H

Hisoay Mg U1y o0, i, such that
bR = g
and

. (AR
- Flzfh, (.., i), where T ¢ Clay, ..., z,]

(60) every absolutely irreducible factor of Vg @) is of the form

Since ¥ < |#] the numbers ;, u, satisty the conditions (56) and (37).
Assume now (58). For at least one j =%k we have
o
o (0, ey @) 0,

fles:

. 3

benee by the irveducibility of &
do

(@(;761, ey @), EE‘(‘EI* ﬁa)) =1

_ i)
and by Lemma 9

0P
(@(ﬂ»’flj caay Jﬁg"), 5‘{1—:; (9.’;'{‘-‘“._ veey {.l'}‘ik)) =
Hince also '

(Plaf, ..., #f), ) =1

it follows that
0
@W%ka%@%%mﬁﬂ=h
which. proves that e, =1 (g<A). (CL. Remark on p. 148 in [11]} The
polynomials @, (%}, ..., #3%) are clearly non-constant, and by Lemma 9
they are prime to each other. To show that they are irreducible let v,
denote an absolutely irreducible factor of @, (2%, ..., %) with the leading
coefficient 1. By Kronecker’s theorem the coefficients of ¥, are algebraie.
By (57) and (58) we have
Wy, e, ) DY, ..., 2T
and in view of (59) there exists a conjugate W of ¥, such that
_ W (s ey W} P (2, oy ).
¥] is absolutely irreducible and by (60)
(61) gjg(wu'---: z) = T(@), ..., ),
whete T e C[@y, ..., @] .
The coefficients of ¥, generate an algebraic number field 2, and
by Lemma 10 - ‘
(62) - N = Ng Vil ..y @) is ireducible.
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Bince N has with @, {1 ..., 2f%) the common factor &U we have

A’,@g( ... r"fx)
~and by (61) :
: Nooo (T(J*’fl-, . .zv;jk))igby(;r?;’l, ceay ERERY.

o %
However I'e 2,0y, ..., &)
No 0 Ty, o, i) = (.N_QHJ-QT} (1, L., R,
Therefore it follows from Lemina 9 that
) ATQH/QT(Q’N sy B P @y ey )
and from the irreducibility of @, that
_ Byl oony i) = constNg o(Try, ooy}
Thus by (61) ‘
Pyl ooy k) = consbNy T (2}, ..., 2j) = const N
and the missing assertion of the lemma follows from (62).
Remark. Lemma 12 remaing true for polynomials over any field @
of characteristic’ 0. If the characteristic is positive the lemma has o
be modified. _
Proof of Theorem 2. Let us observe first that

(63) | KR, ..., afk) = (EF) (o, ..., 4F).
Indeed, if flay, ..., m) 1 (30 ... 2% —1) then
P, oy ) (a0 s 1) ’

hence the left hand side of (63) divides the right hand side. On the other
hand for any integral vector [&,, ..., d,] # 0

(KF (s, ..y ity), J (@07 %% 1)) =1, where 0 =mn,... Ty
Hence by Lemma 9
(B (oft ., 8], J (af . afem 1) =
and since
J(afr L afe—1) 1T (a0, 1)
we get
((KF) (@1, ooy B, J(-rz a]”“”“l))

This proves (63). Let now

. . r
(64) BF @y, oy ) = const [ [ @0y, ..., 2%,
=l

]ﬂnduc-ibility'of lacuna-ry poly-:wmz’uls, Ir 233

where for ¢ < vy @, is of the form J Dy (2l L ali) for a smta.ble & and
smitable integers r)ﬂ, v~y 0, while for i> 7, @, is nob of the lattermf(;rm
Cleazly for each i <7, @, iz irreducible and non-cyelotomic, hence de-
noting any of its zeros by #; We have ¢ = Bleg, O( al.)) -y 0_’ Lt u;s sot

¢(F) =Lem.{g, ..., A - O max!@{!z}’
1>7g

vy = (e(¥), ny), vy = myt (1] < R),
d;(n) = Oty ooy Bpme) (L iy,
8 =(&n),0)  (L<i<ny).

The conditions (iv) and (v ) are elea,rlv satisfiod.
By Lemma b for each 4 <,

By (2) = H ()

implies
' fg
(piin)y EF n (st

Setfing in Temma 11
Vo= dyuloim)  (L<j<E)

we infer that for ajll << ; the polynomials .

ke

J d)m( [1 m}’i“f(“ﬁ"i) = J P, ( ﬁ m;.’fmf%)
Fel

d=1
are irreducible. Since

Jb,, ( H m}’fﬂ‘i‘"’) = J&, { ﬁ w;-’if"f) = Py, ..., L)
we get - a _
(65) (D-(:n”‘l , ) = J@W(HJ:’U”J”) (1< 7).

Smce by the definition of ¢/F) and », éa 059 (1 <7< k) the snbstitution
@2 (1§ < F) gives

65 Dulafs -y i) “"‘“H 0, HWM) (L<i<ry).

Tor é>r, There ems’ﬁ by Lemma 12 pomtwe integers uy; and w;

{(L<<j< k) such that

,uu 1B my = gy,



i @
254 A. Sehinzel Im“
and )
(s, .., wiw) [ [ Dlen, -y 1)
gﬁl
implies
(66) Pulety oy ) = H gy -5 ).

By the dehmtlon of e(F) we have ugle(l), hence
wyly,  wleg (1< i<r, 1<j<h).
)

The substitution w;->@}" applied to (66 gwes

l
(66") o, sy =[] @,-g(m;'ﬂ“n L ey
g=1 .
Trom (63), (84), (63), (65", (66), (66} and Lemma 9 we infer that .
. T Iy
HF (@, ..., @) = const H H Jcbm(nrc%nﬂﬂ)
- + Iy
® H n Byl .oy w®)T,
i=ty+1 g=1

rg kg

I .
KF (&Y ..., ) _z eonstn HJ (Hsﬂgﬁvﬂ&i)eix

hy

i=ry+1 g=
Denotmg the polynonuai.x :

J@m(nxujm (l{:i\‘{.?‘g;li{géhl)

and . .
(*Dig(m;}m“? teey 'E;’:k'wfk) {?‘9 <is Ty 1< g < hz)

by 4, ..., F, we geb (vi), .

4. Lewvaia 13. Lel a; (0 Ljis ) be non-zero integers. If

{67) | g+ AN = g+ ya/& " —[)

i

then either 1 s an alggbmw unit or there enist mtege:s y; (1<j< k) such
that

(68) Zijj- =0
. i=1 )

.E\{]a-
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and
o logal
{69) 0 < max [y;] < max g4
1i<ck beciechk 102

Proof. If 1 is not a unit then for a certain prime ideal p of @ (1) we
have ord,% = £ = 0. Let p be the rational prime divisible by p and let
ordpp = ¢, ord,e; = a; (0. j < &). It follows from [67) that for ¢ = +1
the minimal term of the sequence {eq;4-en;£}(j = 0,1,..., k) must
oceur in it at least twice (we take n, = 0). Thus we have for snitable
nen-negative indiees g, k, 4,9

(70} ﬁa —‘?lr E = @d]l—thfj g<h,
e+ & = eo;-myE, i< ],

Hence )

ela;—a;) (g —n,) § = elay, — ) (ny—n,) €,
and singe & =£0 '
(71) (o) (g — n) — (o —ag) (ny;—n;) = 0.
This gives the desired relation (68) unless

gy = g —a, = 0

or

o, —u = ap—a, and §=g, j="r
The latter possibility however reduces to the former and both give by (70)

fiy = Ny, N; = %;. In order to get [68) we notice that the coefficients of
fgs Tiyy Bey 7y I0 (71) do mot exceed

ogaj

2

o <9 log la;] lo
2 Max g £ 2mMax ———— g Max —
r<isk o<i<k 10gP ok lo

Leyya 14, I f real numbers a; (0 < J < k) and a certain A satisfy (67)
and moreover :

(72) 0 << Ry < fhy < oo <C My, 0]+ ]akl V’ !aj[ >0
j=1
then 1A = 1.
Proof. Chose £ = +1 80 that {a,+ ea,l = et - 2to] and constder the
polynomial

k.

(:r) =+ _\ a; J;“f-tx”i(ao Ea, ‘"J)
: J=1 j=1

F(x) is reciprocal of degree #. By a theorem of A. Cohn ([2], p. 113)
the equations F(z) = 0 and 2™ *F’'(3) == 0 have the same number of
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zerog inside the unit circle. We have _
k . ' k-1

i) == 2"V 0 = :1;“"""1( ycbjnj;xfi‘"’f+a(z»0n,,m1’"k-;—sg (. -9z.j).q:1+"f"’k)
i=1 if1
k-1 k=1
PP Lt k13 s — N
= (d; + &) n,,.%E PEIT R 2 ay (1, — 1) &,
=1 iz

Assuming G{2) =0 for »} <1 we get

k-1 . k-1
Jal——eaﬂ My << 2 [ nj+2 [} (B~ 1y}, = . N, \ ],
i=1 i=1 j#
.
gl + o] = tag+2ag) < Y lay),
. “

a contradiction. Thus all zeros of G (x) and F(,f) are on the unit eircle.
Sinee by (67) F{i) = 0 we get |1] = 1.
A

Lenoaa 18, If f{z) = ag+ 3 ;6 satisfies (72) then either Kf(x)
F=1

= Lf{m) or there exist integers vy, ..., y; wfz'sfyi%g (68) and (69). In auy
0ase . : .
QUEf () [Lf ()] < Lol(a, )}

Lf .f‘) can Hf’b

where f;(%) are pumltlve polynomials with the leadmg coefficients ¢; > 0
(1< i< h). Comparing the leading coefficients on both sides we zet

R
€ = l l(t{‘*‘.
i=l .. -

Comparing the contents we get

Proof. Let

L
O(Lf) = C&F) [ ] o5
g=1
Sinee Lf has the same leading coefficient ag f and the same up o 2 gign
constant termn i follows that
3

(73) [T, a}).'

i=1

If for any i h we had ¢, = 1 the zeros of f;, which by Lemma 13
lie on the unit clrcle, by Eronecker's theorem would have to be roots

~¥

L&
e}

Heducibility of laewiary pelynamials, TIT

- of nnity eontrary to the definition of K f. Thus for all i < h we have ¢, > 1

and (73} gives the second part of the leémma. To prove the first note that
it h> 0 we can take for i in Temma 13 any zero of f,.

Levora 16. Let 0 < le Ceeo<ny and el oa; (05§ << k) be won-zero
integers. I fla) = ag ,.\Z @' satisfies for some g, h <k
=
(74) a,, = a,imudgodm]god f;
. i P et =gk
then either Lf(x) = Jf(x) or there exist infogers i {l<jig
and (89). In any case O(f(z)/Lf (@) < 2 i{ay, a)).

Proof. Let
If(.r ]7]”

where f;{z) are primitive polynomisls with the leading coefficients ¢; > 0.
By the argument used in the proof of Lemma 15 we deduce againt the
divisibility (73).

If for ¢ << h we had ¢; = 1 any zero 4 of f; would be & wnit and would
satisfy (67). Setting

k) satisfying (68)

goda — 3, gedag=4d

oLk . J#uk
we would get from (67)

U@ A% = 0mod d,  a,A7" -, A7 = 0 mod d;

a0 = — 0T mod @67, @, 87 == —a, 67 A% Mhmod dd7;
6287 = alé mod 467Y; &l = ajmod ds

contrary to (74), Thus for ¢ < & we have ¢, > 1 and (73) gives the second
part of the lemma. The first foliows from Lemma 13 on taking for.1 any
hypothetical zero of fix)/Lf(x)

Proof of Theorem 3. By Theorem 4 of [117 either Lf(.n) is irreduc-
ible or there are integers y,,...,y, satisfying (vil) and (viii). All zeros
of the quotient f(x) /Lf (z) satisfy the assumptions of Lemma 13. Since (69)
implies (viii) it follows that unless (vii) and (viii) are satisfied all primitive
factors of f(x)/Lf{x) are reciprocal and menie. The remaining part of
the theorem follows at onee from Lemmata 15 and 16.

5 LeMMA 17. If &, = |as) > 0, ay] = 6! >0 and 0 < 0y < e < 9y

t}wn either the gquadr inomial gj(m) = g+ Ewwf is reciprocal or "Kgq(x)
= Ig(a). =
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Proof. g(4) = g(A7") = & implies
Gty A = — g A — A7,
Qg+ Uy i = — @ AT gy AT,

Dividing the above egualitics side by side we get

fs Qg ’
8 ang _'lug—(—ul’
% ay

and either 1 is a root of wnity or w, = ig 49, and asfey = ¢.fe, in which
case ¢(x) is reciprocal.

s .
LEnia 18. If a quadrinomial g{x) = aq+ Y gz’ is representadle in
, = .
one of the forms (L), where k, T, U, V, W are monomials in Q(x) then it
is also representable in the same form where =k = Clg), T, U, V, W are
monomials in Z[z] and the factors ou the right hand side of (1) differ from
the original ones by monomial factors.

i % ¥ W
Proot. ILet T = —af, U =—n% V =—2% W=—u
‘ n? " w +
ko= k'a", where w4 U, v, w e Z, m> - 0.
If
gla)y = B(I*— 4T 0VW — T V* - 40 W¥)
we have ' '
z = —min{2r, r-~gL+y+o, 2p+dy, Jp-tde)
= —2min(r, g+ 2y, ¢+ 20),
{73) : .
Clg) = K] (22, Lluvw, -u,g.'u% du2apt) — (i, uv?, Buwz)'ﬁ_ ’
me ms
Taking
o : ms \
ky, = C(g)senk’, T, = e T
’ (@senk, ! (¢, uv?, 2uw?) 7
T, = (v, 20%) o msamings,e)
(£, wv?, 2uw?y ' ’
Vu o n '[rm-~n1in(w.=',m)’ WO — m W$_min(w,m)
(v, 2w) o (o, w)

we find in view of (75)

@(2) = FolTy — LTy Uy Vo Wy — T3 Vi — 4 UJW)
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and clearly

(76) . TD: UU)VMWB EZ[.E]

Moreover the factors on the right hand side of (1) differ from the original
ones by the factor %2

If
g(m) = B(IPL V=W —3T7W)
we have
) ¥ = ~—min(3yp, 3y, 8u, ¢g+yp+w) = —3min{p, v, w),
- ‘ {u, o3, ws, Sume) K
G = Ek” * H —_ iy 3
| @ ! me s (1 0 100
Taking -
m ,
Fy = Cl@)senk, Ty =Tt al Ty P2 g,
{4, v1) {u, v, w)
W[) = W—?‘E“—— 1?,43
(1, v, w)

we find in view of (77)
‘ g{@) = k(T3 + 75 ‘l"Wg =30, VW)

and again (76). The first and the second factor on the right hand side
of (1) differ from the original ones by the factor #° and +*, respectively.
Finally, if

g(z) = (U + 20V + 72— W)

we have
(78) TR —min(2p, p+p, 2y, 20) = —2min{g, ¥, v),
i
w2, Bup, v3, w? . e, 0, w2
oty = o LEZD Y] gy Lo 0F
. Tme
Taking
m m "
ko = Olg)sgnk!, Uy =T B, V= F——— ™
’ (g) = ‘ (%, v, w) S ’ (, By ) ’
? A
Wy = W g
_ (u, v, %)

we find in. view of (78)
glx) = 7bo(m+0U0V0TTﬂ ~W; 2)
and again (76). The factors on the right hand side of (1) differ now from

x[2

the original ones by the factor »

6 — Acta Arithmetica HXXIV.3
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Proof of Theorem 4. With Kg{x) replaced by Lg(x) the theorem
hax been actually proved in the course of proof of Theorem 2 in [3], see
namely formmla (20) there and the subsequent argunent. We shall have
soon to go through the same argument again and then we shall supply
a few details missing there or peewliar to the present confext (e.g. the
application of Lemma 18), taking them now for granted.

By Lemma 15, 16 and 17 we have Kq(r) = Lg{») unless (68) and (69)
hold with F = 3. Therefore we shall assume these relations for a certain
integral vector y == [y, Vs, al- Integral vectors perpendicular to y form
a module, say N. We have [ys, 71, 01, [vs: 0, — 91, [0, va, —7:] €T and
sinte y == 0 two anlong these three vec-tors “are linearly independent.
By Lemmnia 6 of [11] N has a basis which written in the form of a matrix
4 = [l satizfies

)
7 < log g
e sl < 2wy €43
Moreover, _ .
(80} rank 4 =

and by {67}
(81) [0, 12, 5] = [Py, ] 4,

Since 9 < ny << By < Ny the vectors [dy;, dy] ( j":z 1,2, 3) are distinet and
different from [0, 0]. Let us set '

[y, Mma] integral == 0.

S LRTRE, l/')’ )

i=1

82) Qol¥a 92 = I (@ +
By (81) we have

(83) = - g(x) = JQq(&™, £™).

Since ¢{x) is not reclproeal Qn(yl, ,) 18 also not recipr ocal Thus by Theoremn
1 of [3] ;
Holyas 412)
D (:a/u 2)

where I}, is a certain binpmial defined there. Now, for 1:)i11011"l.iﬁ-1.~‘.
KLDy(y1, ¥2) = KDo(¥1; ¥a)s

on the other hand by Lemma 11 of [11]
ELQo(Ws, ¥2) = LQolys; v

‘ Applymg the operation K to both sides of (84) we cre’r

IQ0 (1, 3:) = KQolys, 7).

- (84) LQo(yu?]g) = G(¥#:, 42} 0T Dy (110 Y2 ),
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Now we apply Theorem 3 of {11] setting there F(x,, .Jh,) == oy, La).
By that theorem there exists an integral matriz M = [g;,,,}r, of rank

Fz2

o ©) ”
< 2 and an integral vector » = [o,, »,] such tilat

N expd 2=t e D
{853} mmc 4] =% ! o . %
exp (500 10,7 (21Q P i p =1
(86) : [Mig, My] == ©M;
®71) KQO(H g, H v¢) 22 const H Bollhns %)
nplies -
.

(8%) EQq (™, a'ry = comt H KT (£, 2™,

. G=]
u (86) Q" = Vmax (2, 1@@%2‘

Let ug et
(89) . . 1\‘ - [7'11]1<:- = :‘IA

J=3

- It follows from (80) that N is of rank r and from {81) and (36) that
®

{90) : [#y, Ny, 1g] = ON.

Congider first the case » =2 and put
QUY1s %) = JQO(ﬁ i, nyé‘ﬂ)_
By (82) and (89) S
3
QYar ¥s) =J (a'u'+_' Zl‘ajy’{liy;ﬂ) ]
: : =1
By (90) the veetors [»;, "’2_,-] are disbinct and different from [0,0], moreover

(91) = J@ 2", 2%2).
KNow by Theorem 1 of [3] we have the following possibilities.

(92) Q{yy, wa) 18 irreducible.

(93)  Q(ys, y,) can he divided into two parts with the highest common
tactor D (y,, ¥,) being a binomial, Then @D~ is either irreducible
and non-reciprocal or binomial.

(94) @(#,, y,) can be represented in one of the forms (1), where & e

‘and T, U, ¥, W are monomials in Q[yi, ¥,]- The factors on the
 right hand 51de of (1) are irreducible and non-reciprocal.
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{We have made in comparison to [3] a cerfain permutation of letters
and formulae.)

In the case (92) we have on the right hand side of (87) at most one
irredncible factor. By (83) and (88) the same applies to the canonical
factorization of Kg(w). Since ¢(#) is not reeiprocal, Kg(») # const and
(xii) follows.

In the case (93) in virtue of (91) ¢{z) can be divided into two parts
that have the common factor JD {2, 2™} = d(z) which is either binomial
or constant. We get

g(@)d=" (x) = JQ(&", 2%) D (o™, &),

If g@~* is not a binomial we conclude that D' is not a binomial either.
Tence QD! is frreducible and non-reciprocal. From LQD™ == gD™!
infer by Lemma 11 of [11] that K@D = @¢D™'. Thus by (88)

R(Q{z", a%) D (2t o)) = K (g(a)d (2))

is irredueible. Tt d(z) is reciprocal, Kd{z) - const and we get (xii); if
d(x) is not reciprocal we get (xiii). :

In the case {94) we get from Lemma 11 of [11] that K¢ == Q. The
factorization (87) iz given by the formmulae (1). Taking for F,, F, the
two factors oecurring on the right hand side of (1) we infer from (88) that
KF (2", 22) {g = 1, 2) are irreducible. Now hy {91) to the representation
of @y, y=} In any one of the forms (1) there corresponds a representa-
tion of g(w) in the same form, where %, 7', U, ¥, W are now monomials
in @ (z) and the factors on the right hand side of (1) are F {z°L, ™) (6= 1, 2).
By Lemma, 18 there exists a representation of g{z) in the form in guestion
in which & = (a4, 61, 0y, @) and 7, T, ¥, W are monomials in Z[w].
Since the relevant factors differ from F, (3", #™) (¢ = 1, 2) only by mon-
omial facfors we infer that their kernels are irreducible. This gives (xiv).
It remains to consider the ease » = 1. The change of signs of uy, (1 <4 < 3)

in (87} leads to a replacement of ¥, (y,) by JF,(y7") but does not affect

the implication (87)—(88). Therefore, changing the signs of u,; if necessary
wé can assume that » = v, > 0. Hence by (90)
(93) 0 < o3y < ¥y9 < Mg
By (79), (85) and (93) we have
Io
¥ = Max W:Ji g Eq“
Lgics lo

Vow by (82) and-(79) -

5 exp (300 quu 2 [Qol"Y1G0M+)

1Qoll = llgll,

. 1
007 < 101 < 2max)ay 1 <8 T2 ML 11 < 1510g)g)

Li g2
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and we get
v13 << 1210g |lg]lexp (500 ig|* (26 log flgity =+
< exp {600 ] (26 Jog g™ ¥} < exp, (12 - 2'%log gy
Let us sef vy =2 (1 “<*_j < 3).-By (90) we haye

%jmfvvj (1\<__j§<\3)
By (82) and (89)

3
TQolyin yit) = J (ag+ 3 o).
j=1

The last assertion of (xiv) follows now from the implication (87)-(88).
To estimate .Q(Kq(w)) we use Corollary to Lemma 1, Theorem 3
and Lemma 17. We get :

g i logligl ~ logag
Q(Eq(r)) < 2(Lg(@) + 24 ({20, 2)} < zlgl | logag

2logd,  2log?2

1 B P
< = logjigi .
(Zlogﬂ-o * 210g2) sl

Proof of Corollary 4 does not dlffer from the proof of Corollary -
in [3] ‘We note only that if :

ao"l" 2(} srif(tiy s, itg) 07 :5 = 1

i=1

then q(m) is indeed redueible sinee none of the cyclotomic poh nomials
of index d (di6) is a quadrinomial.

Note eomcerning the paper [11]
On p. 133 the writer considered the system of equations
N . .
By = @y Ry = Oy Ky % g Jads ey Gy Jay)
(96) : .
wjp_mip""‘ Zcpqu =0 (1'€P %Pa)
=1

satisfied by distinet mtegers #z; (0<i< 1) and y, (L< g k), where
0 <o < ... <. Here gy are integers and gy gor 7 (z, i

The nl&trlx of the system obfained from (96) by cancelling the first
equation and substituting », = 0 in the others hag heen denoted by A, the
matrix of the resuliing coefficients of the a’s by B and of the y's by —I.
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4 has been a nonsingular submatrix of B of degres 1 confaining
a row [0,...,0,1], and K’ a matrix formed of determinants obtained
from 4 by replacing one coliumn by a colmmn of I'. Tt has been stated

that bv Hadamard's inequality ¢
;B - 2 gl
(97) D)< 2L (K < (max {e2, 2} 4+ 2)

where D = detd, k(K’) is the maximum of the absolute values of the

elements of K’ and |e,| < ¢
Now it may happen, although not simultanecusly, that j = g, or

4 = hy; and then Hadamard’s inequality gives only

2

Nevertheless the inequalities (97) are valid in virtue of the following
inequality true for determinants with real entries (see [171):

. k )
(99) idet(a); j.cnl < ” Max ( Z tyy — Z a,fj).
=t aij;-a a;;<

In the cage of D = det 4 all the factors on the right hand side of
{99) are at most 2 and one of them corresponding to the distinguished
row is 1. '

Tn the case of h(K') the difference between (97) and. (98) ccours
only if ¢ < 2. Buti then |e,,] < 1 and the application of (99) gives & (K') < al,

“Le. again (97).

Note added in proof. Very recently E. Dobrowolski has proved the following
improvement of Blanksby-Montgomery’s theorem.
If o) are conjugates of an algebraic integer a different from 0 and roots of unity then

{ 3
H ] = -Iﬂ(bgl_ogﬂ_), Y
logn

[u(j);.‘n-l

This result allows one to improve the estimates given in Lemyma 1 and Theorem:

1 and in particular to obtain
‘ Nog e[B) < (|EF ol FV (log 21K F| +-log i T3,

Here neither the exponent 13 nor the exponent 2/3 can be lowered.
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Corvections to [3], [11], [13] amd {14]

. 166 line 14 for (2) read (3)

r

p. 168 line —14 for g{z) read g¢(x)

p. 169 line 8 for LF,(z", x™) read LF,; ("L, 5")
p. 170 line —4 for aepA®t™—F road eepihtm—r
in addition to those given in 18]

. 124 line —11 for Fy(2¥)% read JF,(a%)a

. 127 line —2 for Mongomery read Montgomery

. 134 line 6 for A read 4

. 136 line —3 for F(z"1, ..., 2%%) read JF{a", ..., 2"k)
. 1837 line 2 for fiz) read fla—1)

158 line 15 for 10 read 18

=g g

49 line 10 for F read an irreducible ¥
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{1431 p.
p- 5 line

line 8 for puyg.

A Bechinzel

2 Yne —3 for xp read oy
5 for pe vead pag

aeas B read Hagy oo~y M2f
-t 21-1

p. 8 line —13 for Y read §

1#1 j= L

line mlﬂ for m— 2 read twice m— 1

line -7

Hne --6

for]fllea.d]<l
i—1
for E,‘g = 0 read X5y =
i=1 j= =1
for [0,...,0,1,0,...,0 —

L0, 0, =10, .., 0]
read {0, ...,0,1,0,...,0,1,0,.

. 0 _1= U: 0']
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