

Table des matières du tome C. fascicule 2

		Pages
C.	R. Borges, Direct sums of stratifiable spaces	97-99
ĸ.	P. Podewski and M. Ziegler, Stable graphs	101-10
Р.	Г. Гуревич, Общая точка зрения на 1-дендроиды и теоремы о непод-	
	вижных точках	109-118
H.	Bell, A fixed point theorem for plane homeomorphisms	119-128
R.	Pol. Note on decompositions of metrizable spaces II	129-14
A.	Kanamori, Some combinatorics involving ultrafilters	145-15
	Simon, An example of maximal connected Hausdorff space	
z.	Balogh, Relative compactness and recent common generalizations of metric and	
	locally compact spaces	165-17

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Théorie Descriptive des Ensembles, Algèbre Abstraite

Chaque volume paraît en 3 fascicules

Adresse de la Rédaction:

FUNDAMENTA MATHEMATICAE. Śniadeckich 8, 00-950 Warszawa (Pologne)

Adresse de l'Échange:

INSTITUT MATHÉMATIQUE, ACADÉMIE POLONAISE DES SCIENCES Śniadeckich 8, 00-950 Warszawa (Pologne)

Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa (Pologne)

Correspondence concerning editorial work and manuscripts should be addressed to: FUNDAMENTA MATHEMATICAE, Sniadeckich 8, 00-950 Warszawa (Poland)

Correspondence concerning exchange should be addressed to: INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, Exchange Śniadeckich 8, 00-950 Warszawa (Poland)

The Fundamenta Mathematicae are available at your bookseller or at ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa (Poland)

© Copyright by Państwowe Wydawnictwo Naukowe, Warszawa, 1978

DRUKARNIA UNIWERSYTETU JAGIELLOŃSKIEGO W KRAKOWIE

Direct sums of stratifiable spaces

h

Carlos R. Borges (Davis, Cal.)

Abstract. We prove that any direct sum of stratifiable spaces, with the box topology, is stratifiable. This answers a question of E. K. van Douwen.

Our main task is to prove that a direct sum of stratifiable spaces, with the box topology, is stratifiable. This answers a recent question of E. K. van Douwen [2].

1. Introduction. If $\{X_{\alpha}\}_{\alpha\in A}$ is a family of spaces, we let $X=\prod_{\alpha\in A}X_{\alpha}$. For each cardinal m, we let P(m) be the topology on X for which the set $\{\prod_{\alpha\in A}U_{\alpha}|U_{\alpha}\text{ is open in }X_{\alpha}\text{ and card}(\{\alpha|U_{\alpha}\neq X_{\alpha}\})< m\}$ is a base. We let X(m) denote X with the topology P(m). In case m> card Λ , we denote P(m) and X(m) by $P(\infty)$ and $X(\infty)$, respectively. Clearly $P(\mathbf{x}_0)$ is the Tychonoff product topology and $P(\infty)$ is the box product topology.

For each $p \in X$, let $\Sigma_p = \{x \in X | x_\alpha \neq P_\alpha \text{ for at most finitely many } \alpha\}$. Let $\Sigma_p(m)$ denote Σ_n as a subspace of X(m).

Recently M. E. Rudin [4] proved that, assuming the continuum hypothesis, the box product of countably many σ -compact metrizable spaces is paracompact. Subsequently, E. K. van Douwen [2] proved that the box product of countably many copies of the *irrationals* is not a normal space, while $\Sigma_p(\infty)$ is stratifiable for any family of metrizable spaces.

2. The main result. Before answering E. K. van Douwen's question, we need a new characterization of stratifiable spaces, which generalizes the concept of Nagata spaces of Ceder [1].

LEMMA 2.1. A T_1 -space X is a stratifiable space if and only if to each $x \in X$ one can assign neighborhood bases $\{S_{anx}\}$, $\{U_{anx}\}$ where α runs over a set D_x which satisfy

- (i) $S_{\alpha nx} \cap S_{\beta ny} \neq \emptyset \Rightarrow x \in U_{\beta ny} \text{ and } y \in U_{\alpha nx}$,
- (ii) $U_{\alpha nx} \supset U_{\alpha(n+1)x}$, $S_{\alpha nx} \supset S_{\alpha(n+1)x}$, for each n and $x \in X$.

Proof. The "only if" part: For each $x \in X$, let $\mathcal{N}_x = \{N_{ax}\}_{a \in D_x}$ be a neighborhood base for x. Also, let $U \rightarrow \{U_x\}$ be an increasing stratification for X. Then, let

$$U_{mx} = \bigcap \{ V | V \text{ is open and } N_{\alpha x} \subset V_n \},$$

1 - Fundamenta Mathematicae. t. C

 $S'_{\alpha nx} = \bigcap \{V_n | N_{\alpha x} \subset V_n\} - \bigcup \{U_n | x \notin U, U \text{ is open}\}, S_{\alpha nx} = \bigcap_{k=1}^n S'_{\alpha kx}, \text{ for each } n. \text{ It is clear that each } S_{\alpha nx} \subset S'_{\alpha nx} \subset U_{\alpha nx}, S_{\alpha nx} \supset S_{\alpha(n+1)x} \text{ and } U_{\alpha nx} \supset U_{\alpha(n+1)x} \text{ for each } \alpha \in D_x \text{ and } n. \text{ (It is not necessarily true that } S'_{\alpha nx} \supset S'_{\alpha(n+1)x}.)$

It is also clear that $x \in (S'_{anx})^0$, and therefore $x \in S^0_{anx}$, for each $\alpha \in D_x$ and n, because the U_n 's are cushioned in the U's. This makes it easy to show that $\{S_{anx}\}$ and $\{U_{anx}\}$ are neighborhood bases of each $x \in X$: Let $x \in W$, with W open. Now pick $N_{ax} \subset \text{some } W_n$. Then $x \in U_{anx} \subset W$, which does the trick.

Next we show that the neighborhood bases $\{S_{anx}\}$, $\{U_{anx}\}$ satisfy condition (i): Say $y \notin U_{anx}$. Then there exists open V such that $N_{ax} \subset V_n$ but $y \notin V$. Then $S'_{anx} \subset V_n \subset \bigcup \{U_n | y \notin U, U \text{ is open}\}$ and therefore $S_{anx} \cap S_{\beta ny} = \emptyset$, for all $\beta \in D_y$, (since $S'_{anx} \cap S'_{\beta ny} = \emptyset$). The "only if" part is thus proved.

The "if" part: For each open $U \subset X$ and n, let $U_n = \bigcup \{S_{\alpha nx} | x \in U \text{ and } U_{\alpha nx} \subset U\}$. It is easy to see that $U \to \{U_n\}$ is a stratification of X, which completes the proof.

We will also need another characterization of stratifiable spaces, which is due to R. Heath [3]:

Lemma 2.2. A T_1 -space X is stratifiable if and only if there is a function $g: X \times N \to \{\text{open subsets of } X\}$ such that (a) $x \in g(x, n)$, for n = 1, 2, ..., and (b) given any closed subset M of X and any point $q \in X - M$, there exists $n \in N$ such that $q \notin (\bigcup \{g(x, n) | x \in M\})^-$.

THEOREM 2.2. If $\{X_v\}_{v\in A}$ is a family of stratifiable spaces, then $\Sigma_p(\infty)$ is a stratifiable space, for each $p\in\prod_{v\in A}X_v$.

Proof. For each $x \in \Sigma_p$, let $A(x) = \{v \in A \mid p_v \neq x_v\}$ and pick positive integer n(x) such that $p_v \notin \text{some } U_{\beta_v n(x) x_v}$, for each $v \in A(x)$. Then, for each positive integer n, let $g(x, n) = \Sigma_p \cap \prod_{v \in A} S_{\beta_v (n(x) + n) x_v}$ with $p_v \notin U_{\beta_v (n(x) + n) x_v}$ for $v \in A(x)$ and $S_{\beta_v (n(x) + n) x_v}$ being arbitrarily chosen for each $v \notin A(x)$.

Clearly $\{g(x,n)\}$ is a sequence of neighborhoods of x, for each $x \in X$. We will now show that, given $x = (x_v) \notin \prod_{v \in A} U_{\mu_v n_v q_v}$, with $q = (q_v)$ and $n \ge \max\{n_v | v \in A(q)\}$, then $\prod_{v \in A} S_{\mu_v n_v q_v} \cap g(x,n) = \emptyset$ (note that this is equivalent to showing that the second condition of Lemma 2.2 is satisfied): Clearly some $x_\gamma \notin U_{\mu_\gamma n_\gamma q_\gamma}$. We consider two cases.

Case 1. $\gamma \in A(q)$. If $z \in \prod_{\alpha \in A} S_{\mu_{\alpha} n_{\alpha} q_{\alpha}} \cap g(x, n)$ then $S_{\mu_{\gamma} n_{\gamma} q_{\gamma}} \cap S_{\beta_{\gamma} n_{\gamma}} \neq \emptyset$ which implies that $S_{\mu_{\gamma} n_{\gamma} q_{\gamma}} \cap S_{\beta_{\gamma} n_{\gamma} x_{\gamma}} \neq \emptyset$, because $n \ge n_{\gamma}$, which implies that $x_{\gamma} \in U_{\mu_{\gamma} n_{\gamma} q_{\gamma}}$, a contradiction.

Case 2. $\gamma \notin A(q)$. Then $\gamma \in A(x)$, since $q_{\gamma} = p_{\gamma}$ and $x_{\gamma} \neq q_{\gamma}$. Therefore $z \in \prod_{\alpha \in A} S_{\mu_{\alpha}n_{\alpha}q_{\alpha}} \cap g(x, n)$ implies that $S_{\mu_{\gamma}n_{\gamma}p_{\gamma}} \cap S_{\beta_{\gamma}nx_{\gamma}} \neq \emptyset$ which implies that $x_{\gamma} \in U_{\mu_{\gamma}n_{\gamma}p_{\gamma}}$ or $p_{\gamma} \in U_{\beta_{\gamma}nx_{\gamma}}$ (this follows easily from Lemma 2.1(a), since either $n_{\gamma} \geqslant n$ or $n \geqslant n_{\gamma}$). But $p_{\gamma} \notin U_{\beta_{\gamma}nx_{\gamma}}$ by the definition of g(x, n). Therefore $x_{\gamma} \in U_{\mu_{\gamma}n_{\gamma}p_{\gamma}}$, a contradiction. Because of Lemma 2.2, the proof is complete.

3. Concluding remarks. It is quite easily seen that $\Sigma_p(\aleph_0)$ is stratifiable if and only if Σ_p is a direct sum of countably many stratifiable spaces (clearly, if $X = \prod_{\alpha \in A} X_\alpha$ is a product of uncountably many spaces then each point of $\Sigma_p(\aleph_0)$ is not a G_δ -subset of $\Sigma_p(\aleph_0)$). Indeed, the preceding argument shows that $\Sigma_p(m)$ is not stratifiable whenever Σ_p is a direct sum of a collection $\mathscr C$ of spaces with card $\mathscr C > m \geqslant \aleph_0$, or card $\mathscr C \geqslant m \geqslant \aleph_0$.

References

- [1] J. G. Ceder. Some generalizations of metric spaces, Pacific J. Math. 11 (1961), pp. 105-126.
- E. K. van Douwen, The box product of countably many metrizable spaces need not be normal, Fund. Math., to appear.
- [3] R. W. Heath, An easier proof that a certain countable space is not stratifiable, Proc. Washington State University Gen. Topology Conf. 1970.
- [4] M. E. Rudin, The box product of countably many compact metric spaces, J. Gen. Topology and Appl. 2 (1972), pp. 293-298.

UNIVERSITY OF CALIFORNIA, Davis, California

Accepté par la Rédaction le 31. 1. 1976