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Note on decompositions of metrizable spaces II
by

Roman Pol (Warszawa)

Abstract. This paper is a continuation of the author’s paper [16]. - We improve some results
from [16] and investigate the special decompositions of metrizable spaces introduced in [16] which
establish close relations between A. H. Stone’s [20] property ocLw(<t) and stationary sets of ordi~
nals. On this ground we construct decompositions of Baire spaces B(f) which yield results on absolu~
tely t-analytic spaces (considered by A. H. Stone [19]) and give, under an additional set theoretic
axiom, the negative answer to a question raised in [16]. Connections between these topics and
non-separable theory of Borel sets are also investigated.

This paper is a continuation of our paper [16]. In the first section we prove
a theorem on o-discrete reduction which' improves a result from [16] and
a proposition on completely additive-Borel families which extends an important
R. W. Hansell’s theorem [9]; these results together give a reduction theorem in
non-separable theory of Borel sets which yields a selection theorem.

In the second section we investigate the special decompositions of metnzable
spaces introduced in [16] (we call them “natural”) which allow to establish close
relations between oLw(<t) property (considered by A.H, Stone. [20]) and the
notion of stationary sets of ordinals and we consider the class of mappings preserving
o-discretness which is closely related to these topics.

In the third section we apply some of results of Section 2 to obtain special de-
compositions of B(f) (i.e. the countable product of discrete spaces of cardinality t)
which generalize the classical F. Bernstein’s decompositions of irrationals B(so)
into totally imperfect sets. These decompositions yield a theorem on absolutely
t-analytic spaces (introduced by A. H. Stone [19]) and, under an additional set theor-
etic axiom, provide an example which settles a problem raised by the author in [16].

The author wishes to thank W. G. Fleissner for the first draft of his paper [6]
from which the author has learned the axiom E(w,) and some related ideas used in
Section 3.5.

Notation and terminology. Our topological terminology follows [3] and [12];
set theoretic terminology is taken from [13] — with the only exception — a regular
cardinal is always understanding to be uncountable. By a space we shall mean in this
Dpaper always a metrizable space. Given a space X we denote by ¢ a metric agreeing
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with the topology on X and we write K(4,8) = {xe X: o(x, A)<e}, where AcX
and £>0; the symbol w(X) stands for the weight of X. We say that a family of
sets o is a refinement of a family of sets &, provided that & = U & and for every
A et there exists E e & with 4 cE. Given a family of sets & and a set 4 we denote
by &|A the restriction of & to 4, i.e. the family {En A: E€ &Y}; if & is a disjoint
family, a set S is said to be a selector for & if S contains exactly one element of each
non-empty member of &. Given an ordinal 1 we denote by W (1) the set of all ordinals
less than A with the order topology and the same set with the discrete topology is
denoted by D(2); Lim(4) stands for the set of all limit ordinals less than A and C(4)
is the set of all sequential ordinals from W(A) (.e. C(A) = {{<i: of(§) = oD).
A subset § of the space W(J) is said to be stationary (in W(2)) if S intersects each
closed cofinal subset of W(1); the reader is referred to {11] for basic properties of
stationary sets. Given a cardinal t we denote by B(t) the product of countably many
copies of the discrete space of cardinality t(B(t) is called Baire space of weight t;
see [19; Sec. 2]). A space is said to be of o-local weight less than 1 (abbreviated
oLw(<t)) if X is the union of countably many sets of local weight <1; this notion
was introduced and investigated by A. H. Stone [20] (cf. also [16]). Finally, w(t)
denote the initial ordinal of cardinality t and N stand for the set of natural numbers.

1. The theorem on o-discrete reduction and completely additive-Borel families.

1.1. Given a family & of subsets of a space X, a set 4 is said to be &-discrete
if for every a e A there exists a set E, e & with 4 n E, = {a}.

DEFINITION. A family & of subsets of a space X is said to be weakly discrete,
provided that every £-discrete set is o-discrete.

Weak discretness of a disjoint family & means exactly that each selector for & is
o-discrete. .

Remark. Let us notice that if a disjoint and weakly discrete family & consists
of o-discrete sets, then the union |J& is o-discrete; this is a particular case of
[16; Theorem 2] but it can be easily verified directly.

The following theorem improves [16; Remark 2] (for t = 8).

THEOREM (On o-discrete reduction). Every weakly discrete point-countable
covering & of a space X consisting of sets of weight <, has a o-discrete refinement.

Proof. Let & = {E;: ¢{<v},

(1.1.1) As=ENUE, and K= {¢<y: A:#0}.

a<§
The family o = {4, ¢ e K}isarefinement of the family #; we shall show that &
has a g-discrete refinement. To this purpose it is enough to verify, by virtue of
[16; Remark 2] (where t = §,), that each selector for o is o-discrete. Assume on
the contrary that there exists a selector for </

112 S={a;ed;: £k}
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which is not o-discrete. For every {<y let us put $(¢) = {a,: ac K n W)} and
let (notice that S = S(y))

(1.1.3) 7 = min{¢: §(¢) is not s-discrete} .

Let A = oy (see [13]); by the definition of 7 we have cf(7)>0 and thus 1 is
a regular ordinal.

We shall prove that if ¢: L—K, where L= W(J4), is a strictly increasing function
with lime () = <, then the set

ael

(1.1.4) T={a; éeq(L)} is o-discrete.

Given £ e K let us put

(1.1.5) K ={n<r: a;eE}.

The set K(&) is countable, as the family & is point-countable; by regularity of 4 and
the properties of the function ¢ one can define a strictly increasing and continuous
function p: W(A)—W(z) satisfying the conditions

(1.1.6) #0) =0, lmpuw)=r,
a<i

ple+1)>sup[U {K(&): Eeo(L) n W(u@)}].

The function p splits the set T into ¢-discrete sets
T, = {ag: Ee oLy n (@, pl+D)}=S(n@+1));

to end the proof of (1.1.4) it is enough to verify by Remark that each selector for the
decomposition {T,: a<A} is o-discrete. Let us choose, for every non-empty T,,
a point g,y € T, (thus () < (@) <p(x+1)) and let W be the selector obtained in
this way. Let Wy = {a,,y € W: « is even} and W; = {a,q, € W: o is odd}. We shall
show that each of the sets W,, W, is &-discrete and thus — by our assumption —
o-discrete. To this end let 4, and a,, be points of W; with ¢ () <¢(B) (equiva-
lently — o< f). By (1.1.1) we have dyq) € Eyqy and @y € Eyp\Ey . Moreover,
we have (@ <p(e@+1)<ple+2)<p(B)<ef) and by (1.1.6) it follows that
¢(B)>sup K (¢ (c))) which gives, accordingly to (1.1.5), @) & Eqsy- Hence, choosing
for every a,q, € W; the set Eyw € & we obtain W; 0 Epqy = {a,¢}. This completes
the proof of (1.1.4). ’

Now, let us choose a strictly increasing continuous function v: W(A)—W()
sfich that v(0) = 0 and limv(x) = . Let us consider the decomposition of the set

a<i

S(z) into o-discrete sets )
L= {ag Ee K (@, v@+D)eSHh@+1).

Let T be a selector for the decomposition {S,: a<A}. Let us put L = {a: S,#J}
and let us choose for every aeL an ordinal ¢(x)e XK n [v(x), v(g+1)) with
3*
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S, N T = {a,y}. The function ¢: L—K is strictly increasing and lime () = 1.

asL
By virtue of (1.1.4) we infer that the set T = {a, : a € ¢(L)} is o-discrete. Using
Remark ones again we conclude that the set S(7) is o-discrete, contrary to (1.1.3).
This proves that the set (1.1.2) is o-discrete and completes the proof.

1.2. A family o of subsets of a space X is completely additive-Borel (respect-
ively — analytic) provided that the union () & of each family &<« is a Borel set
(respectively — analytic set) in X. These notions were introduced by R. W. Hansell [9],
where the deep theorem is proved that every disjoint completely additive-analytic
family in a complete space has a o-discrete refinement. We shall establish a result
which reinforces the Hansell’s theorem (see Remark; for another extensions of this
theorem see [14]). Our proof will be a version of the reasons used in the proof of
Theorem 1 in [14] which are closely related to the original Hansell’s idea.

PROPOSITION. Let o be a completely additive-Borel family of subsets of a com-
plete space X. For every Aesf let us put A* = AN {Besl: B£A}; then the
Jamily of* = {A*:. Aesl} has a o-discrete refinement.

Remark. The proof given bellow uses in fact the weaker assumption that for
every & <./ the union {J & and its complement X\ {J & are analytic in X (i.e. the
set |J & is an extended Borel set in the sense of Hansell [10]). Under this assumption
Proposition improves Hansell’s Theorem 2 from [9].

Proof. We shall use the following notation: D stands for the two-point space

{0, 1}; for every finite or infinite sequence s = (i, i,,
sln = (iy, ..., iy); given a finite sequence s = (i, ...
Ssm o= (i, .., iy, m) (cf. [13, Ch. XI, §5]).

Let M = PX,; be the countable product where X,

..y and an ne N we write
,i,) and an me N we write

=X and X, =N for
i31; let ¢; be a complete metric on X; and let ¢ = }2 'min(g;, 1) be the complete
metric on M. Fix a point ae NV, let
('1.2.:1) My ={(x)eM: x; = a tor i>k},
(we identify X with M,) and let p,: M— M, stands for the projection. For every
S cof we put
(12.2) L&) = UA U\ .

- 'We argue indirectly supposing that the family & has not any o-discrete refine-

ment. For every k e N and s € D* we define inductively a family o, .o and a closed
set- Fyc M, satisfying the following conditions:

(1.2.3) AUy =sf, and Ay =0,
(1.2.4) FynFy =0,

(1.2.5) PF,)cF, and- diamF,<27%  whenever seD¥,
(1.2.6) PoF)=L{s,),

(1'2 7) the famﬂy {po 1(A*) A e} F, has not any o-discrete refinement,

icm°®
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Since the construction differs from the construction given in the proof of Theorem 1
in [14] only in minor details — we omit it.
Let us put

(1.2.8) Z=U N pi*Fge) -
seDN k

Using (1.2.4) and (1.2.5) one can easily verify that assigning to each sequence s € D¥
the unique point z, of the intersection () pg 1(Fs|k) we define a homeomorphism of
k

the Cantor space D" onto Z. Let x, = py(z) and

(12.9) PoZ) = {x;: se D"} = C
For every ke N and se D" we have by (1.2.6)
(1.2.10) X e L(lyy) .

Let us choose for every se DV a set 4, e/ with
(1.2.11) x, €A,

From (1.2.10) and (1.2.2) we infer that

(1.2.12) A e Q A

Given two distinct sequences s, € DY there is an k e N with t|k#s|k and hence,
by (1.2.10), (1.2.3) and (1.2.12) we have x,¢ | &y, i.e.

(1.2.13) x,¢d, if st

This implies, by (1.2.11), that x,#x, for distinct s and ¢, and hence the set C is of
cardinality 2*°; using again (1.2.11) and (1.2.13) we infer that every set

{x;: se EcD"} = Cn U {4,: se E}
is a Borel set in C. Both of these facts together give a contradiction which
completes the proof.
COROLLARY. Every completely addttwe-Borel Sfamily & of subsets of a complete
space X is weakly discrete.

Proof. Let 4 be an &-discrete set, choose for every ae 4 a set E, with
AN E, = {a} and letus put o = {E,: aec 4}. The set 4 is a selector for the fam-
ily «#* defined in the proposition and hence A is o-discrete by this proposition.

1.3. THEOREM. Every completely additive-Borel, point-countable family consisting
of subsets of weight <%, of a complete space X has u o-discrete refinement.

Proof. This follows immediately from Theorem 1.1 and Corollary 1.2.

The above theorem yields a result on Borel selectors; to establish this result
let us recall a few notions: given a space Y we denote by 2" the family of all non-
empty closed subsets of ¥; a function F: X- 27 is of class o« if the set

{x: F(x) n U#0}
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is of additive Borel class o whenever U is an open set; a selector for a function : |
F: X-2" is a function f: X— Y with f(x) € F(x) for xe X. l

COROLLARY. Let X be a complete space of weight <xy and let Y be an arbitrary
complete space. Then every function F: X—2¥ of class a>0 with separable values F(x)
admits a selector, Borel measurable of class o.

The proof of this result is quite parallel to that given in [14; Sec. 3] and hence
we omit it; the reader is also referred to [14] for related results and discussion.

The author does not know whether the weight restriction on X in the -theorem
and the corollary is necessary.

Remark. W. G. Fleissner [5] proved a deep theorem of set theory which
implies that under the Gdel Axiom of Constructibility (V = L) every non-o-~discrete
space X contains a subset which is not an F-set in X (see [17; VIIX (5)]). On the
ground of this result and Theorem 1.1 we obtain the following statement.

Assume (V = L) and let & be a point-countable covering of a space X consisting
of sets of weight <. If the union of every subfamily of the family & is an F,-set
in X, then & has a o-discrete refinement.

Indeed, the Fleissner’s result yields that the family & is weakly discrete. Let us
notice that the above statement is independent of the usual axioms for set theory
(see [17;IV (3)]); the author does not know whether the weight restriction is essential.

1.4. ExaMPLE. Let Fjc...cFec..cB(K,), where £ <wy, be closed, separable
subspaces of B(x,). The family & = {F,i {<w,} is weakly discrete and the union
of every subfamily of & is an F,-set in B(s,). However there is no o-discrete refine-
ment of the family &, as the space B(s,) is not sLw(<#,) (see [20]). This shows
that the assumption of point-countability in the theorems of this section was necessary.
We shall show in Example 3.5 that the weight restriction in Theorem 1.1 was necessary
too.

2. Natural decompositions of spaces and o-discretness preserving mappings.

2.1. Let X be a space of a regular weight t, let 1 = w(f) be the initial ordinal
of cardinality t and let {X}: £<1} be a sequence of closed subsets of the space X
satisfying the following conditions (cf. [16; (3)-(6)]):

211 Xic..cXic..cX and w(X)<wX) for ¢<A,
(2.1.2) X=UX;, and X,= X, whenever ¢&eLim(l).
E<A

x<g
Let us put
2.1.3) P = {P;: E<l} where P=XN\ UX,,
a<é
214 I'(#?) = {{ eLim(}): P:#0) .

Any such a decomposition & we shall call a natural decomposition of the space X
(related to the family {X,: £<2}). Evidently, each space X of regular weight t has
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many natural decompositions (see [16]); however, every two natural decompositions
of X coincide apart from a set which is ¢ Lw(<t), as it will be shown in Corollary 2.3.

The notation introduced in this subsection will be used throughout the whole
Section 2. ‘

2.2, Let us adopt the notation introduced in the previous subsection. Let, for
simplicity, I' stand for I'(#). For every K< W(J) we write

(2.2.1) X(K) = U{Ps: ek},
(2.2.2) &(K) = {Pg £eT nK}.

The following theorem slightly improves Theorem 1 in [16] and it can be proved
by arguments quite parallel to that given in [16]; therefore we omit this proof.
THEOREM. For every set K< W(X) the following conditions are equivalent:

(@) the set X(K) is cLw(<1),

(i) there exists a selector for &(K) which is oLw(<t),

(iil) the set I' n K is.not stationary in W(1).

CorOLLARY (cf. [16; Remark 5]). Let S be a selector for a natural decompo-
sition P. For every set K= W(X) the following conditions are equivalent:

(@) the set S n X(K) is eLw(<t),

(ii) the set I' n K is not stationary in W(J).

Proof. The set § N X(K) is a selector for the family {P,: ¢ € K} containing the
family &(K). Thus by virtue of the theorem we have the following implications:

(S n X(K) is oLw(<t)) = (there exists a selector for #(K) which is cLw(<1))

= (I' n K is not stationary) = (X(K) is cLw(<t)) = (§ n X(X) is cLw(<t)).

2.3. DerINITION (cf. [16]). A mapping f: X— ¥ is said to be a d-isomorphism
if it is a bijection and both fand f~! take o -discrete sets to o-discrete sets (i.e. ' (4) is
o-discrete iff 4 is o-discrete); if f; X—f (X) < Y is a d-isomorphism, we say that f is
a d-embedding.

LemMA. Let f: X— X' be a d-isomorphism of a space X of a regular weight t onto
a space X' and let @ = [Py E<A} and P’ = {Py: £ <A}, where A = w(t), be natural
decompositions of X and X' respectively, related respectively to families {Xs: £ <2}
and {X;: E<A} (see 2.1). Then the set {£<A: f(Py)#Py} is not stationary in W(A).

Proof. We shall show that each of the sets
{é<A: (PP} and  {E<A: fTHPHEPS
is not stationary; by the symmetry it is enough to verify that the set
(23.1) K= {feLim(d): f(P)¢P;} is not stationary.

Let us define two strictly increasing continuous functions @, ¥: W(1)—W (1)
such that

(23.2) [ Xow S Xy =f Xogrry for E<a.
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For this purpose we put ¢(0) = ¥(0) = 0,
Y(E+1) = min{e>¥(8): fXop<=Xa},
B(E+1) = min{a>S(8): fT Xyn<X,},
and for a limit £ e Lim(J) ’
B(E) = sup{P(): a<t}, W(&) = sup{¥(0): a<i}.
It is easy to verify that l

5

(2.3.3) SPopey =Py U (Xwe+1)\Xu) for every € eLim(l).
Let C be the set of the common fixed points of mappings &, ¥, i.e.

(2.3.4) C={{<d: o) =¢=¥(©®)]).

The set C is closed and cofinal in W(4) (see [13; Ch. VII, § 3)); to prove (2.3.1) it
suffices to show that the set .

(23.5) Cn K =K'is not stationary.

Let us choose for every ¢ € K, using (2.3.1), (2.3.3) and (2.3.4), a point Xz € Py such
that f(x)) = a; € Xjes1)\X; and let us consider the sets 4 = {a;: e K’} and
4, = {aye 4: o(a;, X)>1/n}. Since the distance between two distinct points of
each set 4, is at least 1/n and 4 = () 4, we infer that the set 4 is o-discrete. There-

fore the set {x;: £ K’} = f~*(4) is o-discrete and it implies (2.3.5) by Cor-
ollary 2.2.

COROLLARY. Let P = {P;: <A} and ' = {P}: £< )} be natural decompositions
of a space X of regular weight t. Then the set K = {£<A: P:#P;} is not stationary
in W() and there exists a set A which is o Lw(<t).such that 2| (X \N4) = Z'|(X\4).

Proof. The first part of the corollary follows immediately from the lemma,
where f'is the identity on X; for the proof of the second part it is enough to take

d=U{Pgs ek} u U {P;: £k}
and use Theorem 2.2.

PROPOSITION. Let X be a space of regular weight t and let P be a natural de-
comgositiozz of the space X. For every d-embedding f: A—X of a subset A of X into
X the set K = {£<A: f(P; 1 A) &P¢} is viot stationary in W(A).

Remark. Under the assumption of the proposition it follows from Theorem 2.2
that the set |J {Pg: f(P; n A)# Py} is oLw(<t).

Proof. First, let us assume that 4 = X and let X’ = f(d). Let {Xe: &<}
be the family of sets designating the natural decomposition 2 (see 2.1) and let
P = {P;: £ <2} be the natural decomposition of the space X related to the family

{X& <A} defined by X4y = Xpuy 0 X' and X = U X, 0 X' for &e Lim(A).
a<é
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It is easy to verify (cf. 2.1) that
(2.3.6) P;=P, whenever ¢eLim(l).

From the lemma we infer that the set L = {¢<A: f(P;)#P;} is not stationary, and
since by (2.3.6) we have K n Lim (1) = L, we conclude that the set K is not stationary.
The case of arbitrary 4 we shall derive from the case just considered by means of the
following remark (which requires only the assumption that f is invertible):

(2.3.7) there exists a disjoint decomposition 4 = C, U C; U .. such that
F(Co)=Cy and f(Cipy) N Ciyy = @ for i20.

To prove (2.3.7) we define Ay = 4, Ayyy =F"(4; nF(4)) and put Cp = [} 4;
i

and Ci+1 = Ai\Ai;('l for i=0.
Now, let us define

X if x¢C,,
f°(x)={f(x) if xecz,

X if x¢ Cirg Vf(Cisa)s
i) = 4 F(x) if xeCiy,
fnl(x) if xef(Ci+y).

The mapping fy is a d-embedding and f;,, are d-isomorphisms defined on the
whole X. By the case considered before each set K; = {é<A: fi(Po & P;} is not
stationary. Since 4 = () C; we have

i

F@snd) = Uf (e €)= USfilPen CO= U,
and hence K< [J K; which completes the proof.

2.4. A space X is chaotic (see [15]) if no two non-empty disjoint open sets are
homeomorphic; we say that X is d-chaotic if we can replace homeomorphism by
d-isomorphism in this definition. For results about chaotic spaces the reader is
referred to [15]; let us notice that E. S. Berney [1] proved that the real line contains,
u’nder the continuum hypothesis, a chaotic space.

COROLLARY. Every space X of regular weight t which is not e Liw(<t) contains
a subspace Z of cardinality t such that every d-embedding f: U~Z of an open non-
empty subspace U of Z into Z has a fixed point; in particular the space Z is chactic and
even d-chaotic.

Proof. Let & = {P;: £<A}, where A = o(t), be a natural decomposition of
the space X, let I' = I'(#) (see 2.1) and let E = {x,e P,: £ eI} be a subselector
for #. By Theorem 2.2 the space E is not cLw(<1); let Z be the nowhere s Lw(<1)
kernel of the space E defined by A. H. Stone [20;.2.2. (1)]. Thus

(2.4.1) the space Z is non-empty and no non-empty subset of Z is cLw(<1).
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Let us take a non-empty open subset U of Z. By Corollary 2.2 (where S = E) it
follows that the set

(24.2) K ={fel: x,e U} is stationary.

Given a d-embedding f: U~-Z the set L = {£<: f(Ps 0 U) &P} is not stationary
by Proposition 2.3 and hence there exists an ordinal £ e K\L; thus

fx) =fPen U)cP:nZ = {x},
Le. f(x) = x.

Remark. Using Corollary one can easily construct, for a given regular car-
dinal t, a family & consisting of 2t spaces such that no member of & can be d-em-
bedded in any other member of &.

3. Decompositions of Baire spaces B(t) and absolutely t-analytic spaces.

3.1. Throughout Section 3 we shall use the following notation. For any ordi-
nal & let

(.11 B(®) = D(®)",

i.e. B(¢) is the Baire space of sequences of ordinals less than ¢, let

(3.1.2) By = B(ONU B(®)
a<§

and let for every set of ordinals X
(3.1.3) B(K) = U {Bs: £eK}.

,We shall identify the space B(t) with the Baire space of sequences of ordinals less
than o(1), ie.

(3.1.4) B() = B(J) where 1= o).

Tt is easy to see that # = {B,: é<J} is a natural decomposition of the space B(t)
(see [16; Example]) and (see (2.1.4)

(3.1.5) r@=cw.

3.2. LEMMA. Let A = w(t), where t is a regular cardinal, and let K<=C(l) be
a stationary set; then the space B(K) intersects each subspace of the space B(J) homeo~
morphic (in fact — d-isomorphic) to the space B(2).

Proof. Let f: B(4)~E be a d-isomorphism onto a subspace E of the space B(1).
Accordingly to Proposition 2.3 (where 4 = B(1) = X) the set

L= {¢<1:’ F(B)EB}=CA)

is not stationary and therefore there exists an ordinal £ e K\L. We have then
En B(K)>f(Bg) 0 By = f(By) and f(B,)#@ by (3.1.5).

3..3. DepivTioN. We say that a space X is totally t-imperfect if X does not
contain topologically the space B(t) (cf. [12; § 40, I)).

~
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THEOREM (On generalized F. Bernstein’s decomposition; cf. [12; § 40, I, Th. 1]).
Baire space B(t) of regular weight t can be split into t disjoint subspaces each of which
has the totally t-imperfect complement.

Proof. By virtue of R. Solovay’s theorem [18; Theorem 9] the stationary
set C(4), where A = o (%), can be split into t disjoint stationary sets K,, «<2. The
family {B(K,): «<A} gives the desired decomposition in view of Lemma 3.2.

Remark 1. Recently, W. G. Fleissner [7] considered independently the decom-
position {B(K,): a<A} used in the above proof for the other purpose; Fleissner
showed that each B(K,) is a Baire space (cf. Lemma 3.2) whereas for a#p
the product B(K,)x B(K,) is of first category.

Remark 2. Let us notice that for some cardinals t the classical proof of the
Bernstein’s theorem (see [13; Ch. VIL, § 8, 3] and [12]) cannot be applied, even if
we want to have two-element decomposition;; this is the case for example if t = 12%)*.

3.4. A space X is said to be absolutely t-analytic, provided that for some (equiv-
alently — for every) complete space ¥ containing the space X there exists a closed
set F< Y x B(t) which maps onto X under the projection parallel to the second axis.
For the properties of absolutely t-analytic sets the reader is referred to [19; Sec. 8]
(see also [2]); for t = x, we have the classical notion of absolutely analytic spaces.
In the sequel we shall need the following result which is contained implicite in the
proof of Theorem 4 in A. H. Stone’s paper [21] (cf. also [12; § 36)).

LEmMa 1. Let f: B(t*)—X be a continuous mapping into a space X which takes
discrete sets to t-discrete sets and w(f~(x))<t for every x € X’; then the space X con-
tains topologically B(t™). :

LeMMA 2. If an absolutely t-analytic space X is not oLw(<t") then X contains
topologically B(t™).

Proof. It is easy to verify (using arguments parallel to that given in the proof
of Lemma 2 in [14]) that the projection p: ¥ x B(t)— ¥, where ¥ is an arbitrary space,
takes discrete sets to t-discrete sets and it preserves oLw(<t™)-property.

Let Y be a completion of the space X and let F= ¥'x B(t) be a closed set with
p(F) = x. Since X is not cLw(<t*) we infer from the above remark that F is not
oLw(<1") and hence, by A. H. Stone’s theorem [20; 2.2. (2)], F contains a subset B
homeomorphic to B(t*); using the initial remark ones again we infer that the map-
ping f = p| B satisfies the assumption of Lemma 1 and by virtue of this lemma the
proof is completed.

Remark 1. (a) One can prove (by minor modifications of given arguments)
that if X is an absolutely nt-analytic space and X is not o Lw(<n) for a regular car-
dinal w>1m, then X contains topologically B(i); see also [20] and [4].

(b) If t is a sequential cardinal and X is an absolutely t-analytic space which
is not cLw(<1), then X contains topologically B(t) (the proof is similar to that of
Lemma 2). : ’
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(c) Under the assumption that ¥ = t Lemma 2 was proved (by other means)
by M. M. Coban [2; Corollary 11.3] and by R. C. Freiwald [8].

LEMMaA 3. Baire space B(t*) contains a subspace which is not absolutely t-ana-
Iytic.

Proof. Let us consider a disjoint decomposition B(t*) = 4y U 4, into two
totally t*-imperfect sets (see Theorem 3.3). Since the space B(t") is not e Lw(<t*)
(see [20]) either 4, or 4, is not cLw(<t*) and it remains to apply Lemma 2.

THEOREM, If every subspace of a space X is absolutely t-analytic then X is
oLw(<t*).*

Proof. Indeed, in the opposite case the space X would contain, by virtue of
Lemma 2, a space homeomorphic to B(1*) which would contradict however to
Lemma 3.

Remark 2. For t = 8, Theorem gives A. G. Elkin’s result [4].

COROLLARY. Assuming the generalized continuum hypothesis the following state-
ments about a space X are equivalent:

(a) every subspace of X is absolutely t-analytic,

(b) X is t-discrete.

Proof. Obviously (b)=(a). Conversely, if (2) holds then X is sLw(<t™) by
Theorem and (b) follows from A. H. Stone’s result [19; Theorem 24] that Corollary
is true under the additional assumption that w(X)<t.

Remark 3. (a) Our Corollary is closely related to A. H. Stone’s question
raised in [19; 8.5].

(b) Under the assumption that t<i* (if we assume the generalized continuum
hypothesis this is equivalent to the condition that t is a sequential cardinal) Cor-
ollary was proved by M. M. Coban [2; Theorem 13.3] and R. C. Freiwald [8]
(see also [20; 3.4, Remark]); let us notice that our proof differs essentialy from the
proofs given in these papers.

3.5. The aim of this subsection is to construct, under an additional set theoretic
axiom E(w,), a special decomposition of the Baire space B(x,) which settles in the
negative Question 3 raised by the author in [16]. The author learned the axiom
E(w,) and the idea of the proof of lemma bellow from the first version of
W. G. Fleissner’s paper [6]; the reader is also referred to [6] for informations about
consistency of E(w,) and related bibliographic notes.

We shall derive our main result from Lemma 3.2 and some facts about
oLw(<t)-property; the reader is referred to [6; Remark 3.10] for a direct proof.

E(w,) is the assertion that there exists a set Z<C(w,) stationary in W(w,)
such that for every €<w, the intersection X n W(E) is not stationary in W(E).

This assertion is consistent with the usual axioms for set theory. We shall use
in the sequel the notation introduced in subsection 3.1.
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LevMa. If £ witnesses E(w,) and xy € B; for every EeZ then for every o<w,
the set A, = {xg: £€Z, E<a} is o-discrete.

Proof (cf. the proof of 3.1.d in [6]). We proceed by induction relatively to
a<w,. For o = 0 we have 4, = @; let us assume that 4, is o-discrete for a<&<w,.
If & = a+1 then the set Az = 4, is o-discrete; assume that £ e Lim(w,). In this
case there exists a set C= W(¢), a closed and cofinal in W(¢), such that Cn 2 = a.
Let us put ®(e) = sup{fe C: <o} for every ae W(E). We have then

(3.5.1) S()<o for every £eZn W(E).
Let U(x, n) = K(B,, 1/n) and let us put for every ne N and «e W(£)
Ay = ANU(B(@),n) and A, = U {4dm: a<{}.
Using (3.5.1) one can éasily verify that 4, L,_'J A, U {x,}; it remains to prove that

each set A, is o-discrete. Since the open sets U(«, 1), where a <, cover the set 4, it
is enough to verify that each set U(a, #) N 4,, where a<<¢, is o-discrete. Let us fix
an ordinal o< ¢&; there exists y € C n W(¢) with y>e. For every =7y we have then
#(B)zy>0u and hence the set U(x,n) n 4, U {Ag,: B<y}c4, is o-discrete by
the inductive assumption. v .

PROPOSITION, Assuming E(w,) there is a decomposition of B(8z) into 8, disjoint
pieces E,, where a<w,, such that :

() the family & = {E,: a<w,} is weakly discrete (i.e. each selector for & is
o-discrete; see 1.1), ’ k

(i) if U,DE, is open then the intersection N{U,: a<w,} is dense in B(x,);
moreover, the complement of this intersection is cLw(<,).

Proof. Let JcC(w,) witnesses E(w,) and let us split the set X, using
R. Solovay’s theorem, into disjoint stationary sets X, for a<am, (cf. proof of The-
orem 3.3). We assume E, = B(K) fcjr azland E; = B(Nz)\aylE,. If 4, E; for

'S £ < w,, then there exists an ordinal « <, such that {ast<w}cd, (se_e the lemmay),
as a; € B, with ¢’ € K. This proves (i) by the lemma. For the proof of (ii) let us put
F, = B(8;)\U,. The space F, is complete and, by Lemma 3.2, it is totally %,-imper-
fecf; hence each set F, is eLw(<s,), by A. H. Stone’s theorem [20; 2.2 (2)], and
so is the union U {F,: a<w,}, by [16; Proposition]. .

ExAMPLE. Assuming E(w,) there is a weakly discrete, disjoint covering & of
B(x,) which has not any o¢-discrete refinement.

We shall verify that the decomposition & = {E,: w<w,} which we have just
constructed in the proposition has not any ¢-discrete refinement. Assume on the
contrary that & = U&7, is a refinement of & with &, discrete. Let

N n

E,=U{des,: A<E}.
Then E, = | E,, and each family (B, a<w;} is discrete. Lot U,.>E,, be open
n IO . . . N i
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sets such that U,, n Uy, = @ for a#p and let U, = ) {U,,: ne N}. Then U,oE,
and by the proposition (i) there is an x & ()} U,. But then there exists an 7 € N and
a<wy
two distinct indices «, f with x e U, n Uy,, a contradiction.
This example shows that the weight restriction in ‘Theorem 1.1 is essential,
even if we consider only disjoint families.

Remark 1. The elements of the decomposition & in the example are irregular
from the point of view of Borel theory: they are totally x,-imperfect and they are
not open modulo the ideal of sets of first category. It would be interesting to explain
whether a family & satisfying the conditions of the example could consist of absolutely
analytic sets.

Remark 2. In the proof of the proposition and in the proof of Theorem 3.3
we have used only a special case of R. Solovay’s decomposition theorem, namely. we
have applied this theorem to subsets of C(4) with A regular. Using Remark 5 of [16]
(cf. also Corollary 2.2) one can give a simple “topological” proof of this particular
case. Indeed, by this remark it is enough to verify a simple fact that every metrizable
space E which is not ¢Lw(<t) can be split into t-pieces which are not aLw(<t).

Added in proof. 1. The results of preprint [7] (see Remark 1 on p. 127) were included
in a paper of W. G. Fleissner and K. Kunen, Bairely Baire spaces, Fund. Math,

2. W. G. Fleissner constructed in a paper An axiom for nonseparable Borel theory
(preprint) a model for ZFC in which every point-finite and analytic additive family is an
arbitrary space is o-discretely decomposable (cf. the remark on p. 122); see also footnote in
[16] and the remark after Lemma 4.6 in the paper of Fleissner.
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