

An example of maximal connected Hausdorff space

bv

Petr Simon (Praha)

Abstract. An example of maximal connected Hausdorff topology for reals is given.

0. Introduction. A lot of work has been done in the studying of a lattice of topologies over the given set during the last fifteen years (see e.g. [10] for further references). Almost every topological property was discussed from this standpoint of view. In 1968, J. P. Thomas was — as far as the present author knows — the first one, who focused his attention on connected topologies in the paper [14] and who formulated the question: "Does there exist a maximal connected Hausdorff topology on some space other than singleton?"

Various theorems on maximal connected topologies have been proved ([1], [4], [5], [6], [7], [8], [14]), but Thomas' problem still remains unsolved. Some informations were obtained in the opposite direction ("does there exist a non-maximal connected Hausdorff space, having no maximal connected topology finer than the given one?"). It was I. Baggs [1], who gave an example of such a space, a modification of the well-known Roy's space with a dispersion point ([12], [13]); and J. A. Guthrie together with H. E. Stone have described a large class of spaces with this property ([5]).

In 1967-68, P. C. Hammer and W. E. Singletary ([7]) and S. K. Hildebrand ([8]) gave a detailed study of the case of connected topologies for the reals. The above authors have developed extremely useful tools, which enables the present author to claim: A maximal connected Hausdorff topology on an infinite set does exist.

1. Generalities. The notation used here is the standard one, used e.g. in Kelley's book [9]; the topological space is denoted as a pair $\langle X, \mathcal{F} \rangle$, where X is a set, \mathcal{F} is the collection of all open subsets of X. In order to avoid confusions, the symbols $\bar{}$ (closure operator) and $\bar{}$ (interior operator) are replaced by $cl_{\mathcal{F}}$ and $Int_{\mathcal{F}}$, where the subscript denotes the topology in question. If \mathcal{F} is some system of subsets of the given set, then the symbol $\langle \mathcal{F} \rangle$ will denote the smallest topology containing the whole \mathcal{F} . The phrase " $\langle X, \mathcal{F} \rangle$ is the maximal space with the property V" has a commonly accepted meaning (see e.g. [2]) that the space $\langle X, \mathcal{F} \rangle$ has V and, if \mathcal{F}' is another topology properly containing \mathcal{F} , then $\langle X, \mathcal{F}' \rangle$ does not possess V.

Open (resp. closed) intervals of real numbers are denoted by $]\![a, b[\![$ (resp. $[\![a, b]\!]$).

If X is a set, $\mathcal K$ a non-void collection of subsets of X, then a filter $\mathcal U$ on X in $\mathcal K$ is a system which satisfies

- (i) $\emptyset \neq \mathscr{U} \subset \mathscr{K}$,
- (ii) if $k < \omega$ and if $U_1, U_2, ..., U_k \in \mathcal{U}$, then $U_1 \cap U_2 \cap ... \cap U_k \in \mathcal{U}$,
- (iii) if $U \in \mathcal{U}$ and if there is a $U' \in \mathcal{K}$, $U' \supset U$, the $U' \in \mathcal{U}$,
- (iv) Ø ∉ \(\mathscr{U} \).

A filter $\mathscr U$ in $\mathscr K$ is called to be an *ultrafilter* in $\mathscr K$, if no filter in $\mathscr K$ properly contains $\mathscr U$. A filter base in $\mathscr K$ is a collection satisfying (i), (ii) and (iv). Clearly, a filter base $\mathscr B$ in $\mathscr K$ is an ultrafilter base in $\mathscr K$, if for each $K \in \mathscr K$ which meets every member of $\mathscr B$ in a non-void member of $\mathscr K$ there is some $B \in \mathscr B$ with $B \subset K$.

2. Definition. Let $\langle X, \mathcal{G} \rangle$ be a topological space, let \mathcal{H} be a topology on X. We shall call the topology \mathcal{H} to be \mathcal{G} -extremal, if \mathcal{H} is the largest topology satisfying:

⊃g and

for every point $x \in X$ there is a \mathcal{H} -neighborhood base \mathcal{V}_x such that for every \mathcal{G} -component C of the set $X - \{x\}$ the system $\{V \cap \operatorname{Int}_{\mathcal{G}}C | V \in \mathcal{V}_x\}$ is a base of an ultrafilter in \mathcal{G} .

Indeed, such a topology need not exist from various reasons, and if it exists, it need not be connected, even in the case of such "nice" space as a unit square. Despite this, the definition will soon appear to be useful.

Let us mention some straightforward consequences of the definition. If \mathscr{G} -extremal topology exists for some space $\langle X, \mathscr{G} \rangle$, then

- a) if $x \in X$ and if C is a \mathscr{G} -component of $X \{x\}$, then $x \in \operatorname{cl}_{\mathscr{G}}\operatorname{Int}_{\mathscr{G}}C$,
- b) consequently, Int_@ C is non-void and $C \cup \{x\}$ is connected, hence
- c) the space $\langle X, \mathcal{G} \rangle$ is connected as a union of connected subsets with a point x in common

The following lemma is, in fact, known (see [4]), and we list it here only for the sake of completeness.

3. LEMMA. Let $\langle X, \mathcal{G} \rangle$ be a connected space. Denote by $D(\mathcal{G})$ the family of all dense sets in $\langle X, \mathcal{G} \rangle$ and let \mathcal{D} be a filter in $D(\mathcal{G})$. Then the space $\langle X, \langle \mathcal{G} \cup \mathcal{D} \rangle \rangle$ is connected.

The next lemma is simple, too.

4. LEMMA. Let $\langle X, \mathcal{G} \rangle$ be a topological space and let there exist a \mathcal{G} -extremal topology \mathcal{H} on X. Then the set D is dense in $\langle X, \mathcal{H} \rangle$ if and only if D is dense in $\langle X, \mathcal{G} \rangle$.

Proof. By the definition of \mathscr{G} -extremal topology and by the remarks every \mathscr{H} -neighborhood of every point contains a \mathscr{G} -open subset. Thus D is dense in $\langle X, \mathscr{H} \rangle$ if D is dense in $\langle X, \mathscr{G} \rangle$. The reverse implication is an immediate consequence of the inclusion $\mathscr{H} \supset \mathscr{G}$.

5. THEOREM. Let $\langle X, \mathcal{G} \rangle$ be a connected Hausdorff space such that

- (i) every component of $X-\{x\}$ belongs to \mathscr{G} for every point $x \in X$.
- (ii) there exists some connected G-extremal topology on X.

Then there exists a maximal connected Hausdorff topology \mathscr{R} on $X, \mathscr{R} \supset \mathscr{G}$. Proof. Denote, as above, by $D(\mathscr{G})$ the set of all dense subsets of $\langle X, \mathscr{G} \rangle$ and let \mathscr{D} be an ultrafilter in $D(\mathscr{G})$. Let \mathscr{H} be the connected \mathscr{G} -extremal topology. The topology $\mathscr{R} = \langle \mathscr{H} \cup \mathscr{D} \rangle$ has the desired properties.

I. Since $\mathcal{M}\supset\mathcal{H}\supset\mathcal{G}$, the space $\langle X,\mathcal{M}\rangle$ is obviously Hausdorff. According to Lemma 4, $D(\mathcal{G})=D(\mathcal{H})$ and since $\langle X,\mathcal{H}\rangle$ is connected, $\langle X,\mathcal{M}\rangle$ is also connected by Lemma 3.

II. For every $x \in X$ denote by \mathscr{V}_x the neighborhood base of x in $\langle X, \mathscr{H} \rangle$, such that for every \mathscr{G} -component C of $X - \{x\}$, the system $\{V \cap C \mid V \in \mathscr{V}_x\}$ is an ultrafilter base in \mathscr{G} . Denote this base as \mathscr{U}_x^C . Then the following holds:

If $M \subset X$, $M \notin \mathcal{R}$, then there exists a point $x \in M$ and a \mathscr{G} -component C of $X - \{x\}$, such that for every $U \in \mathscr{U}_x^c$ and for every $D \in \mathscr{D}$ the set $(U \cap D) - (M \cap C)$ is non-empty.

Indeed, if for every point $x \in M$ and for every component C of $X - \{x\}$ there is some $D_C \in \mathcal{D}$ and $U_C \in \mathcal{U}_x^c$ with $(U_C \cap D_C) \subset (M \cap C)$, then the set

$$D = \bigcup \{D_C \cap C | C \text{ is a component of } X - \{x\}\}\$$

is obviously dense in $\langle X, \mathscr{G} \rangle$ and meets all members of \mathscr{D} in a dense set; since \mathscr{D} is an ultrafilter in $D(\mathscr{G})$, $D \in \mathscr{D}$. The set $\bigcup \{U_C \cap D \mid C \text{ is a component of } X - \{x\}\} \cup \{x\}$ is an \mathscr{B} -neighborhood of x contained in M, which contradicts the assumption that $M \notin \mathscr{B}$.

III. It remains to prove that \mathcal{R} is maximal connected. In order to show this, let \mathcal{R}' be a topology on X strictly finer than \mathcal{R} . We must find two non-empty disjoint members of \mathcal{R}' which cover X. To this end, pick a set $M \in \mathcal{R}' - \mathcal{R}$ and let x and C be the point of X and the component of $X - \{x\}$ in the topology \mathcal{G} , such that for every $U \in \mathcal{U}_x^C$ and for every $D \in \mathcal{D}$ the set $(U \cap D) - (M \cap C)$ is non-void.

Denote $M^c = M \cap C$ and $B = \bigcup \{C' \mid C' \text{ is a } \mathcal{G}\text{-component of } X - \{x\}, C' \neq C\}$. Notice that both M^c and B are members of \mathcal{R}' . Let A be the union of all $\mathcal{G}\text{-open sets } G$ such that $W \cap D \cap M^c \neq \emptyset$ whenever $D \in \mathcal{D}$, $W \in \mathcal{G}$, $\emptyset \neq W \subset G$.

We claim that A does not contain any member of \mathscr{U}_x^c : Suppose the contrary. Then $(X-A)\cup (M^c\cap A)$ is dense in $\langle X,\mathscr{G}\rangle$ and meets all members of \mathscr{D} in a dense set, thus $(\mathscr{D}$ is an ultrafilter in $D(\mathscr{G})$ $(X-A)\cup (M^c\cap A)\in \mathscr{D}$. Then the obvious inclusion $((X-A)\cup (M^c\cap A))\cap A\subset M^c$ contradicts the statement that $(D\cap U)-M^c$ is non-void for every $U\in\mathscr{U}_x^c$, $D\in\mathscr{D}$.

Thus A contains no member of \mathscr{U}_{x}^{c} , but \mathscr{U}_{x}^{c} is an ultrafilter base in \mathscr{G} and \mathscr{G} is closed under finite intersections, so one can find a set $U_{0} \in \mathscr{U}_{x}^{c}$ with $U_{0} \cap A = \varnothing$.

Let D be an arbitrary member of \mathcal{D} , let $G \in \mathcal{G}$ be an arbitrary subset of U_0 . Since $U_0 \subset X - A$, there is some non-void $W_1 \in \mathcal{G}$, $W_1 \subset G$ and some $D_1 \in \mathcal{D}$ such that $W_1 \cap D_1 \cap M^C = \mathcal{O}$, thus $W_1 \cap D_1 \cap D \cap M^C = \mathcal{O}$. The set $D_1 \cap D$ is

dense in $\langle X, \mathcal{G} \rangle$, so it must meet an open set W_1 . It follows that

$$W_1 \cap D_1 \cap D \cap (X-M^c) \neq \emptyset$$

and consequently $G \cap D \cap (X - M^c) \neq \emptyset$. Hence the set

$$D' = (U_0 \cap (X - M^c)) \cup (X - U_0)$$

is dense in $\langle X, \mathcal{G} \rangle$ and meets all members of \mathcal{D} in a dense set, so it belongs to \mathcal{D} . According to the definition of \mathcal{R} , the set $K = (D' \cap U_0) \cup \{x\} \cup B$ belongs to \mathcal{R} and clearly $K \cap M^C = \emptyset$.

Finally, the set $L = M \cup B$ is open in $\langle X, \mathcal{R}' \rangle$ and the set $K \cap L$ is open in $\langle X, \mathcal{R}' \rangle$, too. But the last intersection equals to $B \cup \{x\}$ and the pair C, $B \cup \{x\}$ is a disjoint open cover of the space $\langle X, \mathcal{R}' \rangle$.

We have proved that the space $\langle X, \mathcal{R}' \rangle$ is not connected. Since this result holds for any topology \mathcal{R}' strictly larger than \mathcal{R} , the space $\langle X, \mathcal{R} \rangle$ is maximal connected.

It remains to show that the assumptions of Theorem 5 can be non-vacuously satisfied, i.e. we must find some Hausdorff space $\langle X, \mathcal{G} \rangle$ such that for every $x \in X$ every component of $X - \{x\}$ is open and which admits some connected \mathcal{G} -extremal topology. It appears that the set of real numbers R is such a space. This will be proved in the following lemma.

6. Lemma. Let \mathcal{T} be the usual euclidean topology on the set of real numbers R. Then there exists a connected \mathcal{T} -extremal topology \mathcal{S} on R.

Proof. Let $\mathscr B$ be the set of all pairs $\langle U,V\rangle$ such that $U,V\in\mathscr T,\ U\neq\varnothing\neq V$, $\operatorname{cl}_{\mathscr T}U\cup\operatorname{cl}_{\mathscr T}V=R$ and $\operatorname{card}(\operatorname{cl}_{\mathscr T}U\cap\operatorname{cl}_{\mathscr T}V)=2^\omega$.

The cardinality of \mathscr{B} does not exceed 2^{ω} , and we may well-order it: $\mathscr{B} = \{b_{\pi} | \alpha < 2^{\omega}\}.$

By an easy transfinite recursion, we shall define points $x_{\alpha} \in R$ for $\alpha < 2^{\omega}$ such that:

- (i) $x_{\alpha} \neq x_{\beta}$ for all $\alpha < \beta < 2^{\omega}$;
- (ii) if $b_{\alpha} = \langle U, V \rangle$, then $x_{\alpha} \in \operatorname{cl}_{\mathscr{T}} U \cap \operatorname{cl}_{\mathscr{T}} V$ for all $\alpha < 2^{\omega}$.

Suppose x_{β} have been defined for all $\beta < \alpha$, $\alpha < 2^{\omega}$, and let $b_{\alpha} = \langle U, V \rangle$. The cardinality of the set $\{x_{\beta} | \beta < \alpha\}$ is smaller than 2^{ω} , thus one can find a point $x_{\alpha} \in (\operatorname{cl}_{\sigma} U \cap \operatorname{cl}_{\sigma} V) - \{x_{\beta} | \beta < \alpha\}$.

For each $x \in R$, applying the maximality principle, one can find two ultrafilters \mathcal{U}_{x}^{L} , \mathcal{U}_{x}^{R} in \mathcal{F} such that

- (iii) $\mathcal{U}_{x}^{L} \ni]\leftarrow, x[, \mathcal{U}_{x}^{R} \ni]x, \rightarrow [$ for all $x \in R$;
- (iv) if $F \in \mathcal{U}_x^L \cup \mathcal{U}_x^R$, then $x \in \operatorname{cl}_{\mathscr{T}} F$ for all $x \in R$;
- (v) if $x = x_{\alpha}$ for some $\alpha < 2^{\omega}$ and if $b_{\alpha} = \langle U, V \rangle$, then either $U \in \mathcal{U}_{x}^{L}$ and $V \in \mathcal{U}_{x}^{R}$ or $V \in \mathcal{U}_{x}^{L}$ and $U \in \mathcal{U}_{x}^{R}$.

If $x \neq x_{\alpha}$ for all $\alpha < 2^{\omega}$, an arbitrary ultrafilter in \mathcal{T} which contains all open

intervals $]\!]x-r,x[\![(]\!]x,x+r[\!]$, respectively) with r>0 has the desired properties and can be denoted as $\mathscr{Q}_{-}^{L}(\mathscr{Q}_{-}^{R}, \text{ respectively})$.

Let $x = x_{\alpha}$ for some $\alpha < 2^{\omega}$, and let $b_{\alpha} = \langle U, V \rangle$. Suppose that

$$]x-r, x[\cap U \neq \emptyset]$$
 and $[x, x+r]\cap V \neq \emptyset$

for each real positive r. In this case, denote by \mathscr{Q}^L_x (\mathscr{Q}^R_x , respectively) some ultrafilter in \mathscr{T} which contains the filter base $\{||x-r|, x|| \cap U| r>0\}$ ($\{||x|, x+r|| \cap V| r>0\}$, resp.).

The second possible case with U, V interchanged is analogous. Clearly, at least one of the possibilities mentioned here must occur.

Define the topology $\mathscr S$ as follows: $S \in \mathscr S$ iff for every point $x \in S$ there are $U^L \in \mathscr U^L_x$ and $U^R \in \mathscr U^R_x$ such that $U^L \cup U^R \subset S$. It is self-evident that $\mathscr S$ is a topology, that $\mathscr S \supset \mathscr T$ and that $\mathscr S$ is $\mathscr T$ -extremal.

The topology $\mathscr S$ is connected. To show this, let $A, B \in \mathscr S$, $A \cup B = R$, $A \neq \varnothing \neq B$. It suffices to verify that $\operatorname{cl}_{\mathscr S} A \cap \operatorname{cl}_{\mathscr S} B \neq \varnothing$. Denote by $U = \operatorname{Int}_{\mathscr F} A$, $V = \operatorname{Int}_{\mathscr F} B$; one may quickly check that $\operatorname{cl}_{\mathscr F} U \cup \operatorname{cl}_{\mathscr F} V = R$, $U \neq \varnothing \neq V$ and, since $\langle R, \mathscr F \rangle$ is connected, $\operatorname{cl}_{\mathscr F} U \cap \operatorname{cl}_{\mathscr F} V \neq \varnothing$.

If $\operatorname{card}(\operatorname{cl}_{\mathscr{T}}U\cap\operatorname{cl}_{\mathscr{T}}V)=2^{\omega}$, then there is an $\alpha<2^{\omega}$ such that $\langle U,V\rangle=b_{\alpha}$ and $x_{\alpha}\in\operatorname{cl}_{\mathscr{T}}U\cap\operatorname{cl}_{\mathscr{T}}V$. For a point x_{α} , by (v), one of the sets U,V belongs to $\mathscr{U}_{x_{\alpha}}^{L}$ and the other to $\mathscr{U}_{x_{\alpha}}^{R}$.

If $\operatorname{card}(\operatorname{cl}_{\mathcal{F}}U\cap\operatorname{cl}_{\mathcal{F}}V)<2^{\infty}$, then there is a point $x\in\operatorname{cl}_{\mathcal{F}}U\cap\operatorname{cl}_{\mathcal{F}}V$ which is isolated in the subspace $\operatorname{cl}_{\mathcal{F}}U\cap\operatorname{cl}_{\mathcal{F}}V$ (a simple consequence of the well-known fact that every compact, Haussdorff and perfect space is of cardinality at least 2^{∞}). Thus there is some real r>0 such that $||x-r|, x+r|| \cap \operatorname{cl}_{\mathcal{F}}U\cap\operatorname{cl}_{\mathcal{F}}V=\{x\}$. It follows that either U is dense in ||x-r|, x|| and V is dense in ||x, x+r||, or V is dense in ||x-r|, x|| and U is dense in ||x, x+r||. Suppose the contrary. You must find a point $y\neq x, y\in ||x-r|, x+r|| \cap \operatorname{cl}_{\mathcal{F}}U\cap\operatorname{cl}_{\mathcal{F}}V$, which contradicts our choice of r. Since \mathcal{U}_x^L and \mathcal{U}_x^R are ultrafilters in \mathcal{F} , either $U\in\mathcal{U}_x^L$ and $V\in\mathcal{U}_x^R$, or $V\in\mathcal{U}_x^L$ and $U\in\mathcal{U}_x^R$.

Thus we have verified that there is a point $x \in \operatorname{cl}_{\mathcal{F}} U \cap \operatorname{cl}_{\mathcal{F}} V$ every neighborhood (in the topology \mathcal{S}) of which intersects both U and V. Thus

$$x \in \operatorname{cl}_{\mathscr{G}} U \cap \operatorname{cl}_{\mathscr{G}} V \subset \operatorname{cl}_{\mathscr{G}} A \cap \operatorname{cl}_{\mathscr{G}} B$$
.

This completes the proof.

Applying Theorem 5 and Lemma 6, we obtain the following

7. THEOREM. There exists a maximal connected Hausdorff topology on the set of real numbers.

Let $\langle X, \mathcal{G} \rangle$ be a connected space, let $x \in X$ and let \mathcal{C} be the collection of all components of $X - \{x\}$. Let \mathcal{H} be any other topology on X such that every $C \in \mathcal{C}$ is connected under \mathcal{H} (this will take place e.g. in the case when \mathcal{G} and \mathcal{H} coincide on C). If $x \in \operatorname{cl}_{\mathcal{H}} C$ for every $C \in \mathcal{C}$, then the space $\langle X, \mathcal{H} \rangle$ is connected, since $X = \bigcup \{C \cup \{x\} | C \in \mathcal{C}\}$. This simple observation implies the following two propositions:

5 - Fundamenta Mathematicae, t. C

- **8.** Proposition. Let $\langle X, \mathcal{G} \rangle$ be a maximal connected space, let $x \in X$ and let C be a component of $X-\{x\}$. Then $x \in \operatorname{cl}_{\mathfrak{A}} C$ if and only if $C \in \mathcal{G}$.
- **9.** Proposition. Let $\langle X, \mathcal{G} \rangle$ be a maximal connected space and let $x \in \operatorname{cl}_{\operatorname{st}} C$ whenever $x \in X$ and C is a component of $X - \{x\}$. Then G is the connected G-extremal topology.
- 10. PROBLEMS. Let $\langle X, \mathcal{G} \rangle$ be a connected (Hausdorff) space. let $x \in \operatorname{cl}_{\mathfrak{m}} C$ whenever C is a component of $X-\{x\}$. Is it true that then there exists a topology $\mathcal{H} \supset \mathcal{G}$ such that $\langle X, \mathcal{H} \rangle$ satisfies the assumptions of Theorem 5?

What can be said about those spaces which contain a couple x. C (C a component of $X - \{x\}$) with $x \notin \operatorname{cl}_{\mathscr{Q}} C$?

- 11. Remarks. A) S. K. Hildebrand ([8], Theorem 4.2) has proved that if $\mathcal S$ is a finer connected topology for a unit interval I than \mathcal{F} , then any connected subset of I will remain connected under \mathcal{S} . This result together with Theorem 7 shows that the conjecture "there is no maximal topology for I having the same connected subsets as T" (Hammer-Singletary, [7]) is false.
- B) Consider the case of \mathbb{R}^2 with its usual euclidean topology \mathscr{T} . Every \mathscr{T} -extremal topology on \mathbb{R}^2 is disconnected. In order to prove it, let \mathscr{S} be any \mathscr{T} -extremal topology on \mathbb{R}^2 . If \mathscr{U}_z is an \mathscr{S} -neighborhood base of a point $z \in \mathbb{R}^2$, if we denote by

$$H^+ = \{ z \in R^2 | z = \langle x, y \rangle, y > 0 \}, \quad H^- = \{ z \in R^2 | z = \langle x, y \rangle, y < 0 \}$$

and if we define

$$V = \left\{z \in R^2 | \ H^+ \cup \left\{z\right\} \in \mathcal{U}_z\right\}, \quad W = \left\{z \in R^2 | \ H^- \cup \left\{z\right\} \in \mathcal{U}_z\right\},$$

then $V \cup W = R^2$, $V \cap W = \emptyset$, $V \neq \emptyset \neq W$ and both V and W belong to \mathcal{S} . Nevertheless, let \mathscr{G} be the following topology on \mathbb{R}^2 (where $\langle \mathbb{R}^2, \mathscr{F} \rangle$ is considered as a complex plane): If z = 0, its \mathscr{G} -neighborhood system will be the same as in \mathscr{F} . If $z \neq 0$, then for some real φ and positive real r, $z = re^{i\varphi}$. The \mathscr{G} -neighborhood base of z will consist of all sets $\{y \mid y = ue^{i\varphi}, s < u < t\}$ for s, t satisfying the inequality 0 < s < r < t. Obviously $\mathcal{G} \supset \mathcal{F}$ and the space $\langle R^2, \mathcal{G} \rangle$ satisfies all the assumptions of Theorem 5. (The proof of the existence of the connected G-extremal topology is analogous to the proof of Lemma 6.)

C) The very technical proof of Lemma 6 is, perhaps, necessary. It is not true that every \mathcal{F} -extremal topology \mathcal{S} on R is connected: Let us sketch an example. Construct the Cantor discontinuum D by the routine inductive procedure:

Let $A_i = D_i - D_{i+1}$ for $1 \le i < \omega$, $A_0 = \frac{1}{2} \left(\frac{2}{3} \right) \cup (R-I)$, let $P = \{ | \{A_{2i} | i < \omega \}, \quad O = \{ | \{A_{2i+1} | i < \omega \} \}$

and denote $L = \{x \in R\}$ there is some $i < \omega$ such that $x \in \operatorname{cl}_{\pi} A_{2i}\}$, M = R - L. The new topology \(\psi \) will be defined by the point-neighborhood systems as follows: For $x \in L$ (resp. $x \in M$), U is a \mathcal{V} -neighborhood of x iff there is some real r>0 such that

 $\{x\} \cup (\mathbb{T}x-r, x+r\mathbb{T} \cap P) \subset U$ (resp. $\{x\} \cup (\mathbb{T}x-r, x+r\mathbb{T} \cap O) \subset U$).

The topology $\mathscr V$ is obviously contained in some $\mathscr T$ -extremal topology $\mathscr S$. and the topology $\mathscr V$ is disconnected: $P \cup L$ and $O \cup M$ are disjoint $\mathscr V$ -open sets which cover R.

References

[1] I. Baggs, A connected Hausdorff space which is not contained in a maximal connected space, Pacific J. Math. 51 (1974), pp. 11-18.

[2] D. E. Cameron, Maximal and minimal topologies, Trans. Amer. Math. Soc. 160 (1971). pp. 229-248.

[3] L. Friedler, Open. connected functions, Canad. Math. Bull. 16 (1973). pp. 57-60.

[4] J. A. Guthrie, D. F. Reynolds and H. E. Stone, Connected expansions of topologies. Bull. Austral. Math. Soc. 9 (1973), pp. 259-265.

-- and H. E. Stone, Spaces whose connected expansions preserve connected subsets, Fund. Math. 80 (1973), pp. 91-100.

- Subspaces of maximally connected spaces, Notices AMS 18 (1971), p. 672.

[7] P. C. Hammer and W. E. Singletary, Connectedness-equivalent spaces on the line, Rend. Circ. Mat. Palermo 17 (2) (1968), pp. 343-355.

[8] S.K. Hildebrand, A connected topology for the unit interval, Fund. Math. 61 (1967). pp. 133-140.

[9] J. L. Kelley, General Topology, New York 1957.

[10] R. E. Larson and S. J. Andima, The lattice of topologies: A survey, Rocky Mountains J. Math. 5 (2) (1975), pp. 177-198.

[11] D. F. Reynolds, Preservation of connectedness under extension of topologies, Kyungpook

Math. J. 13 (1973), pp. 217-219.

[12] P. Roy, A countable connected Urysohn space with a dispersion point, Duke Math. J. 33 (1966). pp. 331-333.

[13] L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, New York 1970.

[14] J. P. Thomas, Maximal connected topologies, J. Austral. Math. Soc. 8 (1968), pp. 700-705.

MATEMATICKÝ ÚSTAV KARLOVY UNIVERSITY Praha

Accepté par la Rédaction le 22. 3. 1976