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An example of maximal connected Hausdorff space
by

Petr Simon (Praha)

Abstract, An example of maximal connected Hausdorff topology for reals is given.

0. Introduction. A ot of work has been done in the studying of a lattice of top-
ologies over the given set during the last fifteen years (see e.g. [10] for further ref-
erences). Almost every topological property was discussed from this standpoint
of view. In 1968, J. P. Thomas was — as far as the present author knows — the first
one, who focused his attention on connected topologies in the paper [14] and who
formulated the question: “Does there exist a maximal connected Hausdorff topology
on some space other than singleton?”

Various theorems on maximal connected topologies have been proved ([1], [4],
[51, 161, [71, [8], [14]), but Thomas’ problem still remains unsolved. Some informations
were obtained in the opposite direction (“does there exist a non-maximal connected
Hausdorft space, having no maximal connected topology finer than the given one?”).
It was 1. Baggs [1], who gave an example of such a space, a modification of the well-
known Roy’s space with a dispersion point ([12], [13]); and J. A. Guthrie together
with I. E. Stone have described a large class of spaces with this property ([5D.

Tn 1967-68, P. C. Hammer and W. E. Singletary ([7]) and S. X. Hildebrand ([8])
gave a detailed study of the case of connected topologies for the reals. The above
authors have developed extremely useful tools, which enables the present author to
claim: A. maximal connected Hausdorff topology on an infinite set does exist.

1. Generalities, The notation used here is the standard one, used e.g. in Kelley’s
book [9]; the topological space is denoted as a pair (X, 7, where X is a set, 7 i§
the collection of all open subsets of X. In order to avoid confusions, the sym-
bols ~ (closure operator) and ° (interior operator) are replaced by cly and Intg,
where the subscript denotes the topology in question. If 7 is some system of subsets
of the given set, then the symbol {7 will denote the smallest topology containing
the whole . The phrase “(X, 7 is the maximal space with the property ¥ has
a commonly accepted meaning (see e.g. [2]) that the space (X, 77 has Vand, if 7" is
another topology properly containing 7, then (X, 7 ") does not possess V.

Open. (resp. closed) intervals of real numbers are denoted by la, B[ (resp.

[a, B]).
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If Xis a set, & a non-void collection of subsets of X, then a filter % on X in

is a system which satisfies
0O D+UcH,

@) if k<o and if Uy, Uy, ..., Uy €%, then Uy 0 Uyn..n U e,

(i) if Ue% and if there is a U'e A, U'>0, the U’ e %,

(iv) O ¢%.

A filter % in o is called to be an ultrafilter in X, if no filter in A" properly
contains . A filter base in 4" is a collection satisfying (i), (i) and (iv). Clearly,
a filter base & in A is an ultrafilter base in &, if for each Ke o which meets every
member of # in a non-void member of A there is some BeZ with BcK.

2. DEFINITION. Let (X, %) be a topological space, let #” be a topology on X.
We shall call the topology # to be @-extremal, if # is the largest topology satis-
fying:

H>% and .

for every point x € X there is a #-neighborhood base ¥, such that for every
@-component C of the set X—{x} the system {V' nIntyC| Ve ¥ o} is a base of
an ultrafilter in . '

Indeed, such a topology need not exist from various reasons, and if it exists,
it need not be connected, even in the case of such “nice” space as a unit square.
Despite this, the definition will soon appear to be useful.

Let us mention some straightforward consequences of the definition. If
@ -extremal topology exists for some space (X, %), then

a) if xeX and if C is a ¥-component of X —{x}, then x eclyInty C,

b) consequently; IntyC is non-void and Cu {x} is connected, hence

c) the space (X, %) is connected as a union of connected subsets with a point x in
common.

The following lemma is, in fact, known (see [4]), and we list it here only for the
sake of completeness.

3. LemMA. Let (X, %) be a connected space. Denote by D(%) the fumily of all
dense sets in (X, %> and let @ be a filter in D(%). Then the space {X,{§ v D)) is
connected.

The next lemma is simple, too.

4. Lemua. Let {X, %) be a topological space and let there exist a 4-cextrenal
topology # on X. Then the set D is dense in (X, #) if and only if D is dense in
X, %) ‘

Proof. By the definition of @-extremal topology and by the remarks every
o -neighborhood of every point contains a @-open subset. Thus D is dense in
(X, ) if D is dense in (X, ¥). The reverse implication is an immediate conse-
quence of the inclusion # >%.

5, THEOREM. Let (X, %) be a comnected Hausdorff space such that
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() every component of X—{x} belongs to % for every point x e X,

(ii) there exists some connected §-extremal topology on X,

Then there exists a maximal connected Hausdorff topology # on X, Bo%.

Proof. Denote, as above, by D(%) the set of all dense subsets of (X, %} and
let & be an ultrafilter in D(%). Let 2 be the connected %-extremal topology. The
topology # = (# U D) has the desired properties.

1. Since Z>H# ¥, the space (X, #) is obviously Hausdorff, According to

Lemma 4, D(¥%) = D(#) and since (X, o) is connected, (X, A) is also connected
by Lemma 3. ‘

II. For every x & X denote by ¥, the neighborhood base of x in (X, #)
such that for every #-component C of X'—{x}, the system {V' n C| Ve ¥ },is ar;
ultrafilter base in %. Denote this base as #S. Then the following holds:x

If McX, M ¢, then there exists a point xe M and g %-component C of
X—— {x}, such that for every Ue %< and for every D e 9 the set (U n D)— (M n C)
is non-empty.

Indeed, if for every point x € M and for every component C of X~ {x} there is
some DgeP and Uge %S with (Ug n Do)e(M n C), then the set

D= U{Dcn C| C is a component of X—{x}}

is obviously dense in (X, %) and meets all members of & in adense set; since &
is an ultrafilter in D(¥%), D 2. The set |J {Uc n D| Cis a component of X— {x}}
U {x} is an #-neighborhood of x contained in M, which contradicts the assump-
tion that M ¢ 4.

II1. It remains to prove that & is maximal connected. In order to show this,
let #' be a topology on X strictly finer than £. We must find two non-empty disjoint
members of 2’ which cover X. To this end, pick a set M'e #'—Z and let x and C be
the point of X and the component of X—{x} in the topology ¢, such that for
every Ue%S and for every D e the set (U D)—(M n C) is non-void.

Denote M®= M C and B= {C’| C’ is a ¥-component of X—{x},
C' +# C}. Notice that both M€ and B are members of #'. Let 4 be the union of all
@-open sets G such that W n D n MC # & whenever DeD, We¥%, O # WcG.

We claim that 4 does not contain any member of %S: Suppose the contrary.
Then (X—A) w (M A A) is dense in (X, %) and meets all members of & in a dense
set, thus (% is an ultrafilter in  D(9) (X—-ADv (M®n 4d)eD. Then the
obvious inclusion ((X—4) U (M 4)) N A= M contradicts the statement that
(P~ U)—ME is non-void for every Ue %S, Ded. ]

Thus A4 contains no member of %S, but %5 is an ultrafilter base in 4 and ¥ is
closed under finite intersections, so one can find a set Uy eUS with Uy n 4 = .

Let D be an arbitrary member of 9, let Ge¥ be an arbitrary subset of Up.
Since U, <X~ 4, there is some non-void W, €%, W, =G and some D €2 such
that W, n D, n M° =@, thus Wy 0 D, 0 DnME=@. The set DynD is
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dense in (X, %), so it must meet an open set Wy. It follows that
WlnDlnDn(X—MC) # O

and consequently G n D n (X—M°) # @. Hence the set
D' = (Uy 0 (X—M%)) U (X—Up)

is dense in (X, %) and meets all members of & in a dense set, so it belongs to 2.
According to the definition of 2, the set K = (D' n Up) L {x} U B belongs to Z and
clearly K n M€ = @.

Finally, the set L = M U B is open in (X, #') and the set K n L is open in
(X, &', too. But the last intersection equals to BU {x} and the pair C, BU {x}
is a disjoint open cover of the space (X, #').

We have proved that the space (X, #’) is not connected. Since this result
holds for any topology %' strictly larger than 4, the space (X, &) is maximal
connected. )

It remains to show that the assumptions of Theorem 5 can be non-vacuously
satisfied, i.e. we must find some Hausdorff space (X, %) such that for every x e X
every component of X—{x} is open and which admits some connected @ -extremal
topology. It appears that the set of real numbers R is such a space. This will be proved
in the following lemma. .

6. LeMMA. Let I be the usual euclidean topology on the set of real numbers R.
Then there exists a connected I -exiremal topology & on R.

Proof. Let # be the set of all pairs (U, V) such that U, Ve, U# @ # V,
clyUucly¥ = R and card(cly U n el V) = 2°.

The cardinality of # does not exceed 2°, and we may well-order it:
% = {b,] a<27}.

By an easy transfinite recursion, we shall define points x, € R for a<2” such
that:

(@) x, # x5 for all a<f<2%;

(i) if b, = (U, V), then x,ecly U nclyV for all a<2”.

Suppose x; have been defined for all f<a, a<2%, and let b, = {U, V). The
cardinality of the set {x,| B<a} is smaller than 2%, thus one can find a point
x € (€ly U nclg V) —{xgl f<al.

For each x e R, applying the maximality principle, one can find two ultra-
filters %%, &% in 7 such that

(i) wy o)<, x[, %2 ]x,~[ for all xeR;
(@v) if Fe@E R, then xecly F for all xe R;

(v) if x = x, for some a<2” and if b, = (U, V), then either Uedk and
Veul or Ve#t and Ueur.

If x # x, for all ¢<2% an arbitrary ultrafilter in g~ which contains all open
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intervals Jx—r, x[ (]x, x+r[, respectively) with >0 has the desired properties
and can be denoted as %% (%X, respectively).

Let x = x, for some a<2” and let b, = (U, V). Suppose that
Jx=r,x[nU#@ and Jx,x+r[nV#0

for each real positive r. In this case, demote by %L (#Z, respectively) some
ultrafilter in 7 which contains the filter base {Jx—r, x[ n U| r>0} ({Jx, x+r[ 0
n V| r>0}, resp.).

The second possible case with U, ¥ interchanged is analogous. Clearly, at least
one of the possibilities mentioned here must occur.

Define the topology & as follows: Se & iff for every point x e S there are
U* e %% and UR e %} such that UL U UR<S. Tt is self-evident that & is a topology,
that o7 and that & is J -extremal.

The topology & is connected. To show this, let 4,Be%, 4uUB =R,
A # @ # B. It suffices to verify that clpyd ncl,B # @. Denote by U = Int, 4,
V = IntyB; one may quickly check that cl,Uucly V=R, U# @ # V and,
since (R, Iy is connected, clyUncl, V # @.

If card(cly U ncly V) = 2% then there is an a<2” such that {U, V) = b,
and x, € cly U N cly V. For a point x,, by (v), one of the sets U, ¥ belongs to %%,
and the other to %X . '

If card(cl, U nclyV)<2% then there is a point x ecly U n cly ¥ which is
isolated in the subspace cly U N clyV (a simple consequence of the well-known fact
that every compact, Haussdorff and perfect space is of cardinality at least 2°). Thus
there is some real r>0 such that |x—r, x+r[ ncly U ncly ¥ = {x}. It follows
that either U is dense in Jx—r, x[ and ¥ is dense in Jx, x+r[, or V is dense in
Jx—r, x[ and U js dense in ]x, x+r[. Suppose the contrary. You must find a point
y # x,y€ [x—r,x+r[ n clyU n cly ¥V, which contradicts our choice of r. Since yk
and %% are ultrafilters in 7, either Ue %% and Ve%X, or Ve#L and Ue%?.

Thus we have verified that there is a point x € cl,- U n ¢l ¥ every neighborhood
(in the topology &) of which intersects both U and V. Thus

xeclpUnclyVeclydnclyB.

This completes the proof.
Applying Theorem 5 and Lemma 6, we obtain the following

7. TOEOREM. There exists a maximal connected Hausdorff topology on the set
of real numbers.

Let (X, %) be a connected space, let xe X and let % be the collection of all
components of X'—{x}. Let # be any other topology on X such that every Ce ¢
is connected under # (this will take place e.g. in the case when % and 5 coincide
on C). If xeclyC for every Ce¥, then the space (X, is connected, since
X = U{Cu{x}| Ce¥}. This simple observation implies the following two
propositions: : ' ’

5 — Fundamenta Mathematicae, t. C
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8. PROPOSITION. Let (X, %) be a maximal connected space, let xe X and let C
be a component of X—{x}. Then xeclgC if and only if Ce¥.

9. ProPOSITION. Let (X, %) be a maximal connected space and let x eclyC
whenever x € X and C is @ component of X—{x}. Then @ is the connected 4-extremal
topology. '

‘10, PRoBLEMS. Let (X, %) be a connected (Hausdorff) space, let xeclyC
whenever C is a. component of X —{x}: Is it true that then there exists a topology
#>% such that (X, #) satisfies the assumptions of Theorem 5?

What can be said about those spaces which contain a couple x, C (C a com-
ponent of X—{x}) with x ¢ clgC?

11. Remarks. A) S. K. Hildebrand ([8], Theorem 4.2) has proved that if & is
a finer connected topology for a unit interval 1 than 7, then any connected sub-
set of J will remain connected under . This result together with Theorem 7 shows.
that the conjecture “there is no maximal topology for J having the same connected
subsets as 7 (Hammer-Singletary, [7]) is false.

B) Consider the case of R* with its usual euclidean topology 7. Every 7 -ex-
tremal topology on R? is disconnected. In order to prove it, let & be any T -ex-
tremal topology on R2. If %, is an & -neighborhood base of a point z € R?, if we
denote by -

HY = {ZGRZI zZ= <x,y>sy>0}y
and if we define
V={zeR} H* U{z} e}

H™ ={zeRY z = {(x,y),y<0}

W={zeR| H™ v{z}ed},

then VU W =R:, VAW =0, V#@ # W and both ¥ and W belong to &.

Nevertheless, let & be the following topology on R? (where (R?, 7) is considered
as a complex plane): If z = 0, its &-neighborhood system will be the same as in 7.
If z s 0, then for some real ¢ and positive real r, z = re*®. The ¥-neighborhood
base of z will consist of all sets {y] y = ue'", s<u<z} for s, ¢ satisfying the in~
equality 0 <s<r<t. Obviously ¥>7 and the space {R?, %) satisfies all the assump-~
tions of Theorem 5. (The proof of the existence of the connected ¥ -extremal topology
is analogous to the proof of Lemma 6.)

C) The very technical proof of Lemma 6 is, perhaps; necessary, It is not true .

that every  -extremal topology & on R is connected: Let us sketch an example.
Construct the Cantor discontinuum D by the routine inductive procedure:

‘DO = I:
Dl = I“]]'Zl’a-i %—I[’
D, = D ~(I5, 3 v 15, 3D»

Ds = Dyl 210 v i 5T 0 1, 331 0 135, 34D,

I

D= {D] i<w}.

An example of maximal connected Hausdorff space 163

Let 4; = D;—D;y, for 1<i<o, 4, =1, 2[ U (R=1), let
P = U {42 i<}, Q= U{4a44] i<}

and denote L = {x & R{ there is some i<w such that xecly4,;}, M = R—L.

The new topology ¥~ will be defined by the point-neighborhood systems as
follows: For x € L (resp. x € M), U is a ¥ -neighborhood of x iff there is some real
r>0 such that :

{x} v (Qx—r,x+r[aP)cU (esp. {x} v (Qx~r,x+r[n Q)cT).

The topology ¥ is obviously contained in some Z -extremal topology &, and
the topology ¥ is disconnected: P U L and Q u M are disjoint ¥"-open sets which
cover R.
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