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Relative compactness and recent common generalizations
’ of metric and locally compact spaces

by

Z. Balogh (Debrecen)

Abstract. In this paper we introduce the following concept: a topology 7 in a non-void set X'
is compact relative to a topology =’ in X if every ultrafilter convergent in 7" also converges in z.
We develop a theory of relative compactness in the first three sections and obtain a number of earlier
and recent results of quite different types as corollaries in the last section.

Introduction. In recent years there have been a number of works which investi-
gate topological spaces relating them to their compact subsets in more or less com-
plicated ways. Some of these are cited in our paper. Remarkable efforts were made to
extend A.V. Arhangel’skii’s weight addition theorem,; A.S. Misdenko’s theorem
on compact spaces with point countable bases and other results to more general
types of spaces (see [2], [7], [9], [11], [14] and [16]). .

To do this a number of new concepts were introduced in the last decade, often
using certain collections of covers of a topological space related in some sense to
compact subsets of the space.

The aim of the present paper is to introduce the concept of relative compactness
(see the abstract or Definition 1.1), a new, simple and natural concept, and to study
its properties in connection with the most familiar classical concepts of topology.
The importance of this investigation les in the fact that a number of diverse known
results on the line mentioned above are easy corollatiqs to our theorems. (We remark
here that one can define relative concepts concerning other compactness-like notions,
e.g. realcompactness, in a similar way.)

It seems that most of the concepts mentioned above yield examples of relative
compactness. Evidently, the topology © of any space (X, 7) is compact relative to
any topology in X generated by a net (i.e. a netbase) for the topology 7 as a subbase.
We get a less trivial example considering the topology ¢’ generated by the union of
members of a pluming of (X, 7) as a subbase. Another (even more general) example
is the topology generated by a K-net for 7 as a subbase (for this concept see
1. Juhasz [11]). Other examples (strong Z-nets in R. E. Hodel [8], bases (mod K)
in H. R. Bennett and H. W. Martin [4] etc.) can also be obtained.

In the first three sections we give results on relative compactness. The first
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section is devoted to some basic properties; it is a simple but remarkable fact that
relative compactness is preserved under products. In the second section we deal with
any T, topology t compact relative to a weaker topology ¢’ that satisfles a separ-
ation axiom T;. For i = 2 we find that = and ¢’ coincide. It turns out that for i =1
the character and weight of © does not exceéd those of ©’. Some other results are
also given, including an extension of Misdenko’s above-mentioned result. In the
third section we consider regular 7' spaces all subspaces of which have topologies
compact relative to topologies having character or weight not greater than a given
cardinal m. In the first case we prove that the character of the space is <m if its
Souslin number is <m. In the second case we prove that the weight of the space
is <m if either m = &, or 2™ = m™.

In the last section we show the strength of our results by obtaining most of the
results of Hodel [7], [8] and Juhé&sz [11] which generalized the results of
Arhangel’skil [1], [2] and [3], Misdenko [12], V.I. Ponomarey [16] and J. Na-
gata [14]. We also obtain here some theorems on perfect maps. We conclude the
paper with a result that was first provéd, in the countable case, and with the use of CH,
in Arhangel’skil [3].

A remark on terminology and notation. Throughout the paper “base for a top-
ology” or “base for a topology at a point” means an open base. |T'| denotes the
cardinality of the set 7. cl,T or simply clT denotes the closure of the set 7' in the
topology 7. m always denotes an infinite cardinal.

§ 1. Relative compactness and its basic properties.

DermviTION 1.1. We say that a topology = defined in a non-void set X is compuact
relative to a topology <" in the same set X if every ultrafilter convergent in =’ also
converges in 7.

We also say that a topological space (X, ©) is compact relative to a space (X, ©')
if the topology t is compact relative to 7.

Remark. In general no separation axioms will be assumed but 7 is often sup-
posed to be Hausdorff.

By the above definition the following propositions are evident.

1. If a topological space (X, ) is compact relative to a space (X, ') and 77 is
a topology stronger than ¢/, then the space (X, 1) is compact relative to (X, z"),

2. If a topological space (X, 1) is compact relative to a space (X, ') and 7 is
a topology weaker than <, then the space (X, t,) is compact relative to X, ).

3. The following conditions are equivalent for a topological space (X, 1):

() (X, 1) is compact. ‘

(ii) = is compact relative to any topology defined in X,

(ii) v is compact relative to a compact topology defined ,in X.

(@iv) * is compact relative to the indiscrete topology in X.

4. Let § be a net for a topological space (X, 7). Then 1 is compact relative to
the topology in X generated by $ as a subbase. ’
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In order to apply the results of the next sections less trivial examples of relative
compactness will be given in § 4.

PROPOSITION 1.1, Suppose that a topological space (X,7) is compact relative
to a space (X' , '), and Y is a closed subset of (X, 7). Then the topology induced in Y by
the topology © is compact relative to the topology induced in Y. by <'.

Proof. Let Xy be an ultrafilter in ¥ which converges to a point y € ¥ in the
topology 7y induced by ¢’ in Y. Since Uy has the finite intersection property, there is
an ultrafilter W in X containing it. Evidently y is a limit point of U in 7', Thus X con-
verges to a point x € X in 7. Since the t-closed set Y is a member of I, we infer that
x e Y. Then 2, converges to x in the topology 7y induced by = in Y. ’

TaeoreM 1.2, Let {(Xy, t)): ie I} and {(X;, ©}): i€ I} be families of topological
spaces such that (X;, ;) is compact relative to (X;, tj) for all i in I. Then the product
space (1c>-<1 X, i>e<I ;) is compact relative to (‘i(i X, i>e<l1:§).

Remaric. If all the topologies 7; are the indiscrete topologies in the X’s, then
this theorem yields the Tychonoff product theorem. :

Proof, We introduce the notation X = XIXi, T = .XI% 7= i>e<tTli' Let U be
a convergent ultrafilter in the space (X, z*). Then the projection ¥, of W into X; is

an ultrafilter which converges in ;. Since 7, is compact relative to 7}, we infer that ;
also converges in 7;. But since the limit of a filter in a product space is the product

“of the limits of all projections of it, we conclude -that 2l is convergent in 7.

TuroreM 1.3, If a topological space (X, ) is compact relative to an m-Lindelof
space (X, "), then the space (X,7) is itself m-Lindeldf.

Proof, Let € be a family of closed sets of (X, 7) such that no subfamily of car-
dinality not greater than m has a void intersection. We may assume that € is closed
under finite intersections, Since ¢’ is m-Lindel&f, there is a point x € X such that the
closure of any member of € in ' contains x. Let 9, be the neighbourhood filter
of xin ©'. Since € U 9N, has the finite intersection property, there is an ultrafilter u
in X containing it. Now x is a limit point of ¥ in the topology ©". Thus U is also con-
vergent in 7, i.e. the family of the closures in 7 of all members of U (a fortiori €)
has a non-void intersection.

§ 2. Compactness relative to topologies whith separation axioms.

TueoreMm: 2.1. If the topology T of a Hausdorff space (X, 7) is compaet relative
to o weaker Hausdorff topology t' in X, then v and v coincide.

Proof. Let x be an arbitrary point of X. Let us denote the neighbourhood filter
of x in T (resp. in =) by 9 (vesp. by ;). Suppose indirectly that thc?re is a member. 14
of 9t, which is not contained in ;. Then 9 U {X\V} is a family .w1th. ﬂ%e ﬁll.lte
intersection property and hence contained in an ultrafilter . Since x is a limit point
of 2 in the topology 7', it follows that ¥ has a limit point y in the topology_':. CC:I}-
sidering that 7’ is weaker than 7, we infer that 2l converges to y int’ as WelL Since * is
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a Hausdorff topology, it follows that y = x. Therefore N,=U. We conclude
that ¥ belongs to M, which contradicts the earlier assumption that X\V be-
longs to .

Remarks 1. It follows from the above theorem that any Hausdorff topology
weaker than a compact topology coincides with that compact topology. Further,
given a net of cardinality not greater than m for a Hausdorff topology, it is easily
seen that there is a weaker Hausdorff topology of weight not greater than m. Thus
we infer Arhangel’skil’s weight addition theorem:

If a compact Hausdorfl space (X, 7) is the union of not more than nt of its sub-
spaces each of them having a base of cardinality not greater than m, then (X, )
also has a base of cardinality not greater than mt.

2. Considering the natural topology = of the interval [0, 1] and the topology <’
in [0, 1] whose non-trivial closed sets are exactly the finite subsets, it immediately
follows that one cannot replace condition 7', by condition T’ for ¢’ in Theorem 2.1.
But we show that the weight and character of = does not exceed those’ of '.

THEOREM 2.2. If the topology © of a Hausdorff space (X, ©) is compact relative
to a weaker T topology ' in X, then the weight of © does not exceed the weight of v'.

Proof. Let B’ be a minimal base of cardinality m for the topology ’. Let $ be
n

the family of all finite iitersections () H; where H; is a member of B’ or H, is the
=1

complement of a member of B'. Evidently, the cardinality of $ is nt. We show that §
is a net for the topology 7. To prove this let x be an arbitrary point of X and ¥ an
arbitrary neighbourhood of x in . Let us denote the collection of all members of $
containing x by $,. Suppose indirectly that no member of §, is contained in V.
Then, since §, is closed under finite intersections, we infer that £,u {X\V}
has the finite intersection property, and therefore it is contained in an ultrafilter .
Since $, contains a neighbourhood base for x in the topology ', we infer that x is
a limit point of Il in ¢’. Thus U also converges in the topology 7. Considering that
all the z-closed sets of the form X\B', where B’ is a member of the base B’ for 7’
not containing x, belong to U and ©’ is a 7, topology, we infer that the only limit
point of U in the topology t is x. But then V belongs to I, which contradicts the
assumption that X\Vell.

Thus § is a net of cardinality not greater than m. Then by a simple argument
(see W. Holsztyriski [9]) we can construct a Hausdorff topology ¢/ in X having
weight not greater than m and weaker than 7. Let the topology t* be the supremum
of 7" and 1”. +* is a Hausdorff topology of weight not greater than m and is weaker
than 7. Thus, by Theorem 2.1, ©* and t coincide, so that ¢ is of weight not greater
than m.

Remarks 1. It follows from our theorem above that a compact space with

a point separating open cover ® (i.e. an open cover such that given any two points x, y

in Xthereis 2 G in & with x € G, y ¢ G) of cardinality not greater than m has weight
not greater than m.
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2. If ¢ is not necessarily weaker than 7, then in general the statement of
Theorem 2.2 does not remain true; take for example a compact T, space (X, ©) with
|X| = 2% and of weight 2™ and any second countable T; topologyin X as <'. How-
ever, by a slight change of argument in the first part of the proof of Theorem 2.2
we get the following result:

THEOREM 2.3. If a Ty space (X, 1) is compact relative to a topological space (X, ©")
of weight not greater than w and there is a Ty topology "' in X of weight not greater
than m and weaker than <, then (X, 1) has a net of cardinality not greater than .

Lemma 2.4, Suppose that the topology © of a hereditarily m-Lindeldf regular Ty
space (X, 7) is compact relative 1o a weaker topology <’ in X such that the weight
of v does not exceedm. Then there is a regular topology <" of weight not greater thanm
in X such that ©'' is weaker than © and < is compact relative to .

Proof. Let 8 be a base of cardinality not greater than m for the topology 7'+
Let us define the series {8/}, of families of 7-open subsets of X in the following
way:

a) By =B'.

b) Suppose that B) = {B®: ie 1} is already defined. Since © is hereditarily
1m-Lindelof, it follows that for all B in B there is a family G of cardinality not
greater than m consisting of 7-open subsets of X such that BY is the union of all
members in 6! and the closure of any member of G in the space (X, 7) is contained

in BY . Let B,,.., be the family of all finite intersections of members in :q 6P U B
€dn

Let 8, , ; be the family of all sets of the form X— _c_l,B where B is a member of B, ;.
Finally, let 8., be the union of B,,; and B,,4.

o«

Now let us put B = UO B;.

By using induction it is neasily seen that the cardinality of B, does‘no"c exceed
m (n=0,1,2,..). Thus |[B"|<m. By definition B’ is a cover of X which is clo’sle‘d
under finite intersections . Therefore B’ is a base for a topology ="/ in X' such that " is
weaker than t and stronger than 7. ) .

Tt remains to prove that ¢’ is a regular topology. Let x be an art.ntrary pognt
in X and let B" be any member of B’ containing x. Then there is an mde’)f n \.mh
B" e B!, By definition there is a member G in By f)vith xecl,GeB". Since
Xcl,Ge ¥, =B, it follows that cl.G is closed also in ¢”’. Thus

" xed.Geol,GeB" .

We conclude that x has a neighbourhood base consisting of ¢"’-closed subsets of X,
q.e.d. .
CoroLLARY 1. If the topology t of a hereditarily ti-Lindeldf regular ?‘1 spave/
(X, 7) is compact relative 10 a weaker Ty topology ' in X such that the fmezght of T
does not exceed m, then the weight of (X, 1) is not greater than m, either.

Proof. Since regular T, spaces are Hausdorff, we cm?ch.lde by Theorem 2.1
that the topology " constructed in Lemima 2.4 and 7 coincide.
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Remark. Making use of Theorem 1.3, we obtain the following statement:

If the topology of any subspace (¥, ty) of a regular T, space (X, 7) is compact
relative to a weaker T, topology 7y in Y such that the weight of 7y does not exceed 1,
then (X, t) has weight not greater than m.

Assuming GCH we can omit the assumption that 7y is a T, topology (see
Theorem 3.2).

THEOREM 2.5. Suppose that the topology © of a regular Ty space (X, ©) is compact
relative to @ weaker topology v’ in X. Let v have a pseudobase of cardinality not greater
than wt at. the point x, and let ' have a base of cardinality not greater than w at the
point x. Then the zopolog(y 7 has a base of cardinality not greater than w at the point x.

Proof. By the regularity of (X, ©) we may assume that there is a family of 7-open

subsets o = {4,: ie I} with |I[<m such that the intersection () cl.4; consists
lel

of the single point x. Further, let B = {V;: jeJ} be a neighbourhood base of x
in 7’ with [J] <. Denote by M the family of all finite intersections of members of
the family U U B. Evidently, the cardinality of M does not exceed m. We show that It
is a base for the topology t at the point x. Suppose the converse is true, i.e. there
is a t-open neighbourhood ¥ of x in the topology ¢ such that no member of ¥t is
contained in it. Then the family M u {X\FV} has the finite intersection property
and thus it is contained in an ultrafilter 2. Evidently, x is a limit point of X in 7/,
therefore U is convergent in 7 as well, Since A<, it follows that the limit of U
in 7 consists of the single point x, and this contradicts X\V el

Remark. It follows from this theorem that the character and pseudocharacter
coincide for a compact Hausdorff space.

COROLLARY 1. If the topology © of a regular Ty space (X, ©) is compact relative
to a weaker T topology t' defined in X, then the character of (X, 1) does not exceed
the character of (X, ).

In order to formulate and prove our next result we need the following definition.

DEFINITION 2.1. Thé pointwise cardinality of a family & of subsets in a non-void
set X is the smallest infinite cardinal m such that every element of X is contained in
at most m members of ©.

The pointwise weight of a topological space (X, 1) is the smallest infinite car-
dinalm such that there is a base for (X, 7) of pointwise cardinality not greater than m.

THEOREM 2.6. If a T, space (X, T) of pointwise weight not greater than W is com-
pact relative to a topological space (X, ©') of weight not greater than w, then the weight
of (X, 7) does not exceed .

Proof. The proof is based on the following lemma of Misdenko [12].

If a family & of subsets in a non-void set X has pointwise cardinality not greater
than m, then the collection of all finite minimal covers of X by members of & has
cardinality not greater than m.

Let B be a base of pointwise cardinality not greater than m for the topology 7,
and let B’ be a base of cardinality not greater than m for the topology 7'. Further,
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let G be the family of all members in B and of the complements of all members
in B, Bvidently, 63 has pointwise cardinality not greater than m. We show that any
member B of B is contained in a finite (and thus in a finite minimal) cover of X by
members of &, To prove this, let x be an arbitrary point of B. Since 8 is a base for
the T topology 7, there is a subfamily B, of B such that the union of all members
of B, is X\{x}. Let B be the family of complements of all members of B, and BL
the family of all members in B’ containing x. By virtue of the definition of & it is
enough to show that B belongs to the filter § generated by 87 U B).. Suppose the
converse is true. Then the family § U {X\B} has the finite intersection property,
and thug it is contained in an ultrafilter . Since B <=1, it follows that x is a limit
point of 20 in =, Therefore W is also convergent in =. Making use of th-e fact that
B* <11, we infer that the limit of Win = consists of the single point x, which contra-
dicts X\B € 1.

Now, for each B in 8, let us assign a finite minimal cover of X by members
of & containing B. This is a map of B into the collection & of all finite 'mh].iﬂ}éil
covers of X by members of @ such that the pre-image of any cover in & is finite.
Then, by virtue of Miséenko’s lemma, we conclude that the cardinality of B does
not exceed .

We can summarize our results obtained in Theorems 2.2, 2.3 and 2.6 in the
following theorem:

Tugorem 2.7. If a Ty space (X, 7) is compact relative to a topological'space.(X ,T7)
of weight not greater than m and there is a T topology v in X of pctmtv‘vwe weight not
greater than m and weaker than <, then (X, ") has a net of cardinality not greater

than m.
If in addition, (X, ©) is @ Hausdorff space and ¢ is weaker than 1, then (X, 7)

has weight not greater than 1.
Proof. By our assumptions 7' is compact relative to ', By applying Theorem 2..6
it follows that the weight of "/ does not exceed m. Thus, by Theorem 2.3. there is

inalit logy .
a net of cardinality not greater than m for the topo. ‘
If the additional assumptions hold we can apply Theorem 2.2 instead of

" Theorem 2.3 to find that (X, ) has weight not greater than m. (The weaker Ty

topology required in Theorem 2.9 is the supremum of t’ and 7'")

§ 3. Hereditary properties concerning relative compafztness. It is not‘ in gen;rai
true that if the topology of any subspace of a space (X, ) is compact rele-\twe to afirs
countable and weaker topology in the same subset of X, then (X ,.1) itself satlstjles
the first axiom of countability. (A convenient counter-example is the one-pomit:
compactification of ahy uncountable discrete space.) However, the above statemen
is true for spaces with the Souslin condition. .

DEFINITION 3.1. The Souslin number of a topolf)gical s‘p.ac_e X, 1) 1sb thte
smallest infinite cardinal m such that there is no family of disjoint open subsets
in (X, 7) which has cardinality greater than .
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THEOREM 3.1. Let (X, 7) be a regular Ty space with the Souslin number not greater
than m and suppose that the topology ty of any subspace (Y, ty) of (X, ©) is compact
relative to a weaker topology in Y the character of which does not exceed m. Then
the character of (X, t) does not exceed m.

Proof. Let x be an arbitrary point of X. By Zorn’s Lemma there is a maximal
family ® = {G;: i eI} of disjoint t-open subsets of X such that there is no member G,
in ® with x e cl, G;. Since the Souslin number of (X, 7) is not greater than m, we infer
that |I|<m. Let us put G = | G;. By the regularity of the topology 7, G is dense

iel
in (X, 7). Let ¥ = G u {x}, and let 7y be the topology induced by ¢ in Y. Then
the trace of the family {X\cl,G,: ie I} of T-open subsets in ¥ is evidently a pseudo-
base of the topology ty at the point x. Thus, by applying Theorem 2.5, 7y has a base
of cardinality not greater than m at the point x. Since ¥ is dense in (X, ) and (X, 7)
is a regular Ty space, we infer that = has a base of cardinality not greater than m at
the point x.

THEOREM 3.2. Suppose that m = %, or 2™ = m™, Then if the topology of every
subspace (Y, 1y) of a regular Ty space (X, ) is compact relative to a weaker topology
ty in Y such that the weight of 1y does not exceed m, then (X, t) has weight not greater
than m.

Proof. By Theorem 1.3 (X, 7) is a hereditarily m-Lindel6f space, so that its
Souslin number does not exceed m. Thus we can apply Theorem 3.1 to find that the
character of (X, ) does not exceed m. It follows either from J. de Groot’s result
(see [6]) or from a well-known theorem of Arhangel’skil (see 2.21 in [10]) that the
cardinality of X does not exceed 2™. Thus the weight of (X, ) is not greater than 2",
Since (X, 1) is hereditarily m-Lindeldf, we infer that the cardinality of the family
of all open or closed subsets in (X, ©) (« fortiori the cardinality of the family of all
compact subsets in (X, 7)) does not exceed 2™. Thus X is the union of two disjoint
subsets, X; and X, such that neither X; nor X, contains a compact subset of (X, 7)
of cardinality 2™ (see Hodel [8]; for example). It follows from 2.23 of [10] form = 8,
and from the assumption 2™ = m* for m> s, that neither X nor X, contains a com-
pact subset of (X, 1) of cardinality greater than mr.

We show that if z; denotes the topology in X (i = 1, 2) induced by <, then

(X;,7y) and (X3, 7,) bave a net of cardinality not greater than .

Let us consider e.g. 7 = 1. By Theorem 1.3 and Theorem 2.4, there is a regular
topology 71 in X of weight <mt such that 7} is weaker than t,, and 7, is compact
relative to z}. Let us say that two points in X are equivalent iff their neighbourhood
filters in 7} coincide. This is clearly an equivalence relation on X 1, and since 7} is
a regular topology, it follows that the equivalence class [x] ‘of any point x in X
is 7} -closed and thus it is 7, -closed. Now, by Proposition 1.1, the topology in [x]
induced by 7, is compact relative to the topology in [x] induced by 4. Since the latter
is the indiscrete topology in [x], we infer that [x] is a compact subset in (X}, 7).
Therefore the cardinality of [x] does not exceed ni.

Let € be the family of all equivalence classes defined above. Since the cardinality
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of any C in € does not exceed m, there is a family {(X{,<("): iel} of at
most m disjoint subspaces of (X, ;) such that X; = J X{® and the intersection

iel
X’ rv @ consists of at most one point for all C in € and for all i in 1. Since 7} is
a regular topology, we infer that the topology in X1 induced by 1} is a T}, topology.
Thus, by applying Theorem 2.3, it follows that (X{, t%) has a net of cardinality
not greater than m. By [I|<m the same holds for the space (X, 1,).

We conclude that (X, 7) has a net of cardinality not greater than m and by
assumption  is compact relative to a weaker topology 7’ in X such that =’ has weight
not greater than m. Now we can complete the proof in exactly the same way as we
did in the proof of Theorem 2.2.

Remark. If we omit the assumption that ty is weaker than 7y in Theorem 3.2,
then (X, ©) is.only hereditarily m-separable, i.e. the following proposition holds:

ProrosITION 3.3, If the topology of every subspace (Y,1y) of a Hausdorff
space (X, ©) is compact relative to a topology in Y of weight not greater than m,
then (X, 1) is hereditarily m-separable.

Proof. Let o denote the smallest ordinal of cardinality greater than m. Suppose
that our proposition is not true, i.e. there is a sequence {x,;: 1<a} of pointsin X such
that no x, is contained in the closure of F; = {x,: v<i}inz. Let X; = {x;: A<a},
and let 7, denote the topology in X, induced by . Since by Theorem 1.3 (X, 1)
isa Hereditarily m-Lindelof Hausdorff space, we infer that there is a pseudobase B,
of cardinality not greater than m for the topology 7, at each point x;. Since x, ¢ cl. F;,
we can assume that no member of B, intersects .F,. Thus the pointwise cardinality
of the family 8 = (J B; in X, does not exceed' m. Let 7] be the topology in X,

A<a
generated by B as a subbase. 7} is evidently a T; topology of pointwise weight not
greater than m. Then, by Theorem 2.7, there is a net of cardinality not greater than m
for the topology ;. Thus the density of X; does not exceed m, which contradicts

the definition of Xj.

§ 4. Corollaries and applications. Most of the general results that follow from
the above theory of relative compactness are formulated in terms of cardinal in-
variants. We briefly recall their definitions. We write shortly X for (X, 7) in these
definitions.

Denote the weight, pointwise weight, netweight, charactef, pseudocharacter,
Lindelsf degree and Souslin number of a topological space X by w(X), pw(X),
n(X), x(X), W(X), L(X) and c(X), respectively. An open cover 6 of the topological
space X is called a separating open cover if for any pair of distinct points x and y in X,
there is a G in ® such that x & G and y ¢ G- The point separating weight of a space X,
denoted by psw(X), is the smallest infinite cardinal m such that X has a separating
open cover of pointwise cardinality not greater than m. A ‘collection {G;: ie I}
of open covers of a topological space X is a pluming for X if the following holds:
if xeG,;e®, for all i in I, then -
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(@) C, = () clG; is compact,
iel
() {( clG;: Jis a finite subset of I} is a “base” for' C, in the sense that given
ieJ o)
any open set U containing C,, there is a finite subset J of I with () clG;<=U. In
ieJ

Hodel [7] it is shown that every regular T space X has a pluming {6,: ie I} with
[I|<w(X), and a regular T; space is a p-space in the sense of Ar hangel’skil
(see e.g. [2]) if and only if it has a countable pluming as defined above. The pluming
degree of a regular T; space X, denoted by pl(X), is the least infinite cardinal 1t such
that X has a pluming {G,: i e I} with [I|<m. A cover & with subsets of a space X'
is called a K-net for X if for each point x in X there exists a compact subset C, of X'
such that for every neighbourhood U of C, there is a set N in' & with x e N=U.
A K-base for the space X is a K-net consisting of open subsets in X. The cardinal
invariants Kn(X) and Kw(X) (K-netweight and K-weight) are defined as the
smallest infinite cardinal m such that there is a K-net respectively a K-base for the
space X of cardinality not greater than m. For a cardinal invariant f (X) let us define
the cardinal invariant f*(X) as the smallest infinite cardinal m such that f (Y}<m
holds for each subspacc Y of X.

PROPOSITION 4.1, The topology of every topological space (X,t) is compact
relative to the topology v’ in X generated by a K-net for (X, 1) as a subbase.

Proof. Suppose that an ultrafilter 2 in X has a limit point x in the topology ',
Then by the definition of a K-net there is a compact subset C,, in (X, 7) containing »
such that all neighbourhoods of C, in the topology t belong to X, We show that [
converges to a point of C, in the fopology . Suppose the converse is true, i.e. for
every point y in C, there is an open neighbourhood ¥, of y in 7 such that ¥, ¢ 2.
Since C, is compact, we infer that there is a finite subfamily {V;}{-, of the family
{Vyiye C,,} such that {V;}i=; covers C,. Further, since V,¢UW (i=1,2,..,9),

we have U V; ¢ U, which contradicts the earlier assumption that any neighbourhood
i=1

of C, in 7 belongs to . ‘

COROLLARY 1. Let {®;: ie I} be a pluming for a topological space (X, ©). Then 7 is
compact relative to the topology ©' in X generated by the family 6 = | ®, as a sub-
base. !

Proof. Clearly, the family of all finite intersections of members of & is a K-net
(moreover, a K-base) for the topology 7.

THEOREM 4.2 (Juhész [11]). The following relations hold for a topological space:

(1) LN <Kn(X).

2) wX) = Kn(X)'pw(X) if X is a T, space.

(3) nX)<KnX) psw(X) if X is a T, space.

@) w(X) = Kw(X)-psw(X) if X is a T, space.

5) w(X) = Kw(X) n(X) if X is a T, space.
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(6) w(X) = Kw*(X) if X is a regular T\ space and if for m =
m = 8 or 2" = m" holds.

Proof. We'shall use Proposition 4.1, First we remark that for any topological
space X the inequalities w(X) >Kn(X), Kw(X), Kw*(X), pw(X), n(X) are obvious
and for T spaces w(X)=psw(X) clearly holds. Then (1) follows from Theorem 1.3,
(2) follows from Theorem 2.6, (3) and (4) follow from Theorem 2.7. (5) follows from
Theorem 2.1 by the argument used to complete the proof of Theorem 2.2 and,
finally, (6) follows from Theorem 3.2.

TueoREM 4.3 (Hodel [7] and [8]). The following relations hold for a regular T,
space X:

Kw*(X) either

(1) w(X) = LX) pl(X)-psw(X). :
(2) W(X) = L*(X) pl*(X) if for m = L*(X)pl*(X) either m = 8y or 2™ = m*
holds. '

(3) wiX) = o(X) pI*(X) is X is hereditarily paracompact and for m
= c(X) - pl*(X) either m = 8 or 2™ = m™ holds.

Remarks. The next theorem, of Ponomarev [16] and Nagata [14], follows
from (1): every Lindelsf p-space with a point countable separating open cover is
metrizable. As a special case, (2) implies the following theorem of Arhangel’skil [3]:
a space which is hereditarily a Lindelof p-space is metrizable. If pl* (X) = 8, (3) is
an answer in the positive to Problem 2 in Arhangel’skil [3] (see Hodel [8).

Proof. It is clear that the inequalities w(X)>L(X), pl(X), psw(X), L*(X),

pI*(X), ¢(X) hold for any space X.

To prove (1) let {&;: iel} be a pluming with |I|<pl(X) for the space X.
We may suppose that |6, <L(X) for each i in I. By Corollary 1 to Proposition 4.1
the topology = of X is compact relative to the topology 7, in X generated by G as
a subbase.

By the definition of psw(X) there is a T topology t, weaker than 7 in X and
such that the pointwise weight of 7, does not exceed psw(X). Let us denote the su-
premum of ¢, and 7, by 7', Clearly, 7’ is compact relative to 7. By Theorem 2.6 the
weight of 7' does not exceed L(X) pl(X)-psw(X). It is obvious that ¢ is compact
relative to the T, topology ©'. Applying Theorem 2.2, we obtain (1).

In order to prove (2) it is enough to consider that by the same argument as in
the first part of the above proof the conditions of Theorem 3.2 are satisfied.

Finally, it is easily seen that ¢(X) = L*(X) for any hereditarily paracompact T
space (see e.g. Hodel [8]), and so (3) follows from (2).

DermrioN 4.1. A closed and continuous map from a topological space X
onto a topological space Z is called perfect if the pre-image of any point in Z is com-
pact in the topology of X.

THEOREM 4.4. a) Suppose that the topological space X has a perfect map onto the
topological space Y. Then

(1) LA <L(D).
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(2 wX)sw(Y) psw(X) if X is a T, space.
3) X< () YX) zf X is a regular T space.
b) Suppose that any subspace of a regular Ty space X has a perfect map onto

a topological space of weight not greater than m and of character not gredter than n
(1t is an infinite cardinal). Then

(@) w(X)<<m if either m = 8, or 2™ = m™.

(5) xX)<e (@)

Proof. First of all we remark that if there is a perfect map of X onto ¥, then the
topology of X is compact relative to the inverse image of the topology of Y. Indeed,
as can easily be seen, the inverse image of any base for the topology of ¥ is a K-base
for the topology of X, so that we can apply Proposition 4.1. Now (1) follows from
Theorem 1.3, (2) follows in the simplest way from Theorem 4.2, (3) follows from
Theorem 2.5. Further, (4) and (5) follow from Theorem 3.2 and Theorsm 3.1, re-
spectively.

DEFINITION 4.2. We say that a topological space X is of point-m fype if for
every point x in X there is a compact subset of character not greater than m in X
containing the point x. Spaces of point-8, type are called spaces of point-countable
type.

THEOREM 4.5. Let X be a regular T, space with the Souslin number not greater

than m. Suppose that each subspace of X is of point-m type. Then the character of

X does not exceed m.

Proof. Let x be an arbitrary point in X and let the subspace ¥ = G U {x}
be defined in the same way as in the proof of Theorem 3.1. Let C,, be a compact subset
of 'Y containing x such that C, has a neighbourhood base B, of cardinality not
greater thanmin Y. By Zorn’s lemma there is a maximal family € of disjoint compact
subsets of ¥ containing C, such that every C in G\{C,} has a neighbour-
hood base B, of cardinality not greater than m and that no member of
B intersects C,. Let C* be the union of all members in €. Since Y is heredit-
arily point-m type, we infer that C* is dense in ¥ and thus is also dense in X.
By the definition of & the topology of ¥ (and thus the topology of C*) has a pseudo-
base of cardinality not greater than m at the point x. From Proposition 4,1 it follows
that the topology of C*induced by the topology of X is compact relative to the top-

ology (of character not greater than m) generated by the trace of the family | B,
CaCG
in C*. Thus, by Theorem 2.5, there is a base of cardinality not greater than m for

the topology of C* at the point x. Since C* is dense in X and X is a regular T
space, we conclude that the same holds for the topology of the space X.

It is a pleasant obligation for the author to express his gratitude to Professor
Jens Erdds (Debrecen). We emphasize that the present work could hardly be ac-
complished without his kind and continuous attention and useful advices,
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