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Concerning decontpositions of continua
by

Z. M. Rakowski (Wroctaw)

Abstract. The first purpose of this paper is to characterize two decompositions of a Hausdorff
hereditarily unicoherent continuum. One of them is a unique minimal with respect to being upper
semi-continuous, monotone and having a A-dendroid as the quotient space and the otherisa
unique minimal with respect to being upper semi-continuous, monotone and having a dendroid as
the quotient space, For definition of a A-dendroid and of a dendroid see below..The second purpose
pertains Hausdorff continua irreducible about a finite subset. It is proved that each such continuum
has a unique minimal decomposition with respect to being upper semi-continuous, monotone and
having a tree as the quotient space.

A continuum is a compact connected Hausdorff space. A decomposition (a mono-
tone decomposition) of a continuum X is a family of mutually disjoint non-empty
closed subsets (non-empty subcontinua) of X filling up X. If 2 and & are both
decompositions of a continuum X, then “gy refines €” means each element of & is
contained in some element of &. Let X be a continuum and let P be a certain property
of decompositions of X. We say that a decomposition & of X is minimal with respect
to P if @ possesses P and refines each decomposition of X possessing P. A mapping
is a continuous function. A mapping f(X) = Y is called monotone if the inverse
image f~1(C) of each connected subset C of Y is connected.

The following is a consequence of a more general results (see [8], Propositions 3
and 4, p. 1090). )

PROPOSITION 1. For any continuum X and for any class o of connected subsets
of X there exists a unigue monolone decomposition @ of X which is minimal with
respect to the property: “@ is upper semi-continuous, and each element of o is contained
in some element of @”.

A J-dendroid is a hereditarily unicoherent hereditarily decomposable continuum
(not necessarily metrizable). )

TuroreM 2. Let X be a hereditarily unicoherent continuun. There exists a unique
decomposition @ of X such that

(1) 2 is a unique minimal decomposition of X with respect fo the property: “9 is
upper semi-continuous and each indecomposable subcontinuum of X is contained in

some element of 27,
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(2) @ is a unique minimal decomposition of X with respect to the property: “@ is
upper semi-continuous, monotone and the gquotient space X|9D is hereditarily decom-
posable”,

(3) @ is a unigue minimal decomposition of X with respect to the property: “@ is
upper semi-continuous, monotone and the quotient space X|D is a A-dendroid™.

Moreover, 9 is monotone.

To prove that we first need two lemmas.

LemMMA 2.1, Let X be a continuum and let @ be an upper semi-continuous monotone
decomposition of X. If each indecomposable subcontinuum of X is contained in some
element of @, then the quotient space X|@ is hereditarily decomposable.

Proof. This result follows from [7], § 48, V, Theorem 4, p. 208 (this theorem is
stated for metric continua, however, it is a consequence of [7], § 47, II, Theorem 7,
p. 171 that is proved for continua).

LemmMa 2.2. Let X be a hereditarily unicoherent continuum and let 9 be an upper
semi-continuous monotone decomposition of X having a hereditarily decomposable
quotient space. Then each indecomposable subcontinuum of X is contained in some
element of 9.

Proof. Let f denote the quotient mapping of 9. If we assume that K is a sub-
continuum of X with non-degenerate image f(X), then (since X/2 is hereditarily
decomposable) f(K) = A U B where A and B are both proper subcontinua of f'(K).
It follows K = (K nf~'(4)) u (K f~Y(B)). Since X is hereditarily’ unicoherent
the sets K n f~*(4) and K n f~1(B) are continua; they are both proper subcontinua
of K. In fact, if K nf~(d) = K, i.e, Kof~1(4), then

AV B=fK)cf(fA)) =4,
a contradiction. Therefore K is decomposable.

Proof of Theorem 2. By Proposition 1, taking the class of indecomposable
subcontinua of X as &, there exists a monotone decomposition & of X satisfying
condition (1). The quotient space X/@ is hereditarily decomposable according to
Lemma 2.1. Consider an upper semi-continuous monotone decomposition 2,
of X having a hereditarily decomposable quotient space. By Lemma 2.2 each indecom-
posable subcontinuum of X is contained in some element of @,. Therefore & re-
fines 2. 1t follows that & satisfies condition (2). Since the heredifarily unicoherence
of continua is an invariant vnder monotone mappings the quotient space X/% is
hereditarily unicoherent, so it is a A-dendroid. Since each A-dendroid is hereditarily
decomposable and 2 satisfies (2), it satisfies condition (3).

Anarc is a continuum with precisely two non-separating points. A continuum X'
is called irreducible about a set A if X contains 4 and no proper subcontinuum of X
contains 4. A continuum X irreducible about a set of two its points (such continua
will be called shortly irreducible) has a unique minimal decomposition with respect
to the property of being upper semi-continuous, monotone and having an arc or
a point as the quotient space (see [5], Theorem 2.4, p. 649). The elements of this
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decomposition are called /ayers of X. Vought [11] was described the structure of the
layers of X having non-empty interior in the case of metric X. The idea of his proof,
after a slight modification, is applicable to the non-metric case. Namely, let J be
a layer of X with non-empty interior J° and assume without loss of generality that
X—J = A u B, aseparation of X, where J° is irreducible from each point of A
to each point of JNEB (for a general discussion of irreducible continua see [3]).
Suppose that every subcontinuum of JO with non-empty interior be decomposable.
By [5], Theorem 2.7, p. 650 J% has an upper semi-continuous monotone decompo-
sition with an arc as the quotient space. But it involves a contradiction sinE J is
a layer (compare the first part of the proof of Theorem 2.7, ibidem). Therefore J° con-
tains an indecomposable subcontinuum with non-empty interior. Denote all of them
by I;, where i € M. We shall define now, by the transfinite induption, the continua C,
for each i e M. Let C} = I,. Suppose for an ordinal « that Cj has been defined for
each <o and for each ie M. Put

U{Ch: Cin Ch # @), if a=p+1,

U {Cs: B<a}, if o = Lmf.

Tt follows by the transfinite induction that for each ordinal « and for each ie M
the set C. is well defined. From the construction C! is a continuum. Similarly as
in [3], the proof of Theorem 4.3, p. 40 one can show that there exists a first ordinal y
such that C} = C},, for each i € M, and for each , j € M we have either C, 0 Cl = 2
or C! = CJ. If we proceed as in [10], writing C, instead of Chy(7) we ob_tafn
C} = CJ for each i,je M and C' intersects both 4 and B. It implies Cl=J%in
view of the irreducibility of J°.

LevMaA 3.1. Let a continuum X be irreducible and let 9 be a decomposition of X
such that each indecomposable. subcontinuum of {E contained in some element of 9.
If J is a layer of X with non-empty interior, then J 0 js contained in some element of 9.

Proof. The proof involves the transfinite induction. Let f denote the quotient
mapping of 9. By assumption f(Cp) =/ = {z} for some z; ef(X). Now,
suppose that for each f<a and for each ie M, the set f(Cp) b.e degenere:te. S[mcle
1,cCh we obtain f(C) = {z}}. If « is a limit ordinal, then obviously f (c: = {3
If o is 2 non-limit ordinal, then conditions y & C; (where o = i+ ll_a_.nd C; n Cp # 0
imply £ () = {z.}. It follows f (Cl) = {z.}. Finally, for alli’s, /(J°) = f(C,) = {z.

LrMMA 3.2. Let a decomposition 9 of a continuum X has the property rhat. for each
indecomposable or irreducible continuum M of X, each subcontinuum of M with empty
interior relative to M is contained in some element of‘ 9. Then

(a) each indecomposable subcontinuum of X is contained in some element of 9,

and ) o
(b) for each irreducible subcontinium I of X, each layer of 1 is contained in some

element of 9.
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Proof. Let /" denote the quotient mapping of Z. For an indecomposable sup-
continuum M of X consider a composant C of M containing some point y. If x is
an arbitrary point of C, then there exists a proper subcontinuum K of M such that
x,y € K. Since K has empty interior (otherwise M is decomposable) f (x) = (),
hence f(C) = f(»). Thus f(M) = f(C)=f(C) = {f(»)}, therefore condition (a)
holds. Now, let I be an irreducible subcontinuum of X and let J be a layer of I. By
condition (a), each indecomposable subcontinuum of I is mapped onto a point
under f, hence by Lemma 3.1 the set f (J_°) is degenerate provided J° is non-empty
(the case of empty J° is trivial). We can assume that I—J= 4 U B, a separation of I.
The sets A— 4 and B— B obviously have both empty interior relative to I, and by [5].
Theorem 2.3, p. 649 they are subcontinua of I. Since Jn AcA—A4 and JnB<B—B
the images f(J n A4) and f(J n B) are both degenerate. Obviously

J=JnAuJnBuJ®,

thus f(J) is degenerate.

A continuum X is called hereditarily arcwise comnected if for each subcon-
tinmum ¥ of X, each pair of points of Y can be joined by an arc lying in Y.

THEOREM 3. For any continuum X there exists a unique monotorie decomposition 9
of X such that

(1) @ is upper semi-continuous and for each indecomposable or irreducible sub-
continuum M of X, each subcontinuum of M having empty interior (relative to M)
is contained in some element of 9,

(2) @ is a unique minimal decomposition of X with respect to property (1),

(3) 2 is upper semi-continyous,

(2) each indecomposable subcontinuum of X is contained in some element of 9
and

(b) for each irreducible subcontinuum I of X each layer of I is contained in some
element of 9,

(4) 2 is a unique minimal decomposition of X with respect to property (3),

(5) the quotient space X|9 is hereditarily arcwise connected and hereditarily
decomposable.

Proof. It follows from Proposition 1 that there exists a monotone decompo-
sition 9, (resp. 2,) of X satisfying condition (2) (resp. (4)). By Lemma 3.2, @, satis-
fies condition (3), hence 9, refines Z,. On the other hand, it follows from [51,
Theorem 2.3, p. 649 that for each irreducible subcontinuum I of X, each subcon-
tinuum of I having empty interior is contained in a layer of 1. It follows that 2,
refines 9, hence P, = 9. Therefore & = @, is a required decomposition satisfying
conditions (1), (2), (3), and (4). That @ satisfies condition (5) follows from [11],
Theorem 3 and from Lemma 2.1.
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A dendroid is a hereditarily unicoherent, hereditarily arcwise connected and
hereditarily decomposable continuum (not necessarily metrizable) (compare [6],
p. 62). :
COROLLARY 3.3. For any hereditarily unicoherent continuum X there exists a

unique minimal decomposition 9 of X with respect to the property: “@ is upper
semi-continuous, monotone and the quotient space is a dendroid”.

Proof. Such is above decomposition & (see Theorem 3). Since the hereditarily
unicoherence of continua is an invariant under monotone mappings, the quotient
space X/ is a dendroid. Now, let 2, be an upper semi-continuous monotone de-
composition of X" with a dendroid as the quotient space. Similarly as in [1], the proof
of Theorem 5, p. 26 one can show that for each irreducible subcontinuum I of X,
each layer of Iis contained in some element of 2,. By Lemma 2.2 each indecompos-
able subcontinuum of X is contained in some element of Z,. It follows that &,
satisfies condition (3) of Theorem 3, hence 2 refines 9,. This completes the proof.

For a metric continuum X, Charatonik [2] has defined a decomposition of X
to be admissible if it is monotone, upper semi-continuous and the layers of irreducible
subcontinua of X are contained in the elements of the decomposition. He has proved
that the quotient space of an admissible decomposition is hereditarily arcwise con-

.nected and that X has a unique minimal admissible decomposition, say 2. If X is

hereditarily unicoherent, then & is a unique minimal decomposition of X with
respect to being upper semi-continuous, monotone and having a dendroid as the
quotient space. Vought [10] has extended Charatonik’s results to (Hausdorff) con-
tinua. The statement of our Theorem 3 and Corollary 3.3 is another extension to
continua of mentioned Charatonik’s results.

A continuum X is called discoherent if for any pair of its proper subcontinua A
and B such that X = 4 U B the intersection 4 N B is not connected. By a simple
closed curve we mean a non-degenerate continuum which is separated by each pair
of its points.

THEOREM 4. For any contimuum X there exists a unique monotone decomposition &
of X which is minimal with respect to the property: “@ is upper semi-continuous and
each discoherent subcontinuum of X is contained in some element of 9”. Furthermore,
the quotient space X|9 is a A-dendroid.

To establish this we first need the following

LemMMA 4.1. Assume that @ Is a monotdne upper semi-continuous decomposition
of a continuum X such that each discoherent subcontiruumt of X is contained in some
element of 9. Then the quotient space X|9 is a A-dendroid.

Proof. Since each indecompo’sable continuum is discoherent, the quot%ent
space X/@ is hereditarily decomposable by Lemma 2.1. Let f denote the quotient
mapping of & and suppose that f(X) is not hereditarily unicoherent. By ES],
Theorem 3.3, p. 652 there exists a continuum N<f (X) and a monotone mapping
of N onto a simple closed curve S. Put & = gf | f ~L(N). 1t follows from [7], § 42, IV,

5§ — Fundamenta Mathematicae C


Artur


244 Z. M. Rakowski

Theorems ! and 2, p. 54 that there exists a continuum M =f ~*(N) which is irreducible
with respect to the property A(M) = S. Consider a decomposition, M = 4 U B,
of M onto its proper subcontinua 4 and B. Obviously, h(4) % S and h(B) # S.
But 2(4) U h(B) = S, hence there exist disjoint closed and non-empty sets E and F
such that h(4) N h(B) = EUF. Sets 4 n Bnh™'(E) and 4 n B k™'(F) are
both closed, non-empty and disjoint. Furthermore,

A A Beh™{(h(A) n kX (1h(B)) = h™*(h(4) N h(B)) = F"H(E U F)
=Y E) v k" Y(F),
hence

ANBAR Y E)YVUAABAR(F) =AnBn (W E)VE ' (F)=4nB.

This implies that the intersection 4 N B is not connected. So we have proved that M
is discoherent. By assumption, f (M) is degenerate, so h(M) = § is. But it involves
a contradiction. Therefore f(X) is unitoherent.

Proof of Theorem 4. It follows from Proposition 1 that there exists a required
decomposition 2. By Lemma 4.1 the quotient space X/2 is a A-dendroid.

Let I denote the interval [0, 1]. The square I? is an example of a continuum for .

which the above decomposition 2 is not minimal with respect to the property of
having a 1-dendroid as the quotient space even in the class of monotone upper semi-
continuous decompositions.

A tree is a continuum for which every pair of points is separated by some third
point. It is well known that a continuum is a tree if and only if it is hereditarily unico-
herent and locally connected (see [13], Theorem 9, p. 803).

THEOREM 5. For any continmum X irreducible about a finite subset there exists
a unique monotone decomposition @ of X such that

() @ is a unique minimal decomposition of X with respect to the property:
“9 is upper semi-continuous and each subcontinuum of X with empty interior is contained
in some element of 97,

(@) @ is a unique minimal decomposition of X with respect to the property:
9 is upper semi-continuous and for each irreducible subcontinuum I of X, each layer
of I is contained in some element of 97,

(3) @ is a unique minimal decomposition of X with respect to the property:
“@ is upper Semi-continuous, monotone and the quotient space X|@ is hereditarily
arcwise connected”,

(4 @ is a unique minimal decomposition of X with respect to the property:
“@ is upper semi-continuous, monotone and the quotient space X|9 is a tree”.

For the proof we need four lemmas.
The following is well known (compare [4]).

icm

Concerning decompositions of continua 245

Lemma 5.1. If a continuum X is not locally connected at a point p, then there
exists a continuum C with empty interior such that p € C and X is not locally connected
at each point of C.

In Lemmas 5.2, 5.3 and 5.4 the continuum X is supposed to be irreducible about
a set of n, but no fewer of its points, say a,, a,, ..., a,, where n=2.

LEMMA 5.2. Let @ be an upper semi-continuous morotone decomposition of the
continuum X with a hereditarily arcwise connected quotient space. Suppose that K is
a subcontinuum of X with empty interior. Then X is contained in some element of 9.

Proof. The proof of Lemma 1 of [9], p. 160 generalizes easily to the non-metric
case.

LEMMA 5.3. If the continuum X is hereditarily arcwise connected, then it is locally
connected.

Proof, By Lemma 5.2 each subcontinuum of X with empty interior is degenerate.
Therefore X is locally connected according to Lemma 5.1.

LEMMA 5.4. If the continuum X is locally connected, then it is a tree. Consequently,
if X is hereditarily arcwise connected, then it is a free.

Proof. The first part of the lemma is established in [11], the proof of Theorem 1.
Therefore the second one follows from Lemma 5.3.

Proof of Theorem 5. By Proposition 1 there exists a monotone decompo-
sition @, (resp. @,) of X satisfying condition (1) (resp. (2)). Let I be an irreducible
subcontinuum of X. By Lemma 3.2 each layer of I is contained in some element
of @,. Tt implies that 9, refines 9,. The quotient space X/%, as well as X|9, is heredi-
tarily arcwise connected according to [10], Theorem 3. Therefore they are both
trees by Lemma 5.4. Thus Lemma 5.2 implies that each subcontinuum of X~ with
empty interior is contained in some element of &,. It follows that &, refines 2,,
509, = 9,. Observe that we have proved, by the way, that &, satisfies condition (3).
Let now, 9, be an upper semi-continuous monotone decomposition of X with a tree
as the quotient space. By [5], Theorem 4.1, p. 655, the quotient space X|2, is heredi-
tarily arcwise connected, so by Lemma 5.2 each subcontinuum of X with empty
interior is contained in some element of 2. Therefore @, refines Z,, so P, satisfies
condition (4). Putting & = 2, we have proved that & is a required decomposition.

Hausdorff continua irreducible about a finite subset were investigated recently
by Vought [11]. He has proved that such a continuum has a minimal decomposition
with respect to being upper semi-continuous, monotone and having a tree as the
quotient space and elements with empty interior if and only if the continuum contains
no indecomposable subcontinua with non-empty interior. Therefore our Theorem 5
seems to be a completion to his work.

I would like to thank Professor J. J. Charatonik for his valuable advice and
guidance during the preparation of this paper.
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