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Enlargements of Boolean algebras and Stone space
by

H. Gonshor (New’ Brunswick, N. J.)

Abstract. We study enlargements of structures which contain both a Boolean algebra and its
Stone space. The main results are that duality is not preserved, but comes close to being preserved
by taking enlargements.

Introduction. In [1] the author studied enlargements of Boolean algebras showing,
for example, that such enlargements always contain completions as subquotients.
In [2] the author proved an analogous result for projective covers of compact Haus-
dorff spaces. These results suggest that it may be of interest to study enlargements
of structures which contain both a Boolean algebra and its Stone space. The natural
question to ask is to what extent the dualily is preserved. Since the power set is not
absolute, i.e. external sets exist, the question is non-trivial. In a way which will be
made precise in the paper, we shall see that duality is not preserved but it comes close
to being preserved. :

Tt also appears to be worthwhile to extend this study to other types of pairings,
e.g. topological groups and their character groups. Some work along these lines
appear in [3, Section 8] where the nonstandard huil of a normed space is compared
with the nonstandard hull of its conjugate space.

We assume that the reader is familiar with the basic properties of Stone duality
for Boolean algebras.

Section I. Elementary results. Let M be a structure containing an infinite Boolean
algebra B, its Stone space X, and the integers N. ‘We use the notation (x, b) for
the usual pairing. If is well known (e.g. see [5]) that any enlargement M* contains
in a natural way an enlargement B* of B, X* of X, and N* of N. (Although only B is
really needed, it is convenient to have the structure as above.) )

Many facts follow immediately from transfer. For example we have that B* is
a Boolean algebra. Furthermore we have:

TuEOREM 1. There is an internal one-one correspondence between the elements
of X* and internal homomorphisms of B* into (0, 1). Thus X* is a subset of the Stone
space of B*, )

" Note. Many other pairings which occur in mathematics have an infinite range,
e.g. the set of complex numbers Z. In such a case the corresponding result must use
an enlargement of the original range. B
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Let S(B¥) be the Stone space of B*. We want to compare X* and S(B*). We
shall use the *open subsets of X* as a basis for the topology on X™*.

TueoreM 2. The topology on X* is generated by the *clopen sets.

Proof. Every open set in X is a union of clopen sets. The result follows by
transfer. ‘

Note that although X is of course a subset of X'* it is not a subspace! In fact,
the following result follows immediately from concurrency.

TreoREM 3. If X is a Ty space and if the *open subsets of X* are taken as a basis
for the topology on X* then the induced subspace topology on X is discrete.

This result should not be disturbing since duality transforms subobjects into
quotient objects, in fact, we shall see that X is a quotient space of X*.

TueoREM 4. X'* is a subspace of S(B¥*).

Proof, According to the embedding in Theorem 1 an element x € X* cor-
responds to a map b—f>(x, b) € S(B*) where (x, b) is defined by transfer. Since the
topology on S(B*) is generated by sets of the form (f: f(b) = 1) where b e B¥,
the subspace topology on X* is generated by sets of the form [x: (x, ) = 1]. By
transfer this is precisely the collection of *clopen sets. Hence by Theorem 2 this
induces the given topology on X*.

The inclusion of B in B* induces a continuous map from S(B*) to X which,
in turn, induces by restriction a map 7 from X* to X. By Stone duality the map may
be defined as follows:

If xeX* then Tx is the unique x'e X such that (Vbe B) [(x, d) = (x', b)]

THEOREM 5. The monad of a point x € X is precisely the set of all y € X* such
that (Vb e B) [(y, b) = (x, b)].

Proof. The sets of the form. [y: (y, b) = (x, b)] for fixed b form a basis of
open sets at b. The result follows immediately. ' '

Now since X is compact Hausdorff, the monads of the points of X form a par-
tition of X*. Thus it follows from Theorem 5 that the above map T is precisely the
map which takes X into its standard part.

Section 2. The relationship between X™* and S(B*).
THEOREM 6. X* # S(B*), i.e., B* has external homomorphisms into (0, 1).

Proof. Since stone spaces are compact it is enough to show that X* is not
compact. Now for any integer N, X can be expressed as a union of » disjoint non-
empty clopen sets. By transfer this is valid in X* for an infinite integer w. Since
unions are absolute this shows that X™* is a union of an infinite number of disjoint
non-empty *clopen sets. Hence, by the way the topology is defined on X*, X* is
not compact.

THEOREM 7. X*.is dense in S(B¥).
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Proof. Let [f: f(b) = 1] where be B* and b # 0 be a basis set in S(B*). By
applying transfer to the prime ideal theorem for Boolean algebras we see immediately
that X* intersects this basis set.

Section 3. The algebra of *clopen sets in X*. We are now interested in the dual
problem, i.e. that of comparing the algebra of *clopen sets in X* to B*. We have
a result which is similar to Theorem-1 which also follows immediately from transfer.

THEOREM 8. There is an internal one-one correspondence between the *clopen sets
of X* and the elements of B*, given by [x: (x,b) = 1)] « b, which preserves the
Boolean operations.

THEOREM 9. The *clopen sets of X* are the same as the internal clopen sets.

Proof. *clopen sets are internal and open by the definition of the topology.
By transfer the complement of a *clopen set is *clopen hence open. Thus a *clopen
set is clopen in the topology. Conversely any internal clopen set 4 has the property
that for every p € A4 there exists a *open set U such that p € Uc 4. By transfer A4 is
*open. Similarly A’ is *open. Hence, again by transfer A4 is *clopen. (Note that
complements are absolute in sets of lowest type.)

Note. In understanding the above proof it is essential note to confuse con-
cepts such as open in the topology and *open which is obtained by transfer, although
the two are closely related because of the way the topology is defined.

THEOREM 10. All monads are clopen.

" Proof. Since the monads from a partition of X* it suffices to prove that monads
are open. Let x € X and let p € p(x) the monad of X. We must find a *clopen set V'
such that p € ¥'<p(x). Now we know that for any finite set by, b, ..., b, of elements
in a Boolean algebra and point f in its Stone space

Vilf8) = 11(£, (1 8) = 1.
Hence

3b{Vi(b<b) AVF[(Vil(f, b) = 1])=(f, b) = 1} .

By transfer the corresponding result is true with respect to B* and X* for *finite
sets. Now although B is infinite it is well-known that there exists a *finite subset F
of B* containing B. By transfer any internal subset of a *finite set is *finite. Now
D = (beB*: (p,b) = 1) is an internal set since it is definable. Hence F n'D is
*finite. Note that [p e B: (p, b) = l]eF n D. By the above remark there exists
a de B* such that

(Vbe Fn DY(d<h) A(Vfe X¥H[(Vbe Fn D)(f, b) = 1)—=(f, d) = 1)].

Let V = (g€ X*: (¢, d) = 1). Then Vis *clopen. Clearly by the way .D was defined
(VbeFn D)(p,b) = 1. Hence (p,d) = 1 thus p e V. Now let ¢ be arbitrary in V.
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Since (Vb&F n D)(d<b) it follows that (Vbe Fn D)(g,b) = 1. In particular,
" since [peB: (p,b) = 1]lcFn D, then (YbeB)[(p,b) =1—(q,b) =1]. Also
(p. b) = 0—(p, b") = 1(q, ') = 1->(g, b) = 0. Therefore (Vb € B)[(p, b) = (g, b)].
Since p e u(x) it follows from Theorem 5 that ¢ € u(x). This proves that Ve p(x)
and completes the proof of Theorem 10.

Note. The proof can be simplified if stronger saturation properties are assumed.
In fact, it seems surprising that the result is valid even without these further saturation
conditions. .

It is amusing that the trite statement that a “subset of a finite set is finite” plays
a crucial role (by transfer) in proving nontrivial theorems.

COROLLARY. X* contains external clopen sets.

Proof. By an important theorem of W. A. J. Luxemburg, [4, Theorem 2.26]
non-principal filters have external monads. Hence every point in X which is not
discrete has an external monad in X*. Since X is compact and infinite such points
exist. By the theorem such monads are clopen. Theorem 10 gives another proof
that X* is hot compact. In contrast to the proof of Theorem 6, the partition used
here involves external clopen sets by the corollary.

We have shown ‘that the correspondence in Theorem 8 1denuﬁes B* with
a proper subalgebra of the Boolean algebra. B(X*) of clopen subsets of X*.

Since the *clopen sets from a basis for the topology on X*, every clopen set
contains a non-empty *clopen set. Hence B* is dense in B(X *) in the sense made
precise by the following theorem:

THeOREM 11. For all y>0 in B(X *) there exists an x € B* such that 0<x<y.

THEOREM 12. B* is not complete.

Proof. This is a special case of a general result in the theory of Boolean algebras. '

If B is a proper subalgebra of B’ and if (Vy € B')[y>0—(x € B)(0<x< )] then Bis
not complete. In fact, it is easy to see that if y € B'—B then (x € B: x<y) does not
have an Lu.b'in B.

CoNCLUSION. As mentioned in the introduction it would be interesting to
extend this study to other kinds of pairings. We conjecture that the principal theorems
in this paper, Theorems 6, 7, 10, and 11 have analogues in many situations. On, the
other hand [3, Theorem 8.7] runs counter to the spirit of this conjecture so that it is
not clear what type of results are to be expected.

References

[1], H. Gonshor, Enlargements contain various kmds of completions, to appear in the proceedmgs
of a symposium on nonstandard analys:s held in Vlctona, B. C.'in May, 1972.
[2] — Projective covers as subquotients of enlarg , Israel J. Math, 14 (1973), pp.-257-261.

icm°®

Enlargements of Boolean algebras and Stone spaces 39

31 C.W. Henson and L. C. Moore, Ir., The nonstandard theory of topological vector spaces,
Trans. Amer, Math. Soc, 172 (1972), pp. 405-435.

‘41 W.A.J. Luxemburg, 4 general theory of monads in W. A. J. Luxemburg, ed., 4pplications
of model to algebra, analysis, and probability theory, New York 1969, pp. 18-86.

i[51 A. Robinson, Nonstandard Analysis, Amsterdam 1966.

Accepté par la Rédaction le 29, 10, 1975


Artur




