Semi-confluent and weakly confluent images
of tree-like and atriodic continua *

by

E. L. Grace (Tempe, Ariz) and Eldon J. Vought (Chico, Calif.)

Abstract, Let X be a compact metric continuum and fbe a continuous function from X onto ¥,
The principle results are as follows. (1) If X is arc-like and f is semi-confluent, then ¥ is atriodic.
) If X is tree-like and /'is semi-confluent, then Y is hereditarily unicohetent. (3) A new proof that ¥
is atriodic if X is atriodic and Suslinian and f'is weakly confluent. (4) An example is given where Xis
arc-like and non-Suslinian and f'is a weakly confluent map onto a simple triod,

Confluent maps were introduced by Charatonik [2] in 1964 and have been
studied extensively since. More recently this notion has been generalized by Macko-
wiak [5] and Lelek [4] to that of semi-confluent maps and weakly confluent maps,
respectively, Mackowiak has extended to semi-confluent maps [5, p. 262] the theorem
due to Charatonik [2, p. 217] that the image of a A-dendroid under a confluent map
is a A-dendroid and in addition he has shown that the semi-confluent image of an
arc is an arc [5, p. 262]. Two theorems of the present paper give the results that the
image of an arc-like continuum under a semi-confluent map is atriodic and that the
image of a tree-like continuum under a semi-confluent map is hereditarily unico-
herent,

As corollaries we obtain the tesults of Maékowiak that the semi-confluent image
of an arc is an arc and, that the semi-confluent image of a A-dendroid is a2 A-den-
droid. Using Bing’s theorem that any hereditarily depomposable, hereditarily unico-
herent, attiodic continuum is arc-like, wo also obtain as a corollary the result that
the semi-confluent image of a hereditarily decomposable arc-like continuum is arc-
like (and hereditarily decomposable).

Concerning woukly confluent maps, the main result is that the weakly confluent -
image of an atriodic continuum is atriodic, provided that the domain is Suslinian.
An example of a weakly confluent mapping of an arc-like continuum onto a simple
triod is given to show that the Suslinian condition cannot be dropped from the
hypothesis even with the stronger hypothesis that the continuum is arc-like, A cor-
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ollary of the main result on weakly confluent maps establishes that the weakly con-
fluent image of an arc is an arc or a simple closed curve,

For each of the foregoing results on semi-confluent maps, a corresponding result
(having a similar proof) for circle-like continua is also given. :

Throughout this paper a continuum is 4 compadt, connected metric space and
all maps are continuous. A map f from a continuum X" onto a continuum ¥ is
confluent if for each continuum K< Y and each component C of £ (K), £(C) = K;
if for every continuum K< ¥ there exists at least one component € of £ I(K") such
that £(C) = K, then fis weakly confluent; and if for each continuum K< Y and cach
two components Cy, C, of f ~H(K) either £(C,)af (Cy) or f(C,) < f(Cy) then f is
semi-confluent. It is obvious that every confluent map is semi-confluent and it is
known that every semi-confluent map is weakly confluent [5, p. 254]. A chain or
linear chain (vespectively, circular chain) is a finite collection {Cy, ..., C,} of open
sets such that Ci() C; # & if and only if [i—j|<1 (respectively, |i—jl<1 or
li—jl = n~1). A continwum X is arc-like (respectively, cirele-like) if for every ;>0
there exists a cover of X by a linear chain (respectively, circular chain) of mesh Jess
than ¢, i.e., a linear chain (respectively, circular chain) whose elements, called /inks,
have diameters less than e. A tree-chain is a finite coherent collection of open sets
such that no three of the sets have a point in common and no subcollection is a cir-
cular chain. A continwum X is tree-like if for every s>0 there exists an open cover
of X by a tree chain of mesh less than ¢. A continuum is Suslinian if it docs not
contain an uncountable collection of mutually disjoint, nondegenerate subcontinua,
A triod is the union. of three continua such that the common part of all three of them
is-a nonempty proper subcontinuum of éach of them and is also the common part of
each two of them. A continuttm is atriodic if it does not contain a triod.

TeworeM 1. If f is a semi-confluent map. defined on an are-like continuum X,
then Y = f(X) is atriodic. i

Proof. Suppose ¥ contains a triod W = 4 U B U € where A, B and C are
contihua and 4 NB=4NC=BnC = 0, a proper subcontinuum of A, B
and C. Let 4, b and ¢ be points in ANQ, B\Q and C\Q, respectively. If ‘there exists
a component of f (4 U B) that contains a point of f~%(d) but no point of £~(b),
then every component of f~1(4 U B) that contajns a point of £ ~*(b) must also contain
a point of f~*(a), due to the semi-confluence of J. Hence,
of f7(4 U B) that intersects f ~%(a) also intersects f
intersects £ () also intersects f ~(a);

either every component
(b or every component that
without loss of generality we will agsume the
former. Now let X, be a component of F 4 v Q) containing points ¢’ and ¢’ such
that f(a) = a, f(c') = ¢. Then let X be the component of £~ 4 U B) that con-
tains 4’ and hence a point b’ such that JS(®) = b. Let & = min{dist(a, B u C),
dist(c, 4 U B), dist(b, 4 U C)} and let % be an open cover of ¥ by sets of diameter
less than }e. Denote by & a linear chain covering X which refines { £~1(T)| U e %}.
Let T,.,T and T, be links in 7~ containing ¢, 4" and ¢/, respectively, and U,, U,

and U, be members of 4 such that f T)<eU,f(Ty)=U, and F(T)<cU,. Des
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signate by Ao & subcontinuum of AN\U, that contains Q and intersects U,. Designate
by By @ subcontinuum of B\U, that contains Q and intersects U, and: for which there
is 2 0poimt b, lying in X, and in a link of 7 between T, and Ty, such that

Fo") e By O U,. Define C, and ¢ analogously to By and b". Consider the com-

ponents of f~1(Wy), where Wo = Ay Byw Cy, and let Xj» and X,. be the
components of F Y W,) containing b and ¢, 1‘f:spcct1ve1y, ‘

6 T'is a link of 7~ between T and T, then T mteTsects X, and so f (T) is con-
tained in the & neighborhood of A U C. Sirtce clis‘t(/ (6", 4 u’C)>%e, it follf)ws
that /(0" &1 CT). Bul Xowe uirnr is‘a lxlnk of 7’ b.etwecn‘ 1’7; and T}, smc'e
KXo (} (T Ty W Ty) = &, and so FAGS) qf/ (X). Similarly f(c )”d:' J(Xyn). This
contradicts the semi-confluence of f, since /(¢”) &f (X») and f(0") e f(Xpr), and
completes the proof.,

Turorem 2. Iff Is « semi-confluent map defined on a tree-like continuum X, then
Y = f(X) is hereditarily unicoherent,

Proof. Suppose Y is not hereditarily unicoherent; i.e., assume Y. contains
a subcontinuum S such that = A w B where 4 and B are subcontinua anc%
An B =Pu Q,aseparation. Since f is weakly copﬁuen:c, there is a component ];X'
of £=1(8) such that £(X”) = 8. Tt is clear that f | X' 'is s.em1-conﬂuent 80 no generality
wfll be Jost if we take X to be X7, Let ¢ be Jess than § fhat P, Q)and 1et.421 be an open
cover of § such that if U e % then the diameter of U is less than e and if both U n 4
and U~ B are nonvoid then U n (4 n B) # @ Let ,?‘ be a trce-coyer of X tha}i
refines { £~ 1 (V)| Ue}. Let [, be a continuous 1‘"met1on froin A. onto [O,tl] [sluc2 ;
that /)y I'(O) s Pand [ (1) = % and 10}/’,, be a continuous function from B on q ,
y EF (D) = Q and S5 (Q2) = P .
SUChJ: h\:hifge gu?lp[‘u?to pictl.]n'e S with 4 on the right-han‘d side, B on the 1eiit-hzl}d
side, P at the top and Q at the bottom, Using 77, the function f, and the {cun;:‘ ﬂc;:ne:
and fy;, we now define a function g f}:o;, X in‘toltl‘;e ;zaulfs that keeps track o
amount of “clockwise wrapping” of X around . _
o \Lr;t T be & member of 713 Luch that £ (T) = ANB and dist(f(T), Q) <dllst( f 1("72 , .;)
Consider any lincar chain {Tf, .., Ty} in & with T"as the first link, 1i.e., =T}.

3 ) ser. defi T, so that,
For each x in 7T, lot g (x) = f4(f (). Suppose g has been defined on 191 I

forj = 1,2, . i, thore cxist integers &jand kJ , with k3 = k{ = 0, such that o
(1) for each & in 7y, g (¥) = fa( £ () 245 i £ (%) e A and g(x) = fo £ () +2K;
fif(x)eB and o p
@) &) = kY i dist(/£(7), Q)<dist(£(T), P) and kj—1 =kj if dist(£(7)): P)
Qdist(f(TJ), Q).
If x & Ty..q, then let

FlFO)+2k S,
90 = {fn(f(x))+2k{' if f(x)eB.
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(1) I (T) O f(Tis1)=ANB, then
a) let kiy; = ki and kit = ki’ +1, if dist(f(T), P)<dist(f(T), Q) and
dist( f(Te44), P)>dist(f (Ti4+0), Q) and
b) let kiyy = ki and kiyy = ki'—1, if dist(f(T), P)>dist(f (T, Q) and
diSt(f(THl): P)<d15t(f(Ti+1)’ Q)
2) If f(T) U f(Ti41)=B\A, then

a) let ki,q = kj+1 and ki'y = k', if dist(f(T), Q) <dist(f(T}), P) and
dist(f (Tys4), Q) >dist(f (Tyyq), P) and
b) let kinq = ki—1 and ki%y = ki, if dist(f(T), Q)= dist(f (7)), P) and
dist(f (Ti41), Q)<di5t(f(Ti+1)»»P)-
3) Otherwise let ki, = k} and ki, = k.

n
Defined in this way, g is continnous on {J T;. But each member of 7 is in a linear
i=1 .

chain having T as the first link. Defining g as above on each such linear chain we
have g continuous on X. The crucial facts that insure that the definition of g is not
ambiguous are that 7 has no subcollection that forms a circular subchain and if T'is
alink such that f(T) N 4 5 & and f(T) N B # @ then dist(f(T), P)<}dist(P, Q)
or dist(f(T), Q)<}dist(P, Q). Since g is continuous and X is a continuam,
g(X) = [m, M] a closed interval of real numbers. Let X, and x, be points of
g~ *(m) and g~ *(M), respectively. Note that a continuum in X containing x,, maps
onto a set in S “going around” S from f(x,) in a “counterclockwise” direction.
Similatly for x,, except that the direction is “clockwise.”

There are two cases: (1) f(x,,) and f (x,,) do not both belong to the same one
of the sets 4 and B, and (2) £ (x,,) and f (x,,) both belong to 4 or both belong to B.

Case 1. We will prove the theorem for the subcase where fi(x,) € B\A4 and
f(xy) e ANB. A similar proof applies to the subcase where f(x,) € ANB and
+ [ (o) e BNA. Let he (f4( f (%)), 1). We wish to extend B in the direction of incteas-

ing values of £} to include a.point of £ *(A) as follows. Let B, and B, be the images

under fof the x,-component and x,,-component, respectively, of £~ (BUfLA0, M)

The x,-component of f (B U B,, U By,) contains a point of FHLH) but does

not E(inmin a point of f~*(Q). The opposite situation holds for the Xy ~component
of f7Y(B U B, U By). Hence neither of these two components of the preimage of

the conf.inuum B U B, U By maps into a subset of the image of the other, This
contradicts the semiconfluence of f.

. Case 2. First assume that f(xy) € B and f(x,) € B\Q. Let & = } and, using
this &, cc_mstruct B, as in Case 1. Here the contradiction follows as in Case 1, using
B U B, instead of B U B,, u By, The subcase where J(x,) e O and f(xy) € B\P

is handled similarly with the roles of S (x) and f(xy) reversed. In the case where

f(xy) e Qand J (%) € P, the contradiction follows as in Case 1 using 4 instead of

BuUB, u.BM. ;The subcases where f (¥y) and f(x,) are in 4 are essentially like
the omes in which they are in B.
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As corollaries of Theorems 1 and 2 we obtain the following results referred to
in the introductory remarks.

CoroLLARY 1 (Madkowiak). If f is a semi-confluent map defined on I = [0, 1),
then f(1) is an are or «& point.

Proof. Assume f(/) is nondegenerate. By Theorem 1, f(I) is atriodic and by
Theorem 2, /(1) is hereditarily unicoherent. Since f(I) is also locally connected, it
foflows that f(/) is an arc.

CoroLLARY 2 (Madkowiak). I,/ is a semi-confluent map defined on a A-dendroid X
then f(X) is @ A=dendrold. .

Proof. By Theorem 2, /(X)) is hereditarily unicoherent and by [5, p. 261], £ (X)
is hereditarily decomposable,

A hereditarily decomposable continuum is arc-like if and only if it is atriodic
and hereditarily unicoherent {1, p. 660]. This result together with Theorems 1 and 2
yiclds the following.

COROLLARY 3. If F it @ semi-confluent map defined on & hereditarily decomposable
arc-like comtimum X, then Y = f(X) is arc-like. "

Proof. We know from Theorems | and 2 that Y is atriodic and hereditarily

unicoherent. From [5, p. 2617 we also know that Y is hereditarily decomposable. -

Therefore it follows that Y is arc-like,

Corollary 3 gives o partial answer to Mackowiak’s question [5, p. 2§3] (first
asked about confluent maps by Lelek [4, p. 102]): Is the image of an arc-like con-
tinyum under a semi-confluent map an arc-like continuum?

With slight modifications in the proofs, the preceeding rcs.ults can be altered to
yield the following corresponding results for circle-like continua. '

TrtorREM 3. If f is a semi-confluent map defined on a cirele-like continuum X,
then ¥ = f(X) is atriodic. ‘

THEOREM 4. If f is a semi-confluent map defined on a cirele-like cominuum X, then
every proper subcontimuum of Y = f(X) is unicoherent.

COROLLARY 4. If'f is « semi-confluent map defined on the simple closed curve J,
then f(J) is an ave, « simple closed curve or @ point. .-

W. T. Tngram [3, p. 198] has proved that if Xis an atriodic, 11ercfilte{;'xly ;‘_600111;
posable continuum that is not unicoherent but for which every propet sq continuy: "
is unicoheront, then X' is circle-like, Using this result and the above theorems w

obtain the following,

COROLLARY 5. Iff IS a semi-confluent map defined on @ hereditar ily decomposable
circle-like continuum X, then Y w f(X) is arc-like or circle-like. )
Proof, We know from Theorem 3 that ¥is atriodic and from [5, P 261] tg?tgliz
hereditarily decomposable. From Theorem 4 evety proper S}‘b“’}t‘mf“m  unico
unicoherent. Tf ¥ is unicoherent then by [1, p. 660, ¥ is arc-ike, If Vis no
herent then by Ingram’s result, Y is circle-like.
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We now turn our attention to the image of an atriodic continuum under a weakly
confluent map.

We first submitted this paper for publication with Theorem 5 (below) proved
under the hypothesis that X is arc-like rather than atriodic. Subsequently we learned
from Howard Cook and Andrzej Lelek that they had proved this theorem under the
more general hypothesis that X is atriodic. With only minor (and, in fact, simplifying)
changes, our proof of the arc-like theorem applied to the atriodic case. Cook and
Lelek are including their theorem in a joint paper to be submitted to the Canadian
Journal of Mathematics. However, at their suggestion, our proof, which is simpler
than theirs, is included here.

Taeorem 5 (Cook and Lelek), If X is an atriodic continuum and f is 4 weakly
confluent map from X onto a continuum ¥ that contains a triod, then X' is not Suslinian,

Proof. Suppose ¥ contains a triod T where 7' is the union of four distinct
subcontinua 4, B, C, and Q such that A N B=BNn C=Cn A = Q. Let a, b,
and ¢ be points of ANQ, B\Q and C\0Q, respoctively. For convenience of notation,
let the distance function for X be such that dist(a, B L C) = dist(h, A U C)
= dist(c, 4 U B) =1. For each ¢ in (0, 1], let N(Q) = {y e ¥|dist(y, Q)<el,
let a,, b, and c, be points of the boundary of N,(Q) in 4, B and C, respectively, and
let 4,, B,, C, and T, be subcontinua of A, B, C and. T, respectively, in the closure
of N,(0), such that 4,, B, and C, contain {a,} {J 0, {6} U Qand{c,} U 0, respect-
ively, and T, = 4, UB, U C,. | i

For each ¢ in (3, 1], let 77 be a component of f~(T;,) that maps onto T, let
4, by and ¢ be points of TV in f “Hap), £7Yb,) and £Y(e,) respectively, and let
K.(4), K,(B) and K;(C) be the a,-component of /° T ANN 4 (Q)), the b!-component
of f7Y(BNyy, (Q)) and the /- component of f~(C,\Ny4 (Q)), respectively, Note
that T;> K,(4) U K(B) U K,(C) and that each of K[(4), K(B) and K,(C) is non-
degenerate since K,(D) contains a point of SHCIIN4(Q)]), for D = A, B and C.

For each ¢ in (}, 1) and any a, B and y in (¢, 1] either T/~ K(4) = @ or

T,nKyB)=@ or T K(C) =, since otherwise T/ U KLA) v Ky(B) U K,(C)
is a triod in X It follows that, for each ¢in (%, 1), there is D = 4, B or C such that
if §isin (¢, 1] then T/ K5(D) = @. For each g in (%, D let D, be such a D. It follows
that there is an uncountable subset £ of (#, 1) such that if & and § are in £ then
D, = Dj. Assume without loss of generality that there is an uncountable subset E of
(£, 1) such that if ¢ is in E and « is in (e, 1] then T~ K (A) = &. Then
{K ()| & is in E} is an uncountable disjoint collection of nondegenerate subcon-
tinua of 4, since E is uncountable, and if ¢ and § are in E and s<§ then K,;(A)CT:
and T; n K3(4) = &, .

Restating Theorem 5 we get the following.

TuEOREM 5. If fis '@ weakly confluent map defined on an atriodic, Suslinian con-
tinuum X, then Y = f(X) is atriodic. '

COROLLARY 6, If X is an arc-like or circle-like contimumm and [ is a weakly con-
JSluent map from X onto a continuum Y that contains g triod, then X is not Suslinian.

icm

Semb-confluent and weakly confluent Tmages of tree-ltike and atriodic continug 157

COROLLARY 6. If [ is a wedkly conflyent map defined on an arc-like or circle-like,
Stuslinian continuum X, then Y = f(X) is atriodic.

The following examples show that the Suslinian condition in Theorem 3' s
necessary to insure that the image ¥ is atriodic, even when the domain is are-
like or circle-like.

Examperr 1. A weakly confluent map from an arc-like continuum X onto
a simple triod, Let

A= A{(x, p)] ~2€x€2 and y is in the Cantor set},

B {(x, )] x = ~2 and pis in some deloted open interval of length 1/32"~1

of the Cantor set},

C = {(x, )| ¥ == 2 and p s in some deleted open interval of length 1/3%" of the

Cantor set} and

X=AduBuC,

Let Y be the simple triod consisting of the unit interval on the y-axis and the
interval [—2, 2] on the x-axis. Let f be the standard nondecreasing map from the
Cantor set onto the unit interval (f(}) = f(3) = &, etc.). Let F: X— ¥ be defined

as follows

{ 0, 1) if x=0and (x,5)e4,
0,0 if %] =y and (v,y)ed,
(=~2,0) if (v,»)eB,

F((x,y)) - (250) ]f (x,y)GC, ‘
(o, f(y)-"}%)lxl) if 0<|x|<y and (x,y)ed,
<%§~y“:mz'i[, 0) if y<|x| and (x,y)e 4.
y—2 X :

The last two patts of the definition of ¥ merely say that Fis linear on intervals
between points where the first four parts of the definition apply, It is straightforward
to cheek that #is a weakly confluent map of the arc-like continuum X onto the simple
triod Y. Note that F maps each vertical interval in X onto either (-2, 0) or (2, 0).
I X" s the decomposition of X gotten by “shrinking” each maximal vertical interval
in X to a point, and ¥ is the map on X’ derived from F, then X is arc-like and F' is
a light, weakly conflluent map from X' onto Y.

Examprr 2, A, weakly confluent map from a circle-like continuum onto a simple
triod,

Let X be the continuum obtained from X of Example 1 by identifying (2, 0)
and (2, 1) and let F be the map on X" derived from F. Then F" is a weakly con-
fluent map from the circle-like continuum X” onto a simple triod.

COROLLARY 7. If £ is a weukly confluent map defined on I = [0, 1], then f (I) is
an are, a simple closed curve or « point.

5 — Fundamenta Math, Cr
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Proof. Assume f (I) is nondegenerate. By Theorem 5 f () is atriodic. Since f(I)
is also locally connected, f(I) is an arc or a simple closed curve. :
To show that a simple closed curve can be obtained as the wee}kly cm?ﬂuent
image of I, and also to show that the weakly confluent image of an arc-like continuum
need not be unicoherent, consider the following example.
ExAMPLE 3. A, weakly confluent map from I = [0, 1] onto the unit circle, J, in
the plane. ‘
If el let £(6) = ™. Cleatly f is a weakly confluent map from I onto J.
COROLLARY 8. If f is & weakly confluent map defined on « simple closed curve J,
then f(J) is an arc, a simple closed curve or a point.
ExAMPLE 4. A confluent map from the unit circle, J, in the plane onto [~1, 1].
If (x,y) is in J, let £((x, ) = x. Clearly f is a confluent map from J onto

[—1,1L
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A generalization of right simple semigroups
by

F. E. Masat (Glassboro, N. J.)

- Abstract. An element s in a semigroup S is called a right simple element if 5§ = S. This paper
developes the notion of right simple clements, and uses it to generalize right simple semigroups.
A non-right simple semigroup with right simple elements is called a right siinple element semni-
group and denoted as RSE. The subset of S of right simple elements is denoted by R, and the non-
right simple elements by N. If R is a right simple subsemigroup (right group, subgroup) of S,
then S is called a partial right simple semigroup (partial right group, partial group) and denoted
by PRS (PRG, PG). While a PRS semigroup is by definition an RSE semigroup, the converse is
shown to be false. )

The structure of RSE semigroups is determined, and a decomposition found for R. The exist-
ence of a maximum right ideal is found to be a necessary, but not sufficient, condition for right
simple elements to exist. A partial converse is given,

The structure theorems are then applied to RSE semigroups possessing other properties, such
as the descending chain condition on right ideals of N, finiteness, or left (right) cancellativity. It is
shown that, if §'is a RSE and left simple. (left cancellative), then §'is a PG (PRG). For right cancel-
lativity, the development parallels that of the Baer—Levi Theory.

1. Introduction. Recall that a semigroup S is called right simple if for all s in S,
$8 = §. An element x in a semigroup S will be called a right simple element if xS = S.
Note that a semigroup is right simple if and only if each of its elements is a right
simple element. A

This paper uses the concept of right simple elements to generalize right simple
semigroups, In particular, semigroups containing right simple elements are investi-
gated, with some of the results obtained analogous to those obtained for right simple
semigroups. Throughout the paper, a semigroup containing right simple elements
will be called a right simple element semigroup, and it will be denoted by RSE. The
class of RSE semigroups therefore contains the class of right simple semigroups.

In Section 2, various structure theorems are presented for RSE semigroups.

. The results of Section 2 are then used in Section 3 to discuss homomorphisms on RSE

semigroups, and to extend group homomorphism results. In Section 4, applications
of Sections 2 and 3 are developed for RSE semigroups where other conditions such
as right (left) cancellativity, left simplicity, finiteness, are also present. Examples
appear in various parts of the paper.

5‘


Artur




