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Representation of Baire functions as continuous functions
by
C. T. Tucker (Houston, Tex.)

Abstract. Suppose H is a lattice ordered linear space of functions containing the constant
functions, K is the set of all pointwise limits of sequences of functions in F, and ¢ is a linear lattice
homomorphism defined on K. Then g preserves pointwise convergence of sequences. Further if ¢ is
one-to-one and onto. C'(X) for some topological space X then K is closed with respect to pointwise
convergence. .

One of the objects studied in the theory of Baire functions is the Baire system
generated by a space of continuous functions, i.e. given a topological space X and
C(X) the collection of continuous real valued functions on X the Baire system gener-
ated by C(X) is the transfinite sequence C(X), B{(X), B1(X), ..., B,(X), ..., where
B,(X) is the set of pointwise limits of sequences of functions in C(X), B,(X) is the
set of pointwise limits of sequences of functions in B;(X), and in general if 2 is an
ordinal B,(X) is the set of pointwise limits of sequences of functions drawn from

U B(X). Seec Mauldin [1] and [2] for a discussion of Baire systems. A question of

p<a

interest is when can a term be added before C(X), i.e. when does there exist a proper
subset H of C(X) such that C(X) is the set of all pointwise limits of sequences of
functions in H? .

Here this question is generalized to the representation of Baire functions as
continuous functions. Given a lattice ordered linear space H of functions containing
the constant functions and X the set of all pointwise limits of sequences of functions
in H, when does there exists a one-to-one linear lattice homomorphism ¢ of K or
K* (the set of bounded functions in K) onto C(X) for some X. It is shown here
(Theorem 6) that no such ¢ can exist defined on X unless K is closed with respect
to pointwise convergence. Thus if a term can be inserted before C(X) in its Baire
system, the sequence is constant from C(X) on.

On the other hand, such a ¢ can always be defined on K*. If w denotes the func-
tions in K* which take on only the values 0 and 1, every function in K* is the uniform
limit of a sequence of functions each of which is a linear combination of the func-
tions in w (Theorem 7). The functions in w form a Boolean algebra, so by the Stone
representation theorem they are isomorphic to the open and closed sets of a totally
disconnected compact Hausdorff space X. The natural mapping between K* and


Artur


182 ) C. T. Tucker

C(X) is a one-to-one linear lattice- homomorphism onto C(X). However, if ¢ is
additionally required to preserve pointwise convergence of sequences of functions,
then the existence of ¢ from K* onto any C(X) whatsoever implies that K* is finite
dimensional (Theorem 8).

Suppose X is a set, H is a lattice ordered vector space of real valued functions
defined on X containing the constant functions, K is the set of all pointwise limits
of sequences of functions in H, X* is the set of all bounded functions in K, Y is a set,
and L is a lattice ordered vector space of real valued functions defined on Y. Also ¢
will denote a linear lattice homomorphism from either K or K* .into L.

THEOREM 1. Suppose f1, f5, fa, ... is & non-increasing sequence of functions. of K
-which converges pointwise to the zero function. Then ¢( f1), ¢(f2), @(f3), ... converges
poiritwise to the zero function. '

Proof. (a) Suppose g;, g5, g3, ..- is a non-increasing sequence of functions
of K which converges pointwise to the constant function —1/r, where r is a positive
integer. Denote by LS(H) the set of all functions which are the least upper bounds
of countable subsets of H. For each positive integer p, let {;,}j2, be a sequence

of points of H converging pointwise to g,. Let k;, = max{f;,}. Then {k;}2, is
izi

a non-increasing sequence of points of LS(H) converging pointwise to g,. Let
ki = m<ili'1k,~p. Then k;, k,, ks, ... is a non-increasing sequence of functions in LS (&)
conveging pointwise to the constant function —1/r. Now max(0, k) is in LS(H)
and ‘Z max(0, k;) is in LS(H). For each point x of X there is a positive integer N
suélllﬂtlkxat max(0, k,(x)) = 0 for each positive integer n3N.

Thus for each x,.i max (0, k,(x)) exists. For each positive integer n there exists
a non decrcésing seqLAl;rlxce s My, m3,,, ... of functions in H converging pointwise

to Zmax(o k). Let m, = maxn,;. So that My, My, My, ..

isn

is a sequence of func-
tions in H converging pointwise to Z max (0, k;). Thus Z max(0, k) is in K and
i=1 i=1

o n
Y max(0,k)= Y g, for each positive integer n.
i=1 i=1

(b) Suppose r is a positive integer. Since

max(f,~1/r, 0) = f,—min(f,, 1)),
cp(Zmax(f =1/r,0)) = Z(p(f) @ (min(f,, 1/).
By part (a) there exists a function b of K such that

bz Y max(f,—1/r,0).
p=1
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Thus
0(®> 0( L max(f,=1ir, 0) = 3 0 ()= (min(f,, 11).

Suppose />0 is a lower bound for @(f,)- Then
o) le—(p(min(fp, 1/9)= le—go(l/r) = n(l—@(1/r)
p= p=

which implies that /—¢(1/r)<0. It follows that 0</<1/r(@(1)). This implies that
I =0 and ¢(f,) converges pointwise to zero.

THEOREM 2. Suppose ¢ is defined either on K or K*. Then ¢ = off where B is
a linear lattice homomorphism with the property that B(1) = 1 and o is multiplication
by a function in L.

Proof. Suppose ¢ (1) is not 1. Suppose further that £ is a function in K and x is
a point of X such that ¢ (f)(x) # 0 but ¢(1)(x) = 0. The function f may be assumed
to be non-negative. It can not be true that fis bounded because if there exists a positive
integer # such that n>fthen ¢ (1) (x) = np(1)(x)> ¢ (f)(x): The sequence min(1; 1),
min(2, f), min(3,f), ... converges pointwise to f. By Theorem 1, ¢(min(l, /))

@(min(2, 1)), ¢(min(3, 1)), ... converges pointwise to ¢ ( f). But zp(mm(: f )) (x) =

while @(f)(x) % 0. Thus @(f)(x) = 0.

For each fin ¢(K) (or ¢(K*) let y(f)(¥) = F (*)/@ (1)(x) unless e(Dx) =0
in which case y(f)(x) = 0. Let 8 be yp. Then B is a linear lattice homomorphism
such that f(1) = 1. Let « be multiplication by ¢(1). Thus ¢ = af.

THEOREM 3. Suppose fy,f5, fss ... is a sequence of functions in K which con-
verges pointwise to a function f. Then o(f1), ¢(f2), ¢(f3), -.. converges pointwise.
Furthermore, if f is in K- then @ (f1), ©(f2), @(fs), ... converges pointwise to ¢(f).

Proof. Since multiplication by a point of L preserves pointwise convergence
it may be assumed because of Theorem 2 that (1) = 1.

(a) Suppose fi, f2,f3, ... is non-increasing. Suppose, also, that yis a pomt of ¥
such that o (f)(»), @(2)(), @(f3)(»), ... does not converge. Then there exists
a subsequence f,, fi,,fi,, --- such that <p(f,~")(y)< —(n+1). Thus

@ (—(min(f;,, =m)+n))(»)>1.
Let g, = —(min(f;,, —#)+n) and h, = min(g,, g5, ..., g,). Therefore
hi2hyzhy>.. 20

and hy, hy, iy, ... converges pointwise to 0 but ¢ (,)(») > 1 for each positive integer i.
This contradicts Theorem 1.

(b) Suppose that for each point x of X Y | fi(x)—fi. ()| is bounded. Then
i=1 :
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"
since {Y | fi~fi+1l}ne1 is a non-decreasing pointwise convergent sequence; by (a)
i=1

(O( fiFueiDes = (Ll =0Uue D21

is pointwise convergent.

(c) Suppose that for each point x of X there is a positive integer N such that
if n is a positive integer greater than N, then | f,(x)|<L. It is claimed that for each
point y of ¥ there is a positive integer N, such thatif nis a positive integer greater
than 9, then |o(f,)(»)|<2. Suppose not. Then there exists a point x of X and
subsequence fi,, fi,» fiy» --- such that |o (f;,) (3)] =2 for each positive integer n. Either
there exists a subsequence fj, , f},,fjs» - Such that (f;) (y)=2 or there exists a sub-
SCqUeNCe f;,, f1;:fis» - Such that ¢ (f;,) ()< —2 for each positive integer 7. Suppose
the former. Let g, = max(f;,—1,0). Let k, = min(g,). Thus ¢(g,)(»)=1 and

i<n
e(k)() =1, But ky2k,>ks=... and ky, ky, ks, ..
This contradicts Theorem 1.

1t also follows that if fi,fs,fs, ... converges pointwise to a functi
then ¢(f1), ¢(/f2) @(f3), ... converges pointwise to ¢@(f).

(d) Suppose there is a point y of ¥ such that (f1)(»), ¢ (LY. 0 Y5
does not converge. There is a positive number ¢ such that if N is a positive integer there
are two positive integers m and n greater than N such that | (£,)(3) —o(f(M>e.

By Theorem 1 of Tucker [3] there is a function g which uniformly approximates f
within £g¢ such that there exists a sequence g, gz, gz, - 0f functions in K con-
verging pointwise to g with the property that for each point x of X

converges pointwise to zero.

n K,

8

_,1‘914 1(X)—g:(x)]

i

[}

is bounded.
Since ¢(gy), ©(g2), ©(gs), ... must converge pointwise by (b), there is a positive
integer N, such that if m and n are two integers greater than &, then

le(@m)(MN—o(g.)I<de.

Since fi— g1, f2—Gg2s/5—g3» - 18 a sequence of functions in K such that for cach
point x of X there exists a positive integer N with the property that if n is an integer
greater than N then |(f,—g,)(x)| <+¢ then by (c) there exists a positive integer N,
such that if # is an integer greater than N then |p(f,—g,) (3| <%e. Let mandn be
two -positive integers greater than N;+4#,. Then

e (S (N—e (L) = lo(fi=9.) )+ (g~ )+ gy —gu) (D
<tetletle<e.

Thus @ (f1), ¢(f2), 9(f3), ...

converges pointwise.
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THEOREM 4. Suppose Y is a topological space, ¢ (1)(y) # O for each point y in ¥,
and each function in L is continuous. Then if fi,f5, /3, ... IS a sequence of functions
in K which converges pointwise to a function f, the sequence ¢ (f1), ¢(f2), @(fa), ...
converges poiniwise to a continuous function.

Proof. Since multiplication by a continuous function preserves continuity, it
may be assumed because of Theorem 2 that (1) = 1. )

" Since f;, fs,fss - CODverges pointwise, by Theorem 3, @ (f1), ¢(/2), @(f3)5 -
convergeés pointwise to a function /.

First, suppose @(f1), ¢(fs), ®(fs), ... is non-increasing and / takes on only
the values 0 and 1. There is a sequence k, >k, >k;>... of functions in LS(p(H))
converging pointwise to /. The functions k; may be taken to have values between 0
and 1. Replace k; by max(2k;, 1)—1. Thus for each y in Y either ki(y) = 1 for
every i or there exists a positive integer i such that ky(y) = 0.

Let a = [7Y(1) and B; = ki *(1),.s0 that @ = [ B;.

For each positive integer i, let h;y, A;2, B3, ... be a non-decreasing sequence of
points of ¢(H) converging pointwise to k;. The values of the k;;’s may be taken
to be between 0 and 1. Replace h;; by min(2h;, 1). Let y; = hi;*(1) and thus

©
Bi=U Vi~
i=1 )
Since each function in ¢(K) is continuous, « is closed. Let y be a point of o.

©w ow
Then y belongs to () [ y;;, which in that, for each positive integer 7, y belongs
1

i=1j=
=0

to UJ y;;. Therefore there exists a s IC€ JysJja»J3. --- Of positive integers such
i=1

that y belongs to 7;;, for each positive integer 7.

Let 7 = min(A;;,). Since each h;,>0 there is a function vy;, in ¢~ Y(hy;,) such
that vy, is in H and v;;,>0. Let.w = min(v;;). Then w is in K and by Theorem 3
@(w) = t. Thus ¢ is continuous. Suppose p is a point of ¥ duch that #(p) # 0. This
implies that for every positive integer 7 4;;,(p)>0 and thus k(p)>0. It follows that
ki{p) = 1 for each positive integer i and I(p) = 1.

Since ¢ is continuous and no value of ¢ exceeds 1, t*((0, 1]) is open. Also
t~*((0, 1]) is a subset of o containing y. Therefore = is open and [ is continuous.

Now suppose ¢(f)=@(fo)=e(f3)=... and that [ takes on only values be-
tween 0 and 1. It may be assumed that the values of ¢ (/) are between 0 and 1. Sup-
pose r is a positive integer. Now

o(f) = 3. minfmax(p (/). plr), p+1/r)~plr

r=0
r—1
= ¢ Y min(max(f;, p/r), p+1/r—pir).
‘ o

0

~Thus {(p (ri]max(i(miu(max(fi,p/r),p+1/r)—p+1/r), ~»1/r)+1/r}}i=‘1 is a non-in-
p=0 .

creasing sequence of functions in ¢ (K) which converges pointwise to a function m
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which takes on only a finite number of values and which approximates / uniformly
within 1/r.
Suppose m is not continuous at y. Then, since

min (max (m, m(y)—1/r), m(y)+1jr )—m()

= max (min(m—m(), 1/r), 0)+max (min(m—m(y), 0),

=1/},

one of max{min(m—m(y), 1 /), 0} or max (min(m—m(x), 0), —1/r) fails to be
continuous at y. But both are functions which take on only two values and are the
pointwise limit of a non-increasing sequence of functions in ¢ (K). Thus by an above
argument both are continuous and m is continuous. It follows that / is continuous.

Consequently any function, not necessarily bounded, which is the pointwise
limit of a non-increasing sequence of functions in ¢(K) is also continuous.

By Theorem 1 of Tucker [3], any function which is the pointwise limit of a se-
quence of functions in ¢ (K) can be uniformly approximated by the difference of
two functions each of which is the pointwise limit of a non-increasing sequence of
functions in ¢(X) and is therefore continuous.

If ¢ is defined only on K*, the statement that ¢ preserves pointwise convergence
means that if f;,f;,fs, .- is @ pointwise convergent sequence of functions in K*
then @ (f), @(f2), @(fs), ... converges pointwise and further that if £}, /5, /5, ...
converges to a function f in K* then ¢(f1), @(f2), @(f3), ... converges to ¢(f).

THEOREM 5. Suppose Y is a topological space, each function in L is continuous,
@ is assumed to be defined only on K*, ¢(1)(y) # 0 for each point y of Y, and ¢ pre-
serves pointwise convergence. Then if f1,f2,fs, ... 15 a sequence of functions in K*
which converges pointwise to a fimction f, the sequence ¢(f)), ¢(f2), ¢(f3), ...
converges pointwise to a continuous function.

Proof. This follows from an argument similar to that for Theorem 4.

THEOREM 6. Suppose Y is a topological space, L is the set of all continuous functions
on Y, and ¢ is a one-to-one mapping of K onto L. Then K is closed with respect to
pointwise convergence.

Proof. Since L is the set of all continuous functions on Y, L contains the constant
function 1. Tt was shown in Theorem 2 that ¢ (1) is not zero at a point y of ¥ unless
every function in L is zero there also. Therefore ¢ (1) is not zero and the hypothesis
of Theorem 4 is satisfied. Further ¢ followed by multiplication by 1/¢(1) is a one-to-
one linear lattice homomorphism of K onto L. Thus ¢ (1) may be assumed to be the
constant function 1.

The space L is the set of all pointwise limits of the functions in ¢ (H). By
Theorem 2, ¢~ ! preserves pointwise convergence and K is closed with respect to
pointwise convergence since L is. '

Theorem 6 is not true if the requirement that ¢ is one-to-one is dropped,
e.g. let L be the real numbers and pick a particular point x of X'and let (/) = f(x).

THEOREM 7. If f is a function in K it can be uniformly approximated by a function g
in K which has the property that any bounded subset of its range is finite.

icm
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Proof. Suppose £¢>0. By Theorem 1 of Tucker [3] there exists a function k
which approximates f uniformly within 1¢ such that k is the difference of two func-
tions k; and k, in US(H) each of which is bounded above.

Suppose k; is bounded. Its values may be assumed to be between 0 and —1.
Let hy=h,>hy>... be a sequence of functions in H converging pointwise to k.
The values of &; may be assumed to be between 0 and —1.

Let r be a positive integer such that 1/r<e/4. Then

. r—1
ky =p§omin (max(ky, —(p+1)/r), —plr)+pir

and

r=1
h; = ¥, min(max(h,— (p+1)/r), —pjr)+pir .
7=0
Let
r—1
= Zmax(i(min(max(hi, —(p+Dr), —p/r)-}—p/r), ——llr) .
p=0
Then ¢4, 42, g5, ... is a non-increasing sequence of functions in H converging point-
wise to a function #; in LS(H) which only takes on values which are multiples of 1/r
and which approximates k; uniformly within 1/r. The method of construction may
be extended to the case where &, is not bounded. A function ¢, corresponding to k,
may also be constructed and #, —¢, is the desired function g.
It follows from this theorem that if e is the collection of all functions in X which

take on only the values 0 and 1, then every bounded function in K may be uniformly
approximated by finite linear combinations of functions in .

THEOREM 8. Suppose Y is a topological space, L is the set of all continuous functions
on Y, and ¢ is a one-to-one mapping of K* onto L that preserves pointwise convergence.
Then K* is finite dimensional.

Proof. As shown in the argument for Theorem 6, ¢ (1) (y) # 0 for each point »
in Y. Thus ¢ followed by multiplication by 1/ (1) is a one-to-one linear lattice homo-
morphism of K* onto L that preserves pointwise convergence. Therefore it may be
assumed that ¢(1) = 1.

- Let w be the collection of all functions in K* that take on only the values O
and 1. If there exists an infinite pairwise disjoint subcollection of @, an unbounded
non-decreasing pointwise convergent sequence f;, f5, /s, ... of points of X* may
be constructed. This implies ¢ f;), @ (f2), ¢(f3), ... is pointwise convergent. As ¢~ *
is order preserving ©(f1); ¢(f2), ©(fs), ... is unbounded. But by Theorem 5
o(f1), ©(f2), ¢(fs), --- must converge to a continuous function. This is a contradic-
tion as all continuous functions on ¥ are bounded. Thus any pairwise dlS_]Olnt sub-
collection of w must be finite.

Any non-increasing sequence of functions in @ must contain only finitely many
different terms. Suppose x is a point of X. Let 1. be the collection of all functions
in o whose value at x is 1. There must be a least element of A,, otherwise a non-
2 — Fundamenta Mathematicae CI
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increasing sequence of functions in ¢ with infinitely many different terms could be
constructed. Denote the least member of 1, as f,. Suppose g is a function in w which
is not disjoint from f,. Then either min(f,¢g) or fo—min(fy, g) is 1 at x and if
f.—min(f,, g) is not the zero function, f, is not the least element of A,. Thus g=f..
It follows that the collection of all f; for all x-in X is disjoint and therefore finite.
Then each function in ¢ is the sum of a finite number of f;. Since, by Theorem 7,
each function in K* is the uniform limit of a sequence of functions each of which is
a finite linear combination of functions in ®, K* is finite dimensional.

References

[11 R.D.Mauldin, On the Baire system generated by a linear lattice of functions, Fund. Math. 68
(1970), pp. 51-59.

[21 ~— Baire functions, Borel sets and ordinary function systems, Advances Math. 12 (1974),
pp. 418-450. ) ' o

31 C.T.Tucker, Limit of a sequence of functions with only countably many points of discontinuity,
Proc. Amer. Math. Soc. 19 (1968), pp. 118-122.

Accepté par la Rédaction le 25. 5. 1976

icm

Concerning atriodic tree-like continua
by

W. T. Ingram (Houston, Tex.)

Abstract. In this paper it is shown that there is a collection G of atriodic tree-like continua
such that if M is a compact metric continuum then there is a member of G which is not a continuous
image of M. Thus, there are atriodic tree-like continua which are not weakly chainable,

1. Introduction. In 1934 Z. Waraszkiewicz [6] presented a collection of continua
with the property that no compact metric continuum can be mapped onto every
member of the collection. Each continuum in the collection is planar, and each con-
tains a simple closed curve.

Russo [5] proved that there is a collection of tree-like continua with the property
that no compact metric continuum can be mapped -onto every member of the collec-
tion. Each continuum in this collection is planar and each contains a simple triod.

In this paper we show that there is a collection of atriodic tree-like continua
with the property that no compact metric continuum can be mapped onto every
member of the collection. The members of this collection can be embedded in the:
plane in such a way that they form a collection of mutally exclusive continua.

The proof of Theorem 2 depends heavily on results found in [3], and throughout
this paper many references to that paper will be made.

2. Notation and conventions. As in [2] and [3], T = {(¢, 0)| 0<¢ <landf =0
0 = im, or 8 = n}, O denotes (0, 0), 4 denotes (1, 37), B denotes (1, ), and C de-
notes (1, 0). (The author incorrectly labelled 4, B, and C in [3].)

The mapping f of T onto T'is as in [2, pp. 99--100] while r is as in [3, p.75] and
g=1rf (e g=rof).

Throughout this paper all spaces are metric and the term mapping means con-
tinuous function. The two projections of Xx ¥ onto X and Y, respectively, are
denoted by p, and p, while the projection of a product of sequence of spaces onto
the ith factor space is denoted by =;.

‘We will use the convention that if each of p and g is a positive integer and
p<gq then pA/q denotes (p/q, 1), pB/q denotes (p/q, w), and pC/q denotes (p/g, 0)-

3. Main Theorems. The proof of the following lemma is essentially the same
as the proof provided by Read [4, Lemma p. 236]. A proof is included here only

for the sake of completeness.
2%
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