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THEOREM 3. If J, BV = HC, then the following conditions are equivalent

(a) J, is recursively inaccessible,

®) J, 0 p(w) E 43-CA.

Again (a) implies that J, n ¢ () is then a f-model. Theorem 2 generalizes ton
bigger than 2 as follows:

TreoreM 4. If J,EV =HC, then the following conditions are equivalent,

@ J. 0 p (@) = Z},,-CA, |

(b) J, is nonprojectible by means of a I,~fimction,

(¢} J F Z,-separation scheme,

(@) J, possesses a cofinal tower of transitive L~elementary subsysiems.

Clearly if (d) then J, N p (o) is a f-model.

“In limit” this is nothing else but a version of the “gap theorem”

THEOREM 5 ([21): If J,E V = HC, then the Jollowing conditions are equivalent:

@ T 15 @ gap (ie. (Juys—J) 0 p (o) = 9,

() J. 0 p(w) is a model of CA,

(c) J, is a model of full replacement.
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Barely Baire spaces
by

W. G. Fleissner * (Pittsburgh, Pa) and K. Kunen ** (Madison, Wis.)

Abstract. We give new examples of Baire spaces whose products are not Baire. In particular,
we construct a Baire X" with X* nowhere Baire, and, for each %, a family of spaces {Xp: f<%} such
that T {Xp: fi<Cx} is nowhcre Baire but for all y<x, TI{Xp: f<x, B # p} is Baire. We indicate
the relation of our technique to the forcing technique of P. E. Cohen.

Introduction. If the reader will bear with us, we will bare the facts about barely
Baire spaces (1),

The Baire Category Theorem, that in complete metric spaces the intersection
of countably many dense open seis is dense, is of fundamental importance in analysis
([5] and [21]). Following Bourbaki, we call a space in which the intersection of
countably many dense open sets is dense a Baire space. That a compact Hausdorff
space is Baire plays a key role in the Rasiowa—Sikorski proof of G6del’s Completeness
Theorem [20]. It also motivates the form of Martin’s Axiom most accessible to the
nonlogician. Tn general topology that various other types of spaces are Baire is
important ([7] and [24]).

Because of the usefulness of Baire spaces, it is natural to ask about the closure
properties of the class of Baire spaces. For example, locally Baire spaces, images of
Baire spaces under open maps, and dense G;’s of Baire spaces are Baire, Images of
Baire spaces under closed maps, or arbitrary Gy's of Baire spaces need not be Baire.
The more stubborn question of whether the product of Baire spaces or metric Baire
spaces is Baire has been raised in [5), [16] and [22].

We call o Baire space X barely Baire if there is a Baire space ¥ such that Xx ¥
is not Baire. We call o space X nowhere Buire if there is a family 2 = {D;: ie o}
of dense open sets so that () @ iz empty.

Oxloby [16] showed that the continuum hypothesis implies that there is a barely
Baire space. More recently, P, E, Cohen improved this to an absolute result. Cohen’s

" Partially supported by the National Research Council of Canada.
** Partially supported by the National Science Foundation, USA.
(M) The title was suggested by Judy Roitman; Eric van Douwen informs us that he had already
used the phrase in a different sense.
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proof involved techniques of forcing. In this paper (§ 4), we present a direct combina-
torial proof. In § 5 we shall indicate the relationship between our methods and
Cohen’s.

§ 4 also includes a number of other examples obtained by our techniques. In
particular, we find a Baire X such that X’ 2 is nowhere Baire, and, for every cardi-
nal x, a family of spaces {Xj: f<2x} such that [T{X,: f<x} is nowhere Baire,
but for all y<x, [[{X,: B<x, B # y} is Baire.

1. History. In this section we review the history of the problem. Let us begin
with the proof that complete metric space X is Baire. Let U be a nonempty open
set of X and 9 = {D,; i w} a family of dense open sets of X.

We inductively choose a sequence {U;: i € w} of non empty open sets satisfying:
Q) Uy = U, (i) UprcU; n D;, (iii) diameter U, <27"

If x; € U,, then {x;: { € »} is a Cauchy sequence, and by completeness converges
to a point x. Now xe Un [} @ so X is Baire.

Let us note several things about this proof. First, the proof is to define a nested
sequence of open sets, satisfying certain conditions (ii), (iii) so that the intersection
is a point. Second, we could have required the open sets to be in a given basis. Third,
the choice of U,,, depended on U; and {D,: 0<n<i}; the choice was made without
knowledge of {D,: i<n<w}.

It is often useful to consider a game associated with a space X with a basis B.
For convenience let us exclude the empty set from B. Two players « and f alternately
choose elements of B to form a nested sequence % = {U,: iew} Player o wins
if % # &; player f wins if (| % = @. Formalization of the game and a precise
definition of winning strategy can be found in [5], [17] and [25].

For the game in which o moves first, “f has a winning strategy that depends on
knowledge of all of the previous moves™ implies “X i{s nowhere Baire” implies “f} has
a winning strategy ¢: B—B” [17]. If « has a winning strategy (depending on the
previous moves) in the game in which 8 moves first, X is called (weakly) o-favor-
able [5]. The nice properties of weakly o-favorable spaces are listed in [25]. A. weakly
o-favorable space is complete in the sense of the next paragraph.

There is a plethora of completeness properties in the literature (sce [l] for
a survey.) Fortunately, we need not be concerned with them. We make the informal
definition that a space is complete if it can be proved Baire by the argument above.
The relation of complete spaces to products of Baire spaces is described in the the-
orems below.

THEOREM. Any product of complete spaces is Buaire ([4], [16] and [25)).

Proof. We require the U;’s to have finite support. On the factors in the support,
we use the completeness argument. We ignore the other factors. The same proof show
that box products of =, products [9] of complete spaces are Baire,

. THEOREM. If X is complete and Y is Bdire, then X x Y is Buive ([2] and [25]).

Idea of the proof. The dense open sets are refined so that we can find a fiber
{»}xX on which the completeness property of X can be used.
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Let us hasten to give an example of a metric Baire space which does not contain
a dense complete subspace. One can readily verify that if Z is a subset of R, the reals,
such that neither Z or R—Z contains a perfect subset, then Z and R—Z are metric not
complete Baire spaces. Bernstein constructed such a Z by transfinite induction
([12], § 40, 3. But it is not barely Baire because

TuroReM. If X is a second countable Buire space and Y is a Baire space, then
X% Y is Baire ([16] and [22]). :

Tdea of the proof. A category analogue of Fubini’s theorem.

Oxtoby's fundamental paper [16] contains two other important results. The
following theorem is generalized in Theorem I, § 3.

THEOREM. Amy product of second countable Bdire spdces is Buaire.

And, as mentioned in the introduction, assuming the continuum hypothesis,
Oxtoby gave the first example of a barely Baire space, inductively defining a subspace
of the Stone space of the measure algebra, Actually, the assumption used is that the
union of <¢ sets of measure zero has measure zero. White’s analogous construction
of a subspace of the real line with the density topology should be noted [26].

Two recent papers complete our survey of the history of the problem Krom [10]
constructed a map * from the class of topological spaces to the class of metric spaces
such that X" x ¥ is Baire iff X'x ¥ is Baire. This result had two important effects.
First it reemphasized the importance of games, and second it encouraged people to
look at “bad™ topological spaces, The problem of the existence of barely Baire spaces
was finally completely solved when P, E. Cohen [6] suggested forcing spaces and gave
an absolute example of a barely Baire space.

2. Preliminaries. An ordinal is the set of its predecessors. A cardinal is an
initial ordinal. The first infinite ordinal (cardinal) is c. A. function is a set of ordered
pairs. The image of a set V" under a function £ is denoted "'V, the preimage is
denoted £V, The restriction of fto j is f M.

If {X,: a & I'} is a family of topological spaces, TI{X,: « e I} is the usual (Tycho-
noff, or finite) product, We use the standard base of open cylinders with finite support.
We denote the support of B by suppB. '

ST is the set of functions from T'to S. FS,, the set of finite sequences in a, is
Ulanew)MaeFS, o"yisou {¢dome, yp}; that is, o with y stuck on the end.

We call x” J, and give it a metric dy d(f,¢) = 27" where .7 is least such that

F0n s gin), Thus 29 = J, is the Cantor set. The cardinality of a set § is denoted

card S, The cardinulity of 27 is ¢. The next cardinal after ¢ is denoted c*.
if o€ FS,. and we are discussing J,, then B, = {fed, o=/} A basis forJ,
is {B,: o & F'S,}. It D is a dense open set of J,, then there is a function B: FS,—FS,
such that
By=B, " D.

When of x> w, we define a map *: J,—x; f* is the least o greater than f(n) for
all new If Acx, A% = {feJl,: Hed}
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An infinite cardinal » is regular if it is not the union of less than x sets of cardj-
nality less than . A subset C of % is called cub if it is closed unbounded. A. subset 4
of x is called stationary in % if A intersects every C cub in .

If % is regular, the intersection of less x sets cub inx is cub inx; the contrapositive
is that the union of less than x set not stationary in » is not stationary ins. Ifx >
is a regular cardinal, then any stationary subset of » can be split into x disjoint station-
ary subsets of x [23].

If D: FS,—FS, call y a fixed point of B if D"FS,< FS,. If» is uncountable and.

regular, the fixed points of D are cub in % (see [11] for proofs). :

Cox is the subset of % of ordinals of cofinality w; if  is uncountable and regular,
then C,x is stationary.

The following lemma is Lemma 3.4 of [8].

Lemma 1. Let x> be regular. If K<J, is closed, and W = {f*: fe K} is
stationary, then there is C cub in » such that Cn CoxcW.

Proof.Let W, = {f*: ocfe K}.LetX = {s: W,isstationary}. By hypothesis
the empty sequence is in Z. Using the Pressing Down Lemma, we can define a func-
tion #: Zxx—X such that

(i) 0(o,0)>0;

(i) 6(c, o) ¢ FSo.

Let C be the set of y such that

0" 0 FS)xycFS,,

'

3. New theorems. Although the main thrust of this paper is the new examples,
we also have several new theorems. :

THEOREM 1. Suppose for all f € 1, X, has a (pseudo, or 7)) hase of cardinality <.
Then if X =[] {X;: Bel} is nowhere Baire, there is I'<I, cardl’<sx, such that
111Xs: BeI'} is nowhere Baire [16].

Proof. Direct from Lemmas 2 and 3.

Lemma 2. If each X has a (pseudo, or ) base of cardinality <x, then X has
cellularity x. That is, every family of disjoint open sets of X has cardinality <x [14].

Proof. It is clear Jif I'is finite. By the 4-system lemma, it then follows for all I,

Lenva 3. Suppose X = ] {X;: Bel} has cellularity » and is nowhere Buire.
Then there is I'<I, cardl'<x, []{X,: fel'} is nowhere Buire,

Proof. Let = {D,: ne w} be a family of dense open sets of X, N =0
Let. {Gp: BeK,} be a maximal collection of disjoint basic ‘open subsets of D,.
It is easy to check that | {G}: fe K.} is dense open. Let

I'= | {suppG}: pe K, neaw}.

Remark 1. We may replace “nowhere Baire” with “not Baire™ because a space
is not Baire iff some non-empty (basic) open set is nowhere Baire,

Remark 2. This shows that the spaces of Example 2 cannot be smaller,

icm®
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THEOREM 2. Suppose X* is nowhere Buire. Then X iy nowhere Baire

Proof. Let o be a winning strategy for § in the game associated with X* and B

. . N . £l
the basis of open sets with finite support. Then § (with perfect memory) has a winning
strategy in the game associated with X and B, the basis of open sets with finite
support. The idea is this: 8 relabels the index set as he goes along so that he is in
effect playing according to o in X*

Remark 3. Again nowhere Baire can be replaced by not Baire because the
support of a basic open set is finite,

THEOREM 3. Let X be a metric space without isolated points. Then there is a pair X'

3
f such that

(8) X~ X" is a countable union of nowhere dense sers;

(b) fis @ map from X' to 2° the Cantor set;

(¢) the preimage of « nowhere dense set of 2° is nowhere dense in X

COROLLARY 3.1, Ivery metric space without isolated points is the wmion of ¢ no-
where dense sels.

COROLLARY 3.2. Assuming Martin's every Baire metric space without isolated
points has cardinality > c.

COROLLARY 3.3, It is consistent with the usual dxioms of set theory that wy<c
and every metric space without isolated points is the union of w, nowhere dense sets.

Proof, Tt is consistent that w, <¢ and 2% is the union of w, nowhere dense sets.
(Consider the random real model.)

Proof of Theorem 3. By Bing’s theorem [3], X has a g-discrete base B,
B={{B;: iew}. Then F, the frontier of B, is nowhere dense.
(Fi=X—-(U B vint(x—|) B,‘))). Let

X' =X-U{F:iew).
From B on X, we can define a base B’ = {J {B;: ie w} on X’ satisfying
() U Bj = X', B] disjoint;

(i) By, everywhere propetly refines B;.

Making (ii) more explicit, there are %7, W ! such that

(W) #) Wt = @, W o = By

(iv) for every Be B, there are B®, B' such that B ewl,, Ble ¥,
BcB, B'e A,

Now for x & X', define £ (x) to be the unique element of 2° satisfying x e #{™0,
To check (¢), given N nowhere dense in 2% and U open in X7, we need to find a non-
empty open V, Ve U, V /™ (N) = @. Without loss of generality, U e B;. Then

SUU is basic open in 2% Chooso ¥ basic open in 2°, V' cf"U~N.Let V=/"1V"

4, Now exumples, Consistent examples of barely Baire spaces have bgen given
in [6], [16] and [26], In this section we present new and absolute examples.
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Throughout this section, & = {D;: i€ w} is a countable family of dense open
sets and ¥ a non-empty basic open set of the space in question,

ExAMPLE 1. An absolute barely Baire space. Let 4 be a stationary subset of
w; (or of C,x). Then A* is Baire.

Now each D;induces a function D;: FS;— FS; (FS,— FS;). Let C; be the
cub of fixed points of D;. Let C = () {C;: iew}. Let ¥ = B,. Choose ye C 4
so that o e FS,. Let sup {y;: iew} = y. Inductively define

0o =0,
Oity = 5;(“.‘)“)’1 .
Let f= {B,: ico} = U{o;: icw}. Then f*=yed and feV ~n ) 2.

If 4 and B are disjoint stationary subsets of w, (or C,x), then 4% x B* is not
Baire. Define .

= {{fs g>: min(f*, g*)>max(f (1), 9 ()},
a dense open set. If { f, g> € A* x B¥, then f* # g*. So assume f*> g*. Then for
some 7, £(1)>g¢* and {f, g} ¢ D;.

Remark 4. 4 is Baire by a similar argument, and by Theorem 2 every power
of A is Baire.

Remark 5. It is instructive to compare the proof that A* is Baire with the proof
that a complete metric space is Baire. Both proofs define nested sequences of open
sets which intersect in a point. The difference is that in Example 1 we used knowledge
of the entire family & to define y and {y;: iew}.

Remark 6. This example was discovered as a simplification of the metric spaces

defined from a forcing argument. With hindsight, it seems incredible that it was not

discovered by investigating non-separable analogues to Bernstein’s example. R. Pol
has emphasized this analogy in private correspondence and in [18]. Pol [19] also
has shown that every nowhere separable Baire metric space can be split into two dense
subspaces of second category whose product is not Baire.

ExAMPLE 2. For every cardinal x, there is a family {X,: a<ux} of metric spaces
such that !

@ JT{X,: a<x} is nowhere Baire.

(i) For every f<x, [T{X,: a<x o # B} is Baire.

First note that it is sufficient to prove the assertion for arbitrarily large », so
we consider only finite or regular x. Let {4+ a<s} be disjoint stationary subsets
of w;, if #<<wy, or of Cpx if x>w,. Let B, = J{4p: f<x, j # «}. Then for all

w<x, the product [T {Bf: f<uw, f # «} is Baire because it contains as a dense
subset a power of 4%, which is Baire by Remark 4 and Theorem 2.

If (some basic open set of) IT{Bf: a<s} is nowhere Baire, as we can show for
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w<w,, then we are done. 1f [T {B¥: a<x} is Baire, then we add to our family the
space Z. .
Z = {ze&l; 2*e Ay, for some 7€} .

For every o, a dense open set of A* is dense in Z. So it remains to show that
Zx[] {B¥: a<x} is nowhere Baire. Define

Dy = {2, foy oyt min (2%, £45) > max(2(), f0, (D)} -

Suppose <z, /o, > € () {Dy2 J,j<w}. Then z* = f¥%, = and zeZ iff
for some £, funy ¢ By S0 N {Dy: 1j<o} = @.
Exampri 3. A new consistent barely Baire space. Assume >,x. That is, there

is a sequence {S,: y & Cyx} such that S,: y—2 and for all x: x—2,

oy

As=1{y: Sy =x Ty}
is stationary.

Say that X is x-Baire if the intersection of x dense open sets is dense. Let
Y, = {x}x VY.

Lemma 4. Let X be w-Baire and let {V,: a<x} be a base for Y. Let {Dy: B<x}
be a family of dense open sets of Xx Y. Then there is a dense set G of .X such thar
for xe G and ff<u Dy Yy is dense open in Y.

Proof. Let G,y be the projection onto X of Dy~ X'x V,. G, is a dense open
set in X. Let G = () {Gy: o, f<u}. ‘

Remark 7. This proof is the same that Kuratowski and Ulam used vfor
% = [I3].

Let X be 2* topologized so that the ath basic open neighbourhood of x is
{x'v &' bo = x pa}. Note that X is x-Baire. Let ¥ = J,. Let

K= {{e,fYeXxY: f*ed,}.

Every dense open set of K comes from a dense-open set of Xx ¥, so by the lemma
there is & dense set of x & X such that for each /, D; is dense open set in Y,c.. Now
K n Y, is homeomorphic to A%, a Baire space. Thus (} @ n K n Y, is densein Y,
and K is Baire.

To show K* is nowhere Baire, let

Dy = (oS>0 G /Y min( /%, %) > max(£(),£/()) and x 1 f* # 1%}

Remark 8, 1f A = 1, and 2" = % = A", then O (Gregory, Laver): .
Examery 4 (1), An absolute nowhere Baire square. Let {/.4,‘: x€2°} be disjoint
stationary subsets of Cye™. Let M = 2°xJ.+. Our space is
Yo {{x, f>eM: fReds}.

() We also have u Baire notion of forcing whose square adds a real.
5 — Fundamenta Mathematicae I
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Let @ = {D,: i€ w} be a family of dense open sets of M and ¥ a non-empty
open set of M Let
W= {f*: <{x,foeVa 9}.
We first check that W is stationary. Let C be cub in ¢*. We can inductively
choose nested basic open sets .B; of M in such a way that BV, B,,.,<=D,, and

B,;,, insures f* e C, where {x,/> = () {B;: iew}.
Now for {x,fY e M, h: o—wo, and i € w, let B(x, f, 1, i) be the ball of radius

27" around (x, £, Explicitly,
B(x.fohy i) = (K¢, 'y e M: x M h(i) = X' 1 h(i),
Let

FLRG) =f Th).

o W= {/* Blx,f,h,)eD; AV for all iew}.

Now_ W, a stationary subset of ¢c*, is not the union of ¢ non-stationary sets,
So for some x, h, W,, is stationary. By Lémma 1, there is a cub C such that
CnCyctcWy. Then, A, Wy #@. So there is {x,f>e¥YnVnNa,
and Y is Baire.

To show that Y2 is nowhere Baire, let

Dy = {{<x,f3, <, £ x # &, min(f*, f)>max (£, £/} -

Remark 9. Let m<w. The above method generalizes to construct a space X so
that X™ is nowhere Baire and X" is Baire for all n<m, Together with Theorem 2
this covers all possibilities for powers.

Let {4,: yem®} be disjoint stationary subsets of C,c™. Let

B, = U {4, y(i) #y'() for all ie ).
Let
X = {(y’f> yE?’)’lw,fEJ,‘.»»,‘f*EB‘} .

Remark 10. Let X be constructed as in Remark 9 with m = co,. Then the
usual product of @ copies of X is Baire, but the box product of w, copies of X is
nowhere Baire.

5. Forcing. In this section we describe how Example 1 was derived from a notion
of forcing. We also prove a theorem which enables us to show that some “cross-
products” of barely Baire spaces are Baire.

A full explanation of forcing is of course beyond the scope of this article. But
we hope that the material presented below will give a feeling of the relation between
Baire spaces and extending models of set theory. The presentation is aimed at those
with some experience with the partial order form of Martin's Axion.

Martin’s Axiom talks about a certain type of forcing; note the title “Internal
Cohen Extensions” [15]. Forcing is the process of defining a partial order P and
getting a filter G generic over P. (In this paper, it is relevant to note that the existence
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of & can be shown by applying the Baire Category Theorem to the Stone space of
the regular open algebra of P')

Some differences between external Cohen extensions and Martin's Aiiom are:

. & intersects all dense subsets of P (in the countable model M),
2. P need not have the countable chain condition.
3¢ will be a new set, not in the model M (except in trivial cases),

We define a topological space ' from a given partial order P. The basic open
set of the point pis {g: pizqgl, so any intersection of open sets is open, and, if P has
two comparable clements, 2 is not 7. The relation to Buire spaces is the following,
Lot ¢ be generic over P, Il goneric over 0.

4. P Q' is Baire il no new m-sequences of ordinals can be defined from G
and /1. ’

We now describe the lorcing argument from which Example 1 was derived.
Let A and B be disjoint stationary subsets of €, % regular, >0, Let P(Q) be the
collection of order preserving and limit preserving maps from an countable ordinal
with last clement to 4 (B). Say that p=p’ iff PSP PYQ") can be shown to be Baire
by an argument similar to (but more complicated than) the argument in Example 1.

Because ¢ and Jf intersect every dense set, range |G and range UH are cﬁb
in . These cubs are digjoint because A and B are, so of % has become w. So by 4
P'x O is not Buire. We can explicitly define a new w-sequence of ordinals cofinal
inx. Lot fiy be the first clement of range | G. Tnd uctively define B,, , ; to be the least
element of range ) H greater than Bans Baysz to be the least element of range G
greater than fiy,., (. Bringing this idea to P'x Q', we see that D,, the set of {p, ¢g>
that “intertwine” at least n times, is dense open, and N{D,; new}=9.

TeavoreMm 4. Suppose P'is « Buire forcing space. Then P'x X is Baire FVPEX
is Baire.

COROLLARY 4.1, The product of « Buire forcing space with Oxtoby’s example
is Baire.

Cororrary 4.2, The product of a Jensen-Johnbréten tree space with a stationary
set foreing space iy Buire.

COROLLARY 4.3, [f ! forces an w=elosed ynbounded set through 4, an w-stationary
set of x, and Q) through dn w=stationary set of Ay and 2¢< 1, then P'x Q' is Baire.

Remark 11 OF course these corollaries extend to Baire spaces derived from
forcing spaces.

Proof of Thearem 4. By £, (T) we mean the set of points (open sets) of X
in V. By ¥*E £ iy Baire, wo mean that in ¥7 there are no G;=Tsuch that, letting
G? £ U (; It

LY0eT 600w 0,

2N {67 iew) = O,

il
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Assume P*x X is not Baire; that { D;} are dense open in P'x X and " {D;} = @,
Define G;,=T by ||Ue G)||>B, iff B,x UcD;. Now

e G| = sup U e G| = intel U {B,: B,xUcD}}

which differs from {J {B,: B,x UcD;, xe U} by a nowhere dense set H,;.

() pellxeGill—H, implies (p,x)eD,.
Suppose ||0 L G; = @||=B,. Now B,x0 n D; # @, so there are B, and U such
that B,x UcB,x0n D;. Then [|[U=G||>B, and [|0 N G] # @||>B,; a con-
tradiction establishing 1.

Now suppose ||x & (| G{||>B,. Because P'is Baire, there is g B,— | If,,.
Then by () (g, x) € D;; a contradiction establishing 2.

Conversely, assume ¥¥ = X is not Baire; that G, V" satisfy 1 and 2. Define
D;cP'x X by

D, = U{B,xU: [|[U=G||=B,} .

It is easy to check that D; is dense. Suppose that (p,x)e () D, then
B,x{x}c=} {D;}. And llx € G{||>B,, contradicting the assumption on G;.

6. »x-Baire spaces. Call a space X x-Baire if the intersection of » dense open
sets of X is dense. For x a regular cardinal, much of the theory of Baire (= w-Baire)
lifts to »-Baire. For example, C,x*, the set of ordinals less than »™ of cofinality s,
can be split into two disjoint stationary sets and the analogue of Example 1 can be
constructed. Note that by Corollary 3.1, a x-Baire space cannot be required to be
metric.

To get »-Baire spaces whose product is not Baire by this method, onc needs
disjoint %-fat subsets of a regular cardinal >x. A set A4 is a »x-fat subset of A if for
every a<x and every cub C of 4, C n A contains a closed copy of a.

It is consistent that disjoint x-fat subsets of x™ exist. For example, the subset
of x* added by Cohen forcing and its complement are x-fat. Moreover V = L
implies “fat” versions of .

7. Questions.

1." Can the metric Baire not barely Baire spaces be generated from the complete
metric spaces are locally separable metric spaces by products, dense superspaces,
and dense G subspaces?

2. Let X be metric barely Baire. Must there be a metric Baire space Y with the
same weight as X such that X'x ¥ is not Bajre?

3. Does “« has a winning strategy that depends on knowledge of all the previous
moves” imply “«¢ has a winning strategy ¢: B—B"?

4. Suppose A is singular and X is regular and x-Baire for all x<l. Is X
A-Baire?
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5. If the box product of a family of spaces is Baire, must the usual product of
that family be Baire? .

6. Ts there absolutely a regular T, Baire space without isolated points of cardi-
nality w,?

7. Is Z needed in Example 2?

8. Can x<J replace 2<4 in Corollary 4.3?

9. If X is Baire and X® nowhere Baire, is X barely Baire?

Remark 12. Shelah has informed us that in a model of Magidor there are not
two disjoint far subsets of w,. Galvin has informed us that in a model of Magidor and
Laver, the box product of w, copies of a separable not weakly « favorable metric
space is not Baire.
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Abstract. De Groot conjectured that if a finite-dimensional compact metric space is a suspension
about every pair of distinct points, thenitis a sphere. Szymanski proved this for dimensions strictly
less than 4. Here it is shown that such a space is a regular generalized manifold homotopy equiv-
alent to a sphere, and that any space about which it is a suspension is a generalized manifold
homotopy equivalent to a sphere. An analogous result is established for spaces which are open cones
about each point. These results are special cases of the Bing-Borsuk conjecture about locally

homogeneous ANR’s.
&

De Groot [5] has conjectured that if a finite-dimensional compact metric space
is a suspension about every pair of distinct points then it is a sphere. Szymanski [10]
proved this for dimensions up to 3. Here it is shown that such a space is always
a regular generalized manifold homotopy equivalent to a sphere, and that any space
about which it is a suspension is a generalized manifold homotopy equivalent to
a sphere. An analogous result is proved for spaces which are open cones about every
point. In both cases the spaces about which the space is a suspension or cone are
called links; it is shown that links need not be homeomorphic, but that their products
with the real line are necessarily homeomorphic. Notice that our main result is
a special casc of the Bing—Borsuk conjecture, [1], that 2 separable finite-dimensional
locally homogeneous ANR is a generalized manifold.

1 should like to thank Dr. A. Szymarski for a helpful letter concerning an earlier
version of this work.

DgriNrTions. The suspension sL of a space L is the quotient of Lx[0, 1]
obtained by identifying L x0 and Ix1 to distinct points, called the conepoints.

The open (closed) come on a space L, written ¢°L (cL), is the quotient of
Lx[0,1) (Lx[0, 1] obtained by identifying Lx0 to a point.

In all cases the point corresponding to (x, ) is written X A L. In sL, given § with
0<s<1, we write c’L = {xa1] xeL and 0< 1<s}.

A compact finite-dimensional metric space Y is called an absolute suspension (AS)
if for each pair of distinct points X, ¥ there is a space L(x, y) and a homeomorphism
from X to sL(x, y) carrying x to the bottom conepoint L x 0 and y to the top cone-

point L x 1.
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